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Abstract. 

 

Growth grammars in the form of parallel rewrite systems (L-
systems) are used to model morphogenetic processes of plant structures.
With the help of evolutionary programming techniques developmental pro-
grams are bred which encode plants that exhibit characteristic growth pat-
terns advantageous in competitive environments. 
Program evolution is demonstrated on the basis of extended genetic pro-
gramming on symbolic expressions with genetic operators and expression
generation strongly relying on templates and pattern matching.

 

1 Introduction: Why model morphogenesis?

 

One reason for attempting to model nature is to gain more and more detailed insight
into natural processes. Computer simulations have turned out to provide excellent
means to explore phenomena observed in nature. One crucial characteristic of natu-
ral organisms is their ability to grow and form new structures, these processes being
subsumed as 

 

structure formation

 

 or 

 

morphogenesis

 

. Such structure formation can be
interpreted as the execution of »developmental programs«, there is no blueprint for
an organism, instead, complex »rule systems« encode how to build organels and how
to combine diversified parts to form a complete and functioning organism. However,
these »programs« are highly complex and parametrized with diverse influence from
organism-internal signals (genes mutually switching on and off by activator and
repressor mechanisms) as well as from the environment in which development takes
place.

There is a special area of morphogenesis which is being studied extensively: the
morphological modeling of plant growth in 3-dimensional space, an area that turns
out to me of more and more importance for realistic simulations of botanical ecosy-
stems, such as forests, thus gaining new insight into natural interaction processes and
understanding how environmental factors influence those ecosystems. The creation
of plant models in 3D space is required for being able to model interfaces between a
plant and its environment, like light interception, its mechanic and hydraulic architec-
ture, or interaction with neighboring plants.

In the sequel, we will focus on modeling growth processes of plant structures in
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three dimensions. Chapter 2 will briefly mention different approaches used for
modeling plant morphology. We will discuss parallel rewrite systems, commmonly
termed L-systems, in more detail, as these will serve as our preferred formalization
of developmental programs. In chapter 3, combining those L-systems with
evolutionary programming techniques will lead to a first step in being able to model
evolution in ecosystems, or at least, to help design L-systems encoding plants that
exhibit characteristic growth patterns, as will be shown in detail by several example
evolution experiments in chapter 4. Finally, in chapter 5, we will conclude with an
outlook towards a simulation system for coevolutionary plant development.

 

2 Morphological modeling of plant growth

 

Quite a lot of diverse approaches for modeling plant morphology have been develop-
ped within the last decade (with some being extensions of techniques dating back
more than 20 years): iterated function systems [Peitgen et al., 1993], cellular auto-
mata or voxel space growth [Green, 1989], Lindenmayer systems [Lindenmayer,
1975; Prusinkiewicz and Lindenmayer, 1990], or stochastic growth grammars
[Kurth, 1994].

In the scope of this article we focus on Lindenmayer systems (L-systems), a spe-
cial type of string based rewrite systems, named after the biologist Aristid Linden-
mayer (1925-1989). L-systems are successfully being used in theoretical biology for
describing and simulating all different kinds of natural growth processes (for a great
number of examples see e.g. Prusinkiewicz and Lindenmayer, 1990). With L-systems
all letters in a given word are replaced in parallel and simultaneously. This feature
makes Lindenmayer systems especially suitable for describing fractal structures, cell
divisions in multicellular organisms [Jacob, 1995b], or flowering stages of herbace-
ous plants [Prusinkiewicz and Lindenmayer, 1990, Jacob, 1995a and 1996], as we
will demonstrate in the sequel.

D0L-systems (D0 meaning: deterministic with no context) are the simplest type
of L-systems. Formally a D0L-system , capable of encoding geo-
metrical structures, consists of the following ingredients:

 

•

 

an 

 

alphabet

 

 , each symbol of which stands for a morpholo-
gical unit, like a cell, an internode, a sprout, or a leaf,

 

•

 

a start string , referred to as the 

 

axiom

 

, which is an element of , the set of
all finite words over the alphabet ,

 

•

 

, a set of productions or 

 

rewrite rules  

 

with
 for each , which replaces a symbol by a (possibly empty)

string of symbols, and which are to be applied in parallel to all symbols of a
string,

 

•

 

a 

 

geometrical interpretation 

 

, a 3D semantics, for some of the symbols from
, translating a string into a spatial structure, i.e. special symbols represent

commands to draw graphic objects like points, lines, polygons etc; this transla-
tion is commonly known as 

 

turtle geometry

 

 interpretation.

L Σ α P T, , ,( )=

Σ σ1 … σn, ,{ }=

α Σ*

Σ

P p1 … pk, ,{ }= pi : Σ Σ*→
σ pi σ( )→ σ Σ∈

T
Σ
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Whenever there is no explicit rewriting rule for a symbol , the identity mapping is
assumed. Iterated application of an L-system  generates a
(potentially infinite) sequence of words  as exemplified in fig 1,
where  denotes -fold parallel application of the productions in , and each
string  is generated from the preceding string  with

 the following way ( ):

 

.

 

   

 

Fig. 2 shows an example L-system describing growth sequences of sprouts, leaves
and blooms of an artificial flower, together with its graphical interpretation. The
D0L-system encodes turtle geometry macros for generating graphical representa-
tions of the leaves, blooms and stalks. All the non-italic, bold terms (

 

f

 

, 

 

pu

 

, 

 

pd

 

, 

 

rl

 

, 

 

rr

 

,

 

yl

 

, 

 

yr

 

) represent commands to move the turtle (

 

f

 

: forward, 

 

b

 

: backward) and change
the drawing tool´s orientation by rotation around its longitudinal, lateral, and vertical
axes (

 

rl

 

/

 

rr

 

: roll left/right, 

 

pu

 

/

 

pd

 

: pitch up/down, 

 

yl

 

/

 

yr

 

: yaw left/right), thus transla-
ting a one-dimensional string into a 3D geometrical object resembling a plant (some
of these commands do not occur in the example L-system). In order to be able to
generate branching structures a kind of stacking mechanism for the turtle´s position
and orientation is necessary. For each string of the form  the strings , ,
and  are interpreted in sequence, however, before starting the interpre-tation of 
the current turtle position and orientation are pushed on a stack, so that, having fin-
ished interpreting  , the turtle is reset to its prior coordinates and orientation. 

 

 

Fig. 1. 

 

Rewriting with D0L-systems and geometrical interpretation for an axiom 

 

abc

 

 and pro-
ductions 

 

a

 

 

 

→ 

 

bc

 

 and 

 

c

 

 

 

→

 

 

 

ad

 

.

σ
L Σ α P T, , ,( )=

α 0( ) α 1( ) α 2( ) …
P

k
k P

α i 1+( ) α i( ) α 1
i( ) α 2

i( ) …α ni

i( )=
αm

i( ) Σ∈ pi j
P∈

α i 1+( )
P α i( )( ) pi1

α 1
i( )( ) pi2

α 2
i( )( ) … pin

i

α ni

i( )( )= =

s1 s2[ ] s3 s1 s2

s3 s2

s2
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Fig. 2. Example of a growth grammar (L-system) modeling plantlike geometrical structures

Initial start word: sprout(4)

Sprout developing leaves and flower:

: sprout(4) → f stalk(2) [ pu(20) sprout(2) ]
pu(20) [ pu(25) sprout(0) ]
... [ pu(60) leaf(0) ] rr(90) 
[pu(20) sprout(3) ] rr(90) 
[ pu(20) sprout(2) ]f stalk(1) 
bloom(0)

Riping sprout:

: sprout(t < 4) → sprout(t+1)

p1

p2

Stalk elongation:

: stalk(t > 0) → f f stalk(t-1)

Changing leaf sizes:

: leaf(t) → leaf(t + 1.5)
: leaf(t > 7) → Leaf(7)
: Leaf(t) → Leaf(t - 1.5)
: Leaf(t < 2) → leaf(0)

Growing bloom:
: bloom(t) → bloom(t + 1)

p3

p4
p5
p6
p7

p8

(5)

(4)

(2) (3)

(0) (1)
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3 Growth grammars and evolution

As we have seen that L-systems can be used to model »developmental programs« we
will now try to simulate evolution within populations of plant species. Evolution
within ecosystems means that diverse »genetic programs« struggle for survival, or
for their ability to best cope with environmental conditions. In this section, we des-
cribe the basic ideas how to use evolutionary programming techniques to evolve L-
systems encoding plants with characteristic growth structures influencing their light-
gathering capability or reproductive potential. The described ideas are only the pre-
requisites for a much more complex coevolutionary simulation system, which is cur-
rently being implemented but could not yet be included in this article.

3.1 Encoding context-sensitive L-systems by symbolic expressions

Genetic Programming (GP) has been introduced as a method to automatically
develop populations of computer programs, encoded by symbolic expressions,
through simulated evolution [Koza, 1992 and 1994]. In order to use expression
evolution for L-systems a proper encoding scheme has to be defined. We will
consider the more general case of context-sensitive IL-systems (with

 referring to the number of context symbols). In context-sensitive
IL-systems – more precisely: (m,n)L-systems – the rewriting of a letter depends
on m of its left and n of its right neighbors, where m and n are fixed integers.
These systems are denoted as (m,n)L-systems which resemble context-sensitive
Chomsky grammars, but – as L-system rewriting is parallel in nature – every
symbol is rewritten in each derivation step; this is especially important whenever
there is an overlap of context strings. Each IL-system rule has the general form 

left context < predecessor > right context  →  successor.    

This means that the predecessor symbol, whenever occuring within the left/right
context symbols, is replaced by the successor symbol. Thus each rule can be repre-
sented by a symbolic expression of the form

LRule[ LEFT[ leftContext ], PRED[ predecessor ] 
           RIGHT[ rightContext ], SUCC[ successor] ].    

Accordingly, an L-system with its axiom and rule set is encoded by an expression of
the form

LSystem[ AXIOM, LRULES[ LRule] ],    

where we use a pattern notation with F denoting a term of the form F[...], and
F representing a non-empty sequence of F expressions. So our example L-

system of the previous section would be represented as follows:

LSystem[AXIOM[sprout[4]],
LRULES[

LRule[LEFT[],PRED[sprout[4]],RIGHT[],
SUCC[f,stalk[2],STACK[pu[20],...],bloom[0]]],

LRule[LEFT[],PRED[sprout[t<4]],RIGHT[],SUCC[sprout[t+1]]],
LRule[LEFT[],PRED[stalk[t>0]],RIGHT[],SUCC[f,f,stalk[t-1]]],   

where L-system bracketing of the form [s] is now represented as STACK[s].

I 0 1 2 …, , ,=
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3.2 Stochastic generation of L-system encodings by templates

One of the main differences of our GP approach to the GP paradigm introduced by
Koza (1992) is the use of high-level building blocks for generating expression as
well as modifying expressions. Instead of just defining a set of function symbols
together with their arities, each expression from a template pool, as depicted in
figure 2, serves as a possibly partial description of a genotype, encoding an L-system
in our case. Each of these templates (marked with 1., 2., 3., ...) is associated with a
set of attributes like, e.g., predicates constraining the set of subexpressions that can
be plugged in. Thus the encoded L-system productions are restricted to contextfree
forms (4., LEFT[], RIGHT[]) with their left-hand sides (4., PRED) constrained to
sprout[i], with i replaced by an integer number from the interval, say, [0,4] (5.), and
their right-hand sides (4., SUCC) defined either as a sequence (SEQ) of expres-
sions (6., 7. and 8.) or a bracketed expression sequence (6., STACK) for which
the productions are omitted here. Each expression is constructed from a start pattern
(here: LSystem[ AXIOM, LRULES]) by recursively inserting matching expres-
sions from the expression pool until all pattern blanks – marked by  – have been
replaced by according subexpressions. Of course, one has to take care that this con-
struction loop eventually comes to an end.

Fig. 3. A typical set of templates used for generating L-system encodings

 

 
 

  
 

1. LSystem[ AXIOM, LRULES], (1)

2. AXIOM[sprout[4]], (1)

3. LRULES[ 

  LRule[LEFT[], PRED[ sprout[4] ], RIGHT[], 

        SUCC[SEQ[SEQ[f],SEQ[stalk[2]], STACK[PD[60],leaf[0]], ...,

        SEQ,

        SEQ[f],SEQ[stalk[1]], bloom[0]]]], 

  LRule[LEFT[], PRED[ sprout[t<4] ], RIGHT[], SUCC[sprout[t+1]]],

  ...

  LRule[LEFT[], PRED[ bloom[6] ], RIGHT[], SUCC[ bloom[1]]], 

 LRule

     ], (1)

4. LRule[LEFT[], PRED,RIGHT[], SUCC], (1)

5. PRED[sprout[i]], (1)

6. SUCC[ SEQ | STACK], (1)

7. SEQ[ [ sprout | stalk | leaf | bloom | f | 

    YL | YR | PU | PD | RL | RR | SEQ]], (1)

8. SEQ[ [ sprout | stalk | leaf | bloom | f | 

    YL | YR | PU | PD | RL | RR ]], (4)

...

sprout[sproutIndex], ..., bloom[bloomIndex] (1,...,3)
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Some further remarks should be made about the encoding scheme of figure 3. The
templates basically describe a D0L-system as exemplified in figure 2. However, the

SEQ pattern within the first LRule expression (3.) enables the generation system
to create rule variants by inserting new expression sequences, i.e. one or more expres-
sions of the form SEQ[...]. Accordingly, the L-system encoding might be enhanced
by additional rules by replacing the LRule pattern with a (possibly empty) se-
quence of LRule[...] expressions. Each sequence of expressions is constructable via
alternative templates (7. and 8.), where SEQ[ [a|b|c]] denotes an arbitrary se-
quence of expressions taken from the set {a,b,c} as, e.g., SEQ[a,a,c,b] or
SEQ[c,c,c,a,b,a] with the sequence length restricted to, say, between 4 and 6. 

Whenever there are several templates matching one pattern the expressions are
selected with probabilities proportional to their weights (see the bracketed numbers
right from the expressions in figure 2, serving as fitness values for the templates)
leading to a kind of fitness proportionate selection among templates. The pattern
matching is not unique for the SEQ pattern (6.) for which there are two matching
templates (7. and 8.), a recursive (SEQ[.... SEQ]) and non-recursive version which
will be selected with a probability of 0.8, thus implicitly restricting the nesting of ex-
pressions. For further details on expression templates see [Jacob, 1994 and 1996].

3.3 Changing evolution program genes

Principally, we want to be able to change any subexpression within the developmen-
tal programs which should not be considered as parametrized modules encoding
some fixed L-system in a black box fashion [Niklas, 1986]. As with the expression
generating operators the basic idea is, again, to use templates for controling which
subexpressions should be in the scope of each operator:

• Mutation replaces a randomly selected subexpression by an expression – with
the same head expression – generated from the template pool.

• Crossover is a recombination operator between two or more expressions. Sub-
expressions with the same head are selected within the expressions and inter-
changed.

• Deletion erases expression arguments whenever this is possible according to
restrictions of the number of arguments for the selected expression.

• Duplication inserts a copy of a randomly selected argument as an additional
subexpression.

• Permutation interchanges the sequence of arguments of an expression.

These operators are defined for general expressions and are not especially tailored to
L-system encodings. Subexpressions are chosen according to operator specific selec-
tion schemes based on pattern matching mechanisms. Thus it is, e.g., possible to
restrict recombinations to subexpressions with head SUCC, i.e. expressions of the
form SUCC[...], which allows to interchange right-hand sides of L-system produc-
tions, or permute only LRule expressions thus changing the ordering of rules. With a
set of templates defined for each operator the effects of genetic operators can be
constrained in a problem specific way. A more detailed description of a general
scheme for the application of genetic operators on expressions can be found in
[Jacob, 1996].
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4 Breeding evolution programs

In order to demonstrate by a simple example how plantlike structures with specific
characteristics could be developed by L-system evolution, we will consider the fol-
lowing influential factors important in ecosystem competition: a plant´s insemina-
tion and light gathering capability, and its ability to shed shadow on neighboring
plants. We try to incorporate these factors with the following fitness function.

 

Fig. 4. Snapshots of the phenotypes from an evolution of plant encoding development programs.
The plants are depicted with different scales in order to show most of their details

Flowers
Generation 13

Generation 1
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, , : extension of the geometric plant structure in x-, y-, and z-dimension

, : the number of blooms blossoming; : the number of leaves the plant carries

: the maximum number of L-system iterations

The total fitness is computed as the sum of the plant´s extension, blooms, and leaves
for each L-system iteration. This means that fitness does not only depend on how the
plant flourishes at a certain growth stage but on the whole structure generation pro-
cess from an initial sprout to a full-grown plant. In the following example we start
with a small population of six L-system genomes each generated with the templates
of figure 3. A maximum number of  L-system iterations is used. Figure 4
shows two stages of a typical evolution sequence. The individuals are selected pro-
portional to their fitness. 

Fig. 5. Growth stages of the best individuals from generation 1 and 13, the numbers in brackets
denoting L-system iterations. The previous growth patterns for the generation 13 individual can
be found in figure 2.

fitness plant( ) ∆xi ∆yi ∆zi⋅ ⋅ 2 Bi Li+⋅+
i 0=

m

∑=

∆x ∆y ∆z

B L

m

m 6=

(9)

(3) (6) (9)

(7)

(8)

Generation 1

Generation 13



H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Eds.)
PPSN-IV, Parallel Problem Solving from Nature IV (1996), 
Berlin, Germany.
Springer-Verlag, Berlin, Germany.
pp. 42-51.

All individuals of generation 13 encode for complex growth patterns which is on the
one side due to the property of non-causality of L-systems which means that small
changes within the rewrite rules can have dramatic effects on the encoded phenotypic
appearance. On the other side, evolutionary selection and variation applied to sets of
L-systems drive the evolution process to ever more competitive encodings of
development programs. Figure 5 shows growth stages of the best individual of the
initial population (indiv. 2) compared to the best individual after 13 generations
(indiv. 1). This best evolved L-system encodes a plantlike structure that grows
rapidly, widespread, and with a bunch of blooms and leaves.

5 Steps towards realistic development and coevolution

Of course, there are many more factors that influence an organism´s development in
a natural competitive environment. With our simple example we only intended to
show the feasibility of inferring L-systems encoding morphogenetic processes exhi-
biting specific characteristics. The described evolutionary programming techniques
are currently being incorporated into a coevolutonary system for simulating plants
growing in competition for resources like nutrients, sunlight, or space. Finally, on a
more microscopic level, our L-system based developmental programs will be exten-
ded by functional genome structures like operons, promoters, and regulators in order
to include intra-gene interaction into evolution processes.
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