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Modeling Growth
with
L-Systems & Mathematica

The symbolic and graphic capabilities of Mathematica are used to implement
and visualize parallel rewrite systems.

by Christian Jacob

Rewriting has proved to be a useful technigue for defining complex
objects by successively replacing parts of smpleinitial objectsusing a
set of rewrite rules or productions. Rewriting systems operating on
character strings have been successfully used for describing syntactic
features of natural languages or for formal definitions of programming
languages [ Cho56], [Bach9].

Here we want to focus on a specid type of rewrite systems, commonly
termed L-systems, which are used in theoretical biology in order to
describe and smulate natural growth processes. The introduction of
L-systems dates back until 1968 when the biologist Aristid
Lindenmayer (hence L-systems) defined aformal rule system
(production system) where dl lettersin agiven word are replaced in
paralel and smultaneoudy [Lin68]. This feature makes L-systems
especialy suitable for desribing fracta structures, cell divisionsin
multicellular organisms or flowering stages of herbaceous plants
[Pru9Q].

Formal definition of L-systems

Context-free L-systems

DOL-systems (DO means deterministic with no context) are the smplest
type of L-systems. Formally a DOL-system can be defined as atriple G
=(Z,P,0) where2={s,, s,, ..., S;} isan aphabet, a, referred to asthe

axiom, isan element of =", the set of all finite words over alphabet 2.

The structure preserving mapping P is defined by a production map
P.2->3* with
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s->P(s) for each sin 2. Aswe consider only deterministic L-systems
there is exactly one production rule for each symbol s. Theword
sequence E(G) = a(0), a(l) , a(2), ... generated by G isderived as
follows:

a(0) =P0](a) = a, a(1) = A1](a), a(2) = P 2|(a), ...

where F[i] (a) denotesi-fold application of P and where each symbol
a(i+1) is obtained from the preceding string

a(i) = ay(i) (i) ... ani)

by applying the production rules to all m symbols of the string
simultaneoudly:

a(i+1) = P(aq(i)) Plax(i)) ... Play(i))

Thelanguage L(G) of Gisdefined by L(G) ={ P[i](a) |[i=0}.

We will demongtrate the usefulness of thisformal definition for the
description of growth processes with some little examples. Let us have
acloser look at how to smulate development of multicellular filaments.
The following growth process can be observed with various agae and
especialy in the blue-green bacteria Anabaena catenula [Pru89].
Suppose that we want to represent two cytological states, termed a and
b, of the cellswhich characterize their size and readinessto divide. The
subscripts| and r areindicative of cell polarity, specifying the positions
- left or right - in which daughter cells of type a and b will be produced.
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The following L-system describes the devel opment of afilament:

Axiom: a
P a->ab
P a->ba
Ps: br -> &
Ps: b ->3q

An a-cell with right orientation (g,) dividesinto another a-cell with
opposite orientation and ab-cell oriented to the right (production p,).
An analogous interpretation holds for production p,. With p;and p,a
b-cell convertsinto an according a-cell.

Starting with the axiom string this rewrite system generates the
following sequence of words:

a

ayb
baa

agbab
babaabaa

In each step every symbol a, a, b, or b, matching a predecessor (the left
side of therule) is replaced by the according successor (the right side
string of the rule). This replacement is done simultaneoudly within each
generation step.

Before we show how to implement these concepts in Mathe- matica
we will have a brief look at the (biologically more relevant) extension
to L-systems rules depending on context.
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Context-senditive L -systems

Up to now we have discussed context-independent rewriting, i.e. the
way aletter is rewritten depends on the letter only, adjacent |etters have
no influence on the rewrite process. However, if thereisaneed to
smulate interaction (e.g. of cellswithin alayer) context-sendtive
L-systems, commonly known as IL-systems, have to be used.

In the most general definition of |L-systems the rewriting of aletter
depends on mof itsleft and n of its right neighbors, where mand n are
fixed integers. These systems are denoted as (m,n)L-systems which
resembl e context-sensitive Chomsky- grammars, but - as L-system
rewriting is parald in nature - every symbol isrewritten in each
derivation step; thisis especially important whenever thereis an overlap
of context strings.

In order to make the following examples easier for demonstration we
will focuson (1,1)L-systems (or 2L-systems) in the sequel. This means
that each rule of IL-systemswe will discuss hasthe form

l<p>r->s
with |, p, r and s denoting left context, predecessor, right context and
successor, respectively. The symbols <" and ">" only separate
context and predecessor strings. Thus an OL-system as discussed in
the previous section consists of rules with no left or right context of the
form

<p>->s

or smply

p->s.

How doesit look in Mathematica?

Now let us examine how we can represent L-systems in Mathematica.
We first load the notebook package kLSystems.ma
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<< kLSystens. ma

The kLSystems package contains defintions for the application of
parale rewriterules of L-systems with left and right contexts with
arbitrary length. Each rule of theform | < p > r -> sas described above
IS represented by a Mathematica expression of the form

LRule] LEFT[ 1], PRED[ p], RIGHT[ r ], SUCC[ s] ].
Accordingly, we define the production set as an LRULES expression
LRULES LRuld..], LRuld..], ...]

and an L-system is described asfollows:

LSystem[ Axiom[...], LRULEY] ...1].

With this representation we can easily derive the type of the
expressions and subexpressions by only looking at their head symbols.

This notation leads to the following description of the example L-sytem
for Anabaena catenula presented in the previous section:

axiom= AXIOM aR ];

lrules =
LRULES]
LRul e[ LEFT[], PRED aR ], RIGHT[],
sucq aL,bR ],
LRul e[ LEFT[], PRED aL ], RIGHT[],
sucd bL,aR 1],
LRul e[ LEFT[], PRED] bR ], RIGHT[],
Sucd aR 11,
LRul e[ LEFT[], PRED[ bL ], RIGHT[],
SUCC aL 11

1
| system = LSystenfaxiomlrules];

skipPattern = {Null};

The skipPattern list includes all symbols that should not be considered
as context. However, these skip patterns will not be used in the
following examples.
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In order to get formatted output of the resulting strings we define
formatting patterns for the L-system expressions:

Format [ AXIOM x___]] := SequenceFor ni x]
Format[aR] := Subscripted[a[r]]
Format[aL] := Subscripted[a[l]]
Format [ bR] : = Subscripted[b[r]]
Format [ bL] := Subscripted[b[I]]

Format[ LRul e[ LEFT[I __],PRED[p__ ],
RIGHT[r __],S s__ 111
SequenceForn{l," < ", p," >",r," -> ", s]

Format [ LSystenfa_,| ]] :=
Tabl eFor n {
SequenceForn{ "Axiom ", a],
SequenceForn{ "Rul es: "

Col unmFor n{ Appl y[ Li st, 11]]
H

This enables us to display our rewrite rules in the notation commonly
used in L-system literature:

| system

Axiom a
r

\Y%
o8}
O

Rules: <a >
<a > ->ba
<b > ->a

<b > ->a

Now we are ready to start an L-system smulation. The function
runKLSystem[Isys LSystem,n Integer] takesan L-system expression
|sys and the number n of rewrite steps as arguments and performs
parallel expression rewriting starting with the axiom expression of |sys.
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anabaenaG owm h = runKLSysteni| system 6]

{a,ab,baa,aabab babaabaa,
r 1L r 1 rr 1 l'r T rrl rr

aabaababaabab,
I T r 1T r L r LT rlr

babaababaabaababaahbaas}
l'r Il rrl vl rr b r el rlrrl rr

This output does not resemble growing cell layers, but the following
formatted outputs are anice, however very smple, visualization:

Col umFor n{ %4

ar
alb
blarar
Ilbrlbr
bIarbl r rblarar
33 b 3 Ibralbr | Ibralb
babaahbahba b babaabaa
[ r | r r I rI I [ I [

babaababaa
l' r 1T rrl r!l rrl rrel rl rrl rr

Please note that runKLSystem[ Isys,n] returns alist of expressions with
head AXIOM, the Format definition for the AXIOM expressions strip
off the head.
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L-System string inter pretation

The following definitions tell how the generated strings are interpreted
as cell layers. As asde effect the interpretation function generates
graphics objects that are used for visualization.

ClearAll[interpret];

interpret[AXIOMz__]] :=
Modul e[{x = 0, y = 0},
First[ Take[ Fol d[ i nter pret[#1, #2] &,
{X,y,{}},{Z}],-l]]

interpret[{x_,y_,l_}, aL ] :=
{x+2,y, Append[ | , ArrowedCircl e[ {x+1, vy}, {1,.5},
Direction -> Left]]};
interpret[{x_,y_,l_}, aR] :=
{x+2,y, Append[ | , ArrowedDi sk[ {x+1, vy}, {1,.5},
Direction -> Right]]};
interpret[{x_,y_,l_}, bL] :=
{x+1,y, Append[ |, ArrowedCircl e[ {x+. 5, vy}, {.5,.5},
Direction -> Left]]};
interpret[{x_,y_,l_}, bR] :=
{x+1,y, Append[ | , ArrowedDi sk[ {x+.5, vy}, {.5,.5},
Direction -> Right]]};

The interpretation for each of the symbolsal, aR, bL and bR is
defined by the function interpret[{x,y,I},symbol] which first of all
receives the x- and y-coordinates of the current cell and returnsa
coordinate pair for the following cell. The y-coordinate remains
unchanged as we only consider layers growing horizontally but not
vertically. Through the |-parameter a supplemented list of graphics
objects (ArrowedCircle, ArrowedDisK) is passed on. Thislistis
returned by the AXIOM interpretation function which takes only one
argument, keeps the coordinates as local variables and folds interpret
over each subexpression of the AXIOM term.

Mathematica In Education and Research, Volume 4, No. 3 (1995)



ModelingGrowth-MathInEd.ma 9

Needs[ " Graphics Arrow "] ;
ArrowedDi sk[{x _,y },{rd1 ,r2 },opts__ ] :=

G aphi cs| {
Thi ckness[ 0. 001] ,
G ayLevel [ (1 - HueValue) /. {opts} /. Options[ArrowedD sk]],
D sk[{x,y},{r1,r2}], Hue[ O],

If[(Direction /. {opts}) === Left,

Arrow {x+ .8 r1,y},{x- .8 rl,vy},
HeadScal i ng -> Rel ative],

Arrowf {x- .8 rl,y},{x+ .8 r1,vy},
HeadScal i ng -> Rel ati ve]

1,

Hue[ 0. 75] ,
Crcle[{x,y},{r1,r2}]
H

Opti ons[ ArrowedDi sk] : =
{
HueVal ue -> 0.1,
Direction -> Right
}

ArrowedCircle[coords:{ _, },radii:{_, },opts__ ] :=
ArrowedDi sk[ coords, radii, opts, HuevVal ue -> 0]
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The listing above shows the definitions of the ArrowedDisk and
ArrowedCircle graphics objects. After mapping the interpretation
function on the L-system generated expressions the resulting graphics
can be easily animated which givesinstant insight into the smulated
growth process. An auxiliary single point is put at the maximum
horizontal coordinate in order to ensure al graphics keegping the same
length.

di sksAndGCircl es = Map[i nterpret, anabaenaG owt h] ;

maxX = Max[ Cases[di sksAndCircles,Crcle[x__ ],
Infinity] /. CGrcle[{x_, _},_ ] :> x];
Map|
Show| Graphi cs[ #] , G aphi cs[ { Hue[ O] ,
Poi nt [ { maxX+2, 0}]}],
AspectRatio -> Automati c,
Pl ot Range -> All
] &
di sksAndGCi rcl es
1

S

—C

SSoSS

S S SSSS)
SSESS-SS S S

G S S S

Figure 1: Simulated cell layer growth

Cdlsof typesaand b are depicted as ellipses and smaller circles,
respectively. Cell orientation is visualized through different greylevels
aswell as arrows pointing left (white) and right (grey).

A more elegant functiona style formulation of an interpretation
function using Mathematica's pattern matching and upvalue definition
capabilitiesis the following.
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Set Attri butes[ Cel | Layer G aphi cs, {Listable}]

Cel | Layer G aphics[AXIOM z__]] :=
Fold[Cel | CGircl e[ #2, #1] & {{0, 0}, {}},{z}]

aL/: CellCrcle[alL, {{x_,y_},g_List}] :=
{{x+2,y}, |
Append[ g, ArrowedDi sk {x+1, vy}, {1,0.5},
Direction -> Left]]}

aR/: CellCrcle[aR, {{x_,y_},g List}] :=
{{x+2,y}, |
Append[ g, ArrowedDi sk[ {x+1, vy}, {1,0.5},
HueVal ue -> 0.9,
Direction -> Right]]}

bL/: CellCGrcle[bL, {{x_ y_},g_List}] :=
{{x+1,y}, |
Append[ g, ArrowedDi sk[ {x+. 5, vy}, {.5,0.5},
Direction -> Left]]}

bR/: CellCrcle[bR {{x_,y },g List}] :=
{{x+1, vy},
Append[ g, ArrowedDi sk[ {x+.5, vy}, {.5,0.5},
HueVval ue -> 0.9,
Direction -> Right]]}

We define alistable function CellLayer Graphics which returns a
Graphics object and the maximum x- and y-coordinate. The following
command shows that the produced cell layer graphics extend
horizontally up to alength of 34.

Cel | Layer Graphi cs[ anabaenaG-owt h] // Short

{{{2, 0}, {-Gaphics-}}, {<<2>>}, <<4>> {{34, 0}, <<1>>}}

Show % // Last // Last, AspectRatio -> Automatic];

For each of the cell symbolsal, aR, bL, and bR the upvalue

CdlCirclg symbol {pos,graphics}] generates the appropriate graphics
object at position pos and appends it to the graphicslist. The following
function CellLayerPlot extracts the graphics descriptions from the
result produced by CellLayer Graphics and shows the graphics
extended by the terminal point as described above.
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Cel | LayerPlot[cells_List] :=
Modul e[ { maxCoor d, cel | G aphs},

cel |l G aphs = Map[ Cel | Layer Graphi cs, cel | s];
maxCoord = First @Last @cell Gaphs;

Map|
Show {# // Last,
G aphi cs[ Poi nt [ maxCoord+{.5,0}]1},
Pl ot Range -> Al |,
AspectRatio -> Automatic] &,
cel | Graphs
]
]

Cel | Layer Pl ot [ anabaenaG owt h] ;

L .
—® .
S .
SES S .
S S . S .
SESS S S e S .
S S S S S S S S .
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Context-sensitive parallel rewriting

Starting with a simple example ...

We use four smple rules where symbols a,b and c are only rewritten
whenever they appear within certain contexts. For a and b only one
context (left or right) isimportant whereascisonly replace by dif ¢
appears within a (c,d)-context. We only give the formatted output of the
rule system which is defined in the same notation as described above.

| LSyst enl

Axi om baaaaaaad

Rules: b < a >
<b>Db -
<b>4d -

1
V VYV

b
c
c
c<c>d->d

These rules generate the following string sequence starting from the
defined axiom:

anabaenaG owm hl = runKLSysten]|LSysteml, 15]

{baaaaaaad, bbaaaaaad, cbbaaaaad, cchbbaaaad,
cccbbaaad, ccccbbaad, cccccbbad, ccccccbbd,
ccccececceed, cccceccedd, cccccecddd, ccccecdddd,
ccccddddd, cccdddddd, ccddddddd, cdddddddd}
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In columnform the spreading of the ¢ symbols through the string is
more obvious:

Col umFor n{ %

baaaaaaad
bbaaaaaad
cbbaaaaad
ccbbaaaad
cccbbaaad
ccccbbaad
cccccbbad
cccececcecbhbd
cccccccecd
ccceccccedd
ccccccddd
cccccdddd
ccccddddd
cccdddddd
ccddddddd
cdddddddd

This can be interpreted as an example of cellular interaction, wherea
hormone (c) diffuses along afilament. However, thereis a least one
shortcoming with this rewrite system: the cell layer extensionis
predefined by the length of the axiom string. The rule system would
become more flexible if we could parametrize the layer extension. We
use this concept of parametrization in the next section.

Parametrized L-systems

Up to now we only used simple symbols as the rule system alphabet. If
we parametrize these symbols - which means that we use expressions
instead of symbols-we are able to control rule applications by
environment variables,

We introduce an environment variable w to control cell layer width

w = 11; (* cell layer width *)

and use this variable in the following parametrized L-system.

Mathematica In Education and Research, Volume 4, No. 3 (1995)
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| LSyst en®

Axiom af[1l]b

Rul es:

anabaenaG owm h2 = runKLSysten] | LSysten2, 30];

Col umFor nf anabaenaG owt h2, Cent er ]
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Anabaena catenula alga growth

We come back to our Anabaena catenula example. Now we want to
control the cdlls lifetime; at the end of their development time the cells
of type a and b divide into two successor cdlls.

i feTi neA
i feTi mneB

3; (* developnent time cells a and b *)
2;

These environment variables are used in the following L-system:

|LAXionB := AXIOM Al[1] ]:
| LRul es3 : =
LRULES]
LRul e[ LEFT[], PRED{ Al[lifeTimeA] |, R GHT[],
sucq Al[1],Br[1] ]
]L’Ru|e[LEFT[], PRED[ Ar[lifeTimeAl ], RIGHT[],
sucq BI[1], Ar[1] ]
]L’Ru|e[LEFT[], PRED[ BI[lifeTimeB] ], RIGHT[],
sucq Al[1],Br[1] ]
]L’Ru|e[LEFT[], PRED[ Br[lifeTimeB] ], RIGHT[],
sucd BI[1], Ar[1] |
]L’Rule[LEFT[], PRED] AI[i_/: i < lifeTinmeAl ],
RIGHT[ ],
sucq Al[i+1] ]
]L’Ru|e[LEFT[], PRED] Ar[i_/: i < lifeTimeAl ],
RIGHT[ ],
sucq Ar[i+1] ]
]L’Ru|e[LEFT[], PRED[ BI[i_/: i < lifeTinmeB] |,
RIGHT[],
sucq BI[i+1] ]
]Li?ule[LEFT[], PRED[ Br[i_/: i < lifeTimeB| |,
RIGHT[ ],
sucq Br[i+1] ]
]
l;
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| LSystenB : = LSysteni|LAxi onB, | LRul es3];
ski pPattern = {Null};

post Processi ngFunction := (Flatten[#, Infinity, List])é&

| LSyst en8

Axi om Al[l]

Rules: < A[3] > ->A[1]B[1]
<AI[3] > -> Bl[l]Ar[l]
<Br[2] > -> Al[l]Br[l]
<BI[2] > -> Bl[l]Ar[l]
<Ar[i_/; [ <:ifeTirrreA] > -> A1 +i]
<A|[i_/; i <lifeTimeAl > -> A|[1+i]
<Br[i_/; i <lifeTinmeB] > -> Br[1+i]
<B|[i_/; i <lifeTinmeB] > -> B|[1+i]

r
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anabaenaG owm h3 = runKLSysten{ | LSystenB, 9];

Col umFor n{ anabaenaG owt h3]

A [1]

AI[2]

AI[3]

A [1]B [1]

A[2]B[2]

A[3]Br[1]A[1]

A [1]B [1]B [2]A[2]

A [2]B [2]A [1]B [1] A [3]

A [3]Br[1]A [1]Ar[2]Br[2]B [1]A [1]

A [1]B|r[1]B [Z]Ar[Z]A [3]B [1]Ar[1]B [2]Ar[2]

Graphical I nterpretation

The interpretation function only has to be extended in order to take into
account the lifetime of the two cell classes a and b. The developmental
states of the cells are depicted by letting the cells become darker with
growing age. The arrows signa cdll orientation.
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Set Attri butes[ Cel | Layer G aphi cs, {Listable}]

Cel | Layer G aphics[AXIOM z__]] :=
Fold[Cel | CGircl e[ #2, #1] & {{0, 0}, {}},{z}]

Al/: CellCrcle[AT[i_], {{x_,y_}, g List}] :=
{{x+2,y}, |
Append[ g, ArrowedDi sk {x+1, vy}, {1,0.5},
HuevValue -> 0.2 (i-1),
Direction -> Left]]}

Ar/: CellGrcle[Ar[i_], {{x_,y_},g_List}]
{{x+2,y}, |
Append[ g, ArrowedDi sk {x+1, vy}, {1,0.5},
Huevalue -> 0.2 (i-1),
Direction -> Right]]}

Bl/: CellGrcle[BITi_], {{x_,y_},g List}] :=
{{x+1,y}, ,
Append[ g, ArrowedDi sk[ {x+.5, y}, {.5,0.5},
HuevValue -> 0.2 (i-1),
Direction -> Left]]}

Br/: CellGrcle[Br[i_], {{x_,y_},g List}] :=
{{x+1,y}, |
Append[ g, ArrowedDi sk[ {x+.5, y}, {.5,0.5},
Huevalue -> 0.2 (i-1),
Direction -> Right]]}

devTi neA
devTi neB

3;
2;

anabaenaG owm h3 = runKLSysten{ | LSysten8, 10];

Cel | Layer Pl ot [ anabaenaG owt h3] ;
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Figure 2: Algae growh with two classes of cells a (big)
and b (small).
Devel opnment tines are 3 and 2, respectively.

i

Asin the examples above the a-cells are the bigger ones. Each a-cell
needs three timesteps to mature. Then the cell dividesinto anew a-cell
(with same orientation) and a smaller b-cell with opposite orientation.
After two timesteps the b-cell isripe for dividing into ab-cell with left
orientation and an a-cell oriented to the right. It isan interesting
exerciseto think about resulting cell layer growthrates for different
lifetimes of the cells (see the following figure).

devTi neA
devTi neB

2;
3;

anabaenaG owm h4 = runKLSysten{|LSysten8, 15];

Cel | Layer Pl ot [ anabaenaG owt h4] ;
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Figure 3: Algae growh with lifetimes 2 and 5 for
cells a and b, respectively

Conclusion

We have briefly shown asimple implementation of parallel rewrite
systems with some example applications of growing cell layers. In the
next sections we will show how L-systems are applied for an implicit
description of fractals and we will describe concepts for graphical
interpretation in 2- and 3-dimensional space.
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Figure 4: Exanple of an artificial flower the growh
of which is described by an L-system
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