

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

Genetic L-System Programming: Breeding and
Evolving Artificial Flowers with

Mathematica

C. Jacob, jacob@informatik.uni-erlangen.de,

Chair of Programming Languages, Department of
Computer Science, University of Erlangen-Nuremberg,
D-91058 Erlangen, Germany

Abstract

Parallel rewrite systems in the form of stringbased L-systems are used for
modeling and visualizing growth processes of artificial plants. A package
implementing context-sensitive (m,n)-L-systems is presented which takes full
advantage of

Mathematica

´s expression manipulation and graphics capabili-
ties. Furthermore, it is demonstrated how to use evolutionary algorithms for
inferring L-systems encoding structures with some characteristic properties.
We describe our

Mathematica

 based genetic programming system

MathEvol-
vica

, present an L-system encoding via expressions, and explain how to gene-
rate, modify and breed L-systems through simulated evolution techniques.

1 Modeling growth processes by L-systems

Rewriting has proved to be a useful technique for defining complex objects by
successively replacing parts of simple initial objects using a set of rewrite
rules or productions. In the scope of this article we focus on a special type of
character based rewrite systems, commonly termed L-systems (Lindenmayer
systems), which are used in theoretical biology for describing and simulating
natural growth processes [5]. All letters in a given word are replaced in paral-
lel and simultaneously. This feature makes L-systems especially suitable for
describing, e.g., fractal structures, cell divisions in multicellular organisms
[1,2], or flowering stages of herbaceous plants [6], as we will demonstrate in
the sequel.

D0L-systems (D0 means deterministic with no context) are the simplest
type of L-systems. Formally a D0L-system can be defined as a triple

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

 where is an alphabet, , referred to as the
axiom, is an element of , the set of all finite words over the alphabet . The
structure preserving mapping is defined by a set of productions or
rewrite rules for each .

Figure 1 shows a simple example L-system describing growth sequences of
sprouts, leaves and blooms of an artificial flower an animation sequence of
which is depicted in fig. 2. The DOL-System encodes macros for generating
graphical representations of the leaves, blooms and stalks. All the non-italic
terms (f, pud, pd) represent commands to move (forward, backward) and ori-

G Σ P α, ,()= Σ σ1 … σn, ,{ }= α
Σ* Σ

P : Σ Σ*→
σ P σ()→ σ Σ∈

Figure 1: Example of a parametrized D0L-system modelling flowering stages of
an artificial plantlike structure (adapted from [6], p. 83ff.)

: sprout(4)

: Sprout developing leaves and flower:

: sprout(4) → f stalk(2) [pd(60) leaf(0)]
pu(20) [pu(25) sprout(0)]
[pd(60) leaf(0)] pd(20)
[pu(25) sprout(2)]
f stalk(1) bloom(0)

Riping sprout:

: sprout(t < 4) → sprout(t+1)

Stalk elongation:

: stalk(t > 0) → f f stalk(t-1)

Changing leaf sizes:

: leaf(t) → leaf(t + 1.5)
: leaf(t > 7) → Leaf(7)
: Leaf(t) → Leaf(t - 1.5)
: Leaf(t < 2) → leaf(0)

Growing bloom:

: bloom(t) → bloom(t + 1)
: bloom(7) → bloom(1)

GArtFlower Σ P p1 … p9, ,{ }= α, ,()=

Σ f pd pu sprout stalk leaf Leaf bloom, , , , , , ,{ }=

α

P

p1

p2

p3

p4
p5
p6
p7

p8
p9

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

Figure 2: Visualizing growth stages of an artificial plant modelled by the D0L-
system of fig. 1, the numbers in brackets mark the number of production iterati-
ons starting from the axiom

(5) (6)

(7) (8)

(9) (10)

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

entate a drawing tool, known as a turtle, in three-dimensional space (rotate,
yaw, pitch), thus translating a one-dimensional string into a 3D-object resemb–
ling a plant.

2 Genetic L-system programming

Genetic Programming (GP) has been introduced as a method to automatically
develop populations of computer programs through simulated evolution [3,4].
Considering L-systems as rulebased development programs it is easy to define
program evolution. Each program encoded as a symbolic expression has to be
interpreted and is assigned a fitness value dependent on the optimization task
to be solved. On the basis of these fitnesses the individual programs struggle
for „survival of the fittest“ and for the chance to become members of the next
generation. In order to introduce variations into the program encoding struc-
tures genetic operators like mutation or crossover – gleaned from nature´s
mutating and recombining operators on cell genomes – are applied. The evo-
lution process develops new populations of programs from generation to
generation, the interplay of modifying operators and selection hopefully lead–
ing to ever better programs.

2.1 Encoding L-systems

In order to use expression evolution for L-systems a proper encoding scheme
has to be defined which will be done for the more general case of IL-systems
(with I referring to the number of context symbols). In context-sensitive IL-
systems the rewriting of a letter depends on

m

 of its left and

n

 of its right
neighbors, where

m

 and

n

 are fixed integers. These systems are denoted as
(

m

,

n

)L-systems which resemble context-sensitive Chomsky grammars, but –
as L-system rewriting is parallel in nature – every symbol is rewritten in each
derivation step; this is especially important whenever there is an overlap of
context strings. The following L-system representations are used in our IL-
system package which is part of

MathEvolvica

.
Each IL-system rule has the form l < p > r

→

 s with l, p, r and s denoting the

left context

,

predecessor

,

right context

 and

successor

, respectively. The sym-
bols "<" and ">" separate context and predecessor strings. Thus each rule can
be represented by an expression of the form

LRule[LEFT[l], PRED[p], RIGHT[r], SUCC[s]].

Accordingly, an L-system with its axiom and rule set is encoded by an expres-
sion of the form

LSystem[_AXIOM, LRULES[__LRule]]

using Mathematica pattern notation.

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

2.2 Stochastic generation of L-system codings

Normally an evolution loop starts from a population of randomly generated
individual genomes – encodings of L-systems in our case. Templates serve as
high-level building blocks for the expression generation routines (fig. 3). Each
expression is constructed from a start pattern (here: LSys–
tem[_AXIOM,_LRULES]) by recursively inserting matching expressions
from the expression pool until all pattern blanks have been replaced by proper
expressions. Of course, one has to take care that this construction loop even-
tually ends.

Figure 3: Using Mathematica´s pattern notation for the representation of
expression templates serving as building blocks to generate L-system encodings

The templates from fig. 3 basically describe the DOL-system of fig. 1.
However, the additional __SEQ pattern within the first LRule expression en–
ables the generation system to create variations by inserting new command se-
quences. Accordingly, the L-system description can be enhanced by new rules

LSystem[_AXIOM,_LRULES], (1)

AXIOM[sprout[4]], (1)

LRULES[
 LRule[LEFT[], PRED[sprout[4]], RIGHT[],
 SUCC[
 SEQ[
 SEQ[f],SEQ[stalk[2]], STACK[PD[60],leaf[0]], ...,
 __SEQ
 SEQ[f],SEQ[stalk[1]], bloom[0]]]],
 LRule[LEFT[], PRED[sprout["t_/;t<4"]],
 RIGHT[], SUCC[sprout[t+1]]],
 ...
 LRule[LEFT[], PRED[bloom[6]], RIGHT[], SUCC[bloom[1]]],
 ___LRule
], (1)

LRule[LEFT[],_PRED,RIGHT[],_SUCC], (1)

PRED[sprout[aIndex]], (1)

SUCC[_SEQ | _STACK], (1)

SEQ[BlankSequence[_sprout | _stalk | _leaf | _bloom | _f |
 _YL | _YR | _PU | _PD | _RL | _RR | _SEQ]], (1)
SEQ[BlankSequence[_sprout | _stalk | _leaf | _bloom | _f |
 _YL | _YR | _PU | _PD | _RL | _RR]], (4)
...

leaf[leafIndex], bloom[bloomIndex] (2), (2)

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

through the ___LRule pattern. A sequence of expressions is constructed via al-
ternative templates (SEQ[BlankSequence[...|...]]). Whenever there are several
expressions matching one pattern, the expressions are selected with probabili-
ties proportional to their weights (see the bracketed numbers right from the ex-
pressions in fig. 3).

2.3 Variations on L-system expressions

The following is a small collection of operators used for generating variations
on expressions (fig. 4):

• Mutation replaces a randomly selected subexpression by an expression
with the same head generated from the expression pool.

• Crossover is a recombination operator between two or more expressions.
Subexpressions with the same head are selected within the expressions
and interchanged.

• Deletion erases expression arguments whenever this is possible according
to restrictions of the number of arguments for the selected expression.

• Permutation interchanges the sequence of arguements of an expression.

These operators are defined for general expressions and are not especially tai-
lored to L-system encodings. Subexpressions are chosen according to opera-
tor specific selection schemes based on Mathematica´s pattern matching
mechanisms. Thus it is, e.g., possible to restrict recombinations to SUCC term
subexpressions, or permute only LRule expressions changing the ordering of
rules. So this is where problem specificity can be taken into account.

Figure 4: Examples of expression variations through genetic operators

LSystem

Axiom

Seq

F[0.8] RR[70] F[1.5]

LRules[...]

LSystem

Axiom

Seq

B[0.38]
Stack[F[0.7], ...]

RL[20] F[4.9]

LRules[...]

Mutation

LSystem

Axiom

Seq

B[0.38]

Stack[F[0.7], ...]

RL[20]F[4.9]

LRules[...]

LSystem

Axiom

Seq

B[0.38]

Stack[F[0.7], ...]

RL[20] F[4.9]

LRules[...]
Permutation

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

3 Breeding artificial flowers

Figure 5: Generation snapshots from an evolution of L-system encoded plants

With all the ingredients described above we are now able to demonstrate how
plantlike structures with specific characteristics can be developed with the
help of L-system evolution. Suppose we want to breed flowers which spread
out far in x-, y- and z-direction and carry as many blooms as possible. If these
criteria are incorporated into the fitness evaluation function, we arrive at an

Gen. 8
ArtFlowers

1476.9 345.4 2558.2

1479.4 747.9 967.7

(1) (2) (3)

(4) (5) (6)

Gen. 3
ArtFlowers

36.0 37.6 44.1

25.7 14.2 36.0

(1) (2) (3)

(4) (5) (6)

IMS´95, First Int. Mathematica Symposium, Southampton, UK, 1995, Computational Mechanics Pub.

Figure 6: Comparing the best individuals from generations 3 and 8

-2
-1

0
1 -1

0

1
0

2.5

5

7.5

-2
-1

0
1Gen. 3, 6

-5
0

5

-5

0

5

0

10

20

30

-5
0

5Gen. 8, 3

evolution sequence as depicted in fig. 5 and fig. 6. From initially rather small
individuals widespread plants evolve carrying bunches of blooms and leaves.
Due to the huge amount of system memory required for generating the gra-
phics we currently are restricted to only very small populations over 10 to 20
generations. However, we are currently implementing a package for distribu-
ted evaluation on several Mathematica kernels so that we should be able to
tackle on more advanced breeding problems.

What makes Mathematica especially useful for evolutionary algorithm ap-
plications as described above are its capabilities of easy expression manipula-
tion which are important for defining genetic operators and L-system
interpretations in a comfortable and flexible way. Finally, without Mathemati-
ca´s graphics and animation tools we would not have enjoyed playing evolu–
tion and gained so much insight into the fascinating area of L-system design.

References

1. Jacob, C., Genetic L-System Programming, Parallel Problem Solving from
Nature - PPSN III,
Lecture Notes in Computer Science 866, Springer, Berlin, 1994.

2. Jacob, C., Modeling Growth with L-Systems & Mathematica,
to appear in: Mathematica in Education, TELOS Springer, 1995.

3. Koza, J., Genetic Programming, MIT-Press, 1993.

4. Koza, J., Genetic Programming II, MIT-Press, 1994.

5. Lindenmayer, A., Mathematical models for cellular interaction in develop-
ment, Parts I and II, Journal of Theoretical Biology, 18:280-315, 1968.

6. Prusinkiewicz, P., and Lindenmayer, A., The Algorithmic Beauty of Plants,
Springer, New York, 1990.

