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Abstract. We present the Genetic L-System Programming (GLP) paradigm
for evolutionary creation and development of parallel rewrite systems (L-
systems, Lindenmayer-systems) which provide a commonly used formal-
ism to describe developmental processes of natural organisms. The L-sys-
tem paradigm will be extended for the purpose of describing time- and
context-dependent formation of formal data structures representing rewrite
rules or computer programs (expressions). 
With GLP two methods gleaned from nature are combined: simulated evo-
lution and simulated structure formation. A prototypical GLP system
implementation is described. Controlled evolution of complex structures is
exemplified by the development of tree structures generated by the move-
ment of a 3D-turtle.

1 L-Systems
The development of an organism may [...] be considered as the execution of a
‘developmental program’ present in the fertilized egg. The cellularity of higher
organisms and their common DNA components force us to consider developing
organisms as dynamic collections of appropriately programmed finite automata.
A central task of developmental biology is to discover the underlying algorithm
for the course of development.

Aristid Lindenmayer and Grzegorz Rozenberg [6]

Morphogenesis or formation of structures in nature are always the result of com-
plex growth processes. The central idea of L-systems is that structure formation
can be interpreted as the execution of ‘programs’ or rewrite rules. In nature there
is no blue print for an organism, instead ‘rule systems’ tell how to build organels
and how to combine these parts to form a complete and functioning organism.
These programs are highly parametrized where the parameters are set by the
environment in which development and interaction processes take place.

Parallel rewrite systems or L-systems [7] provide a useful formal model for the
description of developmental processes in organisms. We will give some rudimentary
definitions for context-free L-systems with stacking capability. As it is in general very
difficult to create an L-system simulating some special growth process we will intro-
duce an evolutionary method (GLP) supporting L-system inference.

Genetic L-System Programming, PPSN III - Parallel Problem 
Solving from Nature, International Conference on 
Evolutionary Computation, Lecture Notes in Computer 
Science 866, Springer-Verlag, Berlin, pp. 334 - 343, 1994.



1.1 DOL-systems

The context-free D0L-systems1 are the simplest type of L-systems. Formally a
D0L-system can be defined as a triple  where  is
an alphabet,  is an endomorphism defined on , and , referred to as the
axiom, is an element of .  is defined by a production map :  with

 for each . Whenever there is no explicit mapping for a symbol 
the identity mapping  is assumed. In a deterministic L-system there is
at most one production rule for each symbol  . The word sequence  gen-
erated by  is defined as

, , , ...    

where  denotes i-fold iteration of  and each string  is obtained from the
preceding string  by applying the production rules to all 
symbols of the string simultaneously:

.    

The language of  is defined by .

1.2 Turtle interpretation of bracketed parametric DOL-Systems

Let us consider the following L-system :

 =  
: (1)
:

which generates the following sequence of strings:

Axiom:    

Iteration 1:    

Iteration 2:
   

   
These string sequences describe the fractal growth of an artificial structure. The

structure formation process can be easily visualized if we define the following inter-
pretation for the symbols  and [...]. A common interpreta-
tion is to let these symbols control the movement of an artificial object (usually known
as a ‘turtle’) which draws lines on its way in 2- or 3-dimensional space :

: move forward with a stepsize of 
: move backward with a stepsize of 
: rotate left for an angle 
: rotate right for an angle 

1. D0 stands for deterministic with no context.
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: pitch for an angle 
: pitch back for an angle 
: yaw left for an angle 
: yaw right for an angle .

In the example system above we have quietly assumed a fixed rotation angle
 and stepsize  so we do not have to include these parame-

ters into the strings, however, this was only done in order to keep strings small.
Modular substrings can be marked by the bracket symbols [ and ]. For each string

of the form  the strings  are interpreted in sequence, how-
ever, after substring  has been interpreted and before starting to interpret  the turtle
is reset to its prior position and orientation after interpretation of . This allows the
formation of tree-like structures and branches as the visualization of iterated turtle
movement for the example above shows (figure 1).

Fig. 1. Artificial structure generated with DOL-system described in (1). The turtle is oriented
upward and its origin is situated at the big spot in the center.

2 L-Systems and Genetic Programming

2.1 Synthesis of L-systems

The inference problem for L-systems involves finding a proper axiom  and
rewrite rules  for a given structure or growth process, i.e. a sequence of struc-
tures. For the development of an L-system for a particular (biological) species
one usually has to perform the following steps [8]:

1. analyzation of the biological object,
2. informal rules definition,
3. definition of L-system axiom and rules,
4. computer simulation and interpretation of generated strings,
5. translation into a graphical output,
6. comparison of the artificial object with the behavior of the real object,
7. correction of the L-system and repetition of the steps above (if necessary).

This shows that L-system synthesis is an overall difficult and sometimes tedious
process. But what methods do we have at hand for (automatic) generation of L-sys-
tems? As P. Prusinkiewicz [9] points out, random modification of production rules
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generally gives little insight into the relationship between L-systems and the figures
they generate. Algorithms reported in the literature up to now are still too limited to be
of practical value for complex structure formation [9, p. 39, 62]. Obviously an evolu-
tionary approach is sensible for points 3, 6 and 7. So what we need to support L-sys-
tem inference on an evolutionary basis is:

• functions to generate (possibly codings of) L-systems that are subject to certain 
constraints (alphabet, iterations, context-sensitivity, parameters etc.),

• evaluation functions that return a fitness measure for each interpreted L-system,

• modification and selection functions which enable interactive L-system editing 
as well as automatic control through evolutionary techniques.

In the following sections we discuss preliminary ideas about the use of evolution-
ary techniques for breeding populations of L-systems that describe growth processes
which are interpreted in a problemspecific domain and evaluated by a fitness measure
with respect to a target growth process. 

2.2 Extended GP and GLP

Here we briefly describe what kind of evolutionary algorithm system we use for
L-system development and coding. Similar to the genetic programming (GP) par-
adigm introduced by J. Koza [5] who uses LISP-S-expressions our structures
undergoing adaptation are hierarchical, typed expressions (terms).2 

One of the main differences to the common GP paradigm is the use of higher-order
building blocks (‘patterns’) for expression generation and modification. The coarse
structures of problemdependent genotype expressions are generated by combining
‘macro-patterns’ taken from a predefined pattern pool  (see the
example patterns around the centered circle in fig. 2). The combinable subexpressions
rely on a set of function symbols  for each of which an arity range

 with  has to be specified.
Each expression from the pattern pool serves as a (possibly partial) descriptions of

“organism” genotypes for a problem dependent environment. Only the expression pat-
terns are used for expression generation, i.e. parametrized, possibly constrained, high-
level data structures serve as building blocks. Each of these patterns  is associated
with a set of attributes as e.g. a number of predicates constraining the set of subexpres-
sions that can be ‘plugged in’. Another attribute is the pattern rank  which serves
as a kind of fitness measure among patterns that compete for being selected as subex-
pressions during the expression generation process.3 This concerns patterns with the
same root symbol - as is the case with the recursive and non-recursive version of the
stack-pattern - as well as with different function symbols within alternatives (fig. 2).

2. For an alternative grammar-based approach see [1]. An excellent overview of current
extensions and applications of GP can be found in [5]
3. Similar ranks control pattern selection of the genetic operators.
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Specialized meta-operators for rank adjustment take care about which patterns
enhance the pool and for which patterns focus is increased or decreased through ranks
adjustment. 

Fig. 2. : Pool of expression patterns. The coarse structure of the L-system description within the
centered circle is built by using the depicted expression patterns. *X and **X stand for any sin-
gle expression or (non-empty) sequence of expressions with head X, respectively. | denotes alter-
natives. Pattern ranks are depicted within small circles.

2.3 Expression generation

Evolution starts with random generation of an initial population of expressions.
Each expression is constructed from a start pattern in a recursive manner by com-
bining expressions from the expression pattern pool, always respecting the pat-
tern constraints as discussed in the previous section. 

Generation of an L-system expression might result in the following generation
steps4:

LSystem[_Axiom,_LRules]
LSystem[Axiom[Stack[_F,_RR,_F]],_LRules]
...
LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],_LRules]
LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],

LRules[_LRule,_LRule,_LRule]]
LSystem[Axiom[Stack[F[0.8],RR[70],F[1.5]]],

LRules[LRule[_Left,_Right],_LRule,_LRule]]
...

4. Here ‘_’ and ‘_X’ represent formal parameters referring to any expression and ex-
pressions with head X, respectively.
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LSystem[Axiom[Stack[F[0.8],RR[70],_F[1.5]]],
LRules[LRule[Left[F[aBlank]]],Right[Stack[RL[110],F[2.],Stack[...],P[50]]],

 LRule[Left[PB[aBlank]]],Right[Stack[B[2.8],Stack[...],RR[70]]], _LRule]]
...

These expressions are decoded into a parametrized bracketed L-system of the fol-
lowing form

: F(0.8) RR(70) F(1.5)
P: F(_) RL(110) F(2.) [...] P(50)

PB(_) B(2.8) [...] RR(70)

which is then interpreted by a 3D-turtle as demonstrated above. 

2.4 Evaluation and reproduction of expressions

The population of L-system genotypes consists of symbolic expressions (data
structures) the head symbols of which denote (abstract) data types for which
decoding, interpretation and evaluation functions are easily definable by pattern
matching mechanisms. This enables simultaneous use of different kinds of L-sys-
tem genotypes, e.g. merging context-free and context-sensitive L-systems within
the same population by introducing a new context-dependent CLSystem data type
with according interpretation functions. Fitnesses are derived from the L-system
interpretation functions so that each L-system genotype receives an associated
fitness value.

In order to build the next generation of expressions a genetic operator  is chosen
from an ‘operator pool’  depending on its operator rank

. Each operator  performs a mapping :  from an -
to a -dimensional genotype vector where  is the set of genotype expressions.
The individual genotypes are selected according to their fitness values (fitness propor-
tionate, rank-based or other selection schemes). The resulting, possibly modified ex-
pressions are entered into the next generation. The selection of genetic operators
terminates when the new population is filled up to its maximum size.

2.5 Variations on expressions

Size and shape of the expressions change dynamically during the evolution pro-
cess through genetic operators. Table 1 gives an overview of operators we cur-
rently use. We introduce an alternate selection scheme for subexpressions as
arguments for the genetic operators: (possibly constrained) patterns provide tem-
plates used for extracting subexpressions for modification or recombination. This
enables operators to be applied only within predefined expression contexts where
context may vary in the course of the evolution process. For the definition of new
patterns and contexts meta-operators (te, ec) are necessary. Similar to the pattern
pool for expression generation there is a pattern pool  for each genetic
operator ; each pattern is associated with a rank number which controls selec-

ω
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tion among competing patterns. We explain these ideas in detail for the mutation
and crossover operators which rely on the templates defined in table 2.

2.5.1 Pattern Mutation

To perform pattern mutation on an individual expression (figure 3a) a mutation
template  is selected from the pattern pool  according to the pat-
tern ranks. Suppose the first template has been selected with predicate Q demand-
ing at least three arguments for the  term. The subexpression with head

Pattern-Operator Short explanation ...
Mutation mu Replace subterms of an expression meeting template con-

straints by newly generated, equivalent subexpressions.
Crossover co Exchange subexpressions meeting template constraints be-

tween two expressions.
Shrink sh Delete a subexpression.

Duplication du Duplicate a subexpression.

Permutation pe Permute expression arguments randomly, by left or right shift,
or by reversion.

Template Extr. te Extract a template from an expression. ’Successful’ templates
are inserted into the pattern pools.

Encapsulation ec Replace a subexpression by a single reference symbol.

Tab. 1 : GP operators collection. For operand selection all the operators rely on operator 
templates.

GP operator Rank Templates for selection of operator agruments
Mutation T1(mu)

T2(mu)

T3(mu)

3

1

2

Axiom[i: *Stack /; Q[i]]
Restrict mutation to expressions with head Axiom that have
a Stack expression complying with a predicate Q as their ar-
gument.
*LRules
Restrict mutation to expressions with head LRules.
LRule[*Left,Right[**]]
Restrict mutation to expressions with head Left appearing
within an LRule expression and with a Right term as right
context.

Crossover T1(co) 1 *LRule[Left[*], Right[**, Stack[**], **] ]
Restrict crossover to LRule expressions that contain at least
one Stack expression among the Right term arguments.

Tab. 2 : Pattern pool (templates) for GP operators

T1 mu( ) Poolmu

Stack



 is then replaced by a newly generated  term with a  argument
expression resulting in a modified individual genotype (figure 3b).

Fig. 3. : Pattern mutation on an L-system genotype

2.5.2 Pattern Crossover

Pattern crossover is used as a recombination operator which enables exchange of
structures of the same type between two individuals. Given the two expressions
in figure (4, top) a crossover template  is chosen from pattern pool 
with according ranking scheme. Subexpressions with head  meeting the
restrictions of template  are selected randomly within each expression and
exchanged between the two individuals resulting in two modified expressions
(figure 4, bottom).

Fig. 4. : Expression recombination: pattern crossover
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3 Virtual Genetic L-System Laboratory

In order to test and support problemspecific generation and evolution of expres-
sions within the extended genetic programming paradigm we are designing a vir-
tual GLP laboratory as one part of our genetic programming environment
MathEvolvica. The following examples should give a brief impression of the sur-
prisingly easy formation of complex structures even with very small populations
(between 10 and 20 individuals per generation) and over a short period of genera-
tions. The simple problem to be solved was to generate L-systems that form a
complex structure (with a number of  branches) and with the majority
of tree end points (leaves) situated outside the inner cube but within the outer
cube boundaries with regard to the horizontal x1- and x2-directions (figure 5).
The number of L-system iterations was fixed to 3. The axiom and L-rule expres-
sions had to be evolved. The fitness value  for each individual L-system
genotype , , to be maximized was defined as

where  is the portion of  leaf coordinates lying within the spec-
ified boundaries with each leave having coordinates of the form . The
following figures show a collection of interpreted L-systems all derived from a
single genotype by applying crossover and mutation over 20 generations. The
phenotypes develop to densely packed structures with broad branching.

Fig. 5. : Collection of L-system turtle interpretations derived as mutants from the genotype of
the first L-system individual (upper left corner). Depicted numbers refer to phenotype fitness.
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4 Conclusion and Further Research

We demonstrated how parallel rewrite systems can be designed by evolution pro-
cesses. Of course, this is only a very limited and rudimentary description of how
genetic programming techniques support the design of hierarchical (program or
data) structures. Extensions of the GLP/GP laboratory5 are currently developed
and implemented with respect to the following areas:

• using fitness functions that measure similarities among growth processes in 
order to infer L-systems for (sequences of) target structures,

• including growth functions into fitness evaluation,
• extending the set of interpretation functions,
• extension to context-sensitive, stochastic and table L-systems.

Another important area of research are genetic operators that support hierarchical,
modularized expression evolution. A variant of the described GLP system will be used
for the design of artificial neural networks.6
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