
Evolution of neural net architectures

by a hierarchical grammar-based genetic system

Christian Jacob and Jan Rehder

Lehrstuhl f�ur Programmiersprachen

Universit�at Erlangen-N�urnberg

Martensstra�e 3, W-8520 Erlangen, Germany

Email: jacob@informatik.uni-erlangen.de

Abstract

We present a hierarchically structured system for the
evolution of connectionist systems. Our approach is
exempli�ed by evolution paradigms for neural net-
work topologies and weights. Our descriptions of
a network's connectivity are based on context-free
grammars which are used to characterize signal ow
from input to output neurons. Evolution of a simple
control task gives a �rst impression about the capa-
bilities of this approach.

1 Introduction

The design process for problem dependent neural net-
work models usually consists of the following four
stages: selection of a problem domain, selection or de-
velopment of a suitable network architecture, choos-
ing a learning algorithm for adjusting network speci�c
parameters due to the problem domain, and testing
of the network performance according to objective
performance measures.
Although this sounds like a recipe for straight for-

ward neural network development, the problem of de-
signing application speci�c neural networks remains
di�cult due to the fact that the diverse phases of
network design are interdependent and a great deal
of experience is needed to choose suitable parame-
ter values (Which architecture? Which connectivity?
Which learning rule? ...).
Let us have a brief look at the problem of �nding

a suitable network architecture for a speci�c problem
domain. This task often depends on the researcher's
skill and experience to choose the proper architectural
constraints for the net (More than one layer? Feed-
forward connections only? Recurrent network?). In
many cases, however, suitable net topologies only
evolve from the process of supervised or unsupervised
learning. With feed-forward networks trained by the
error-backpropagation method the number of hidden

layers and units may vary according to some perfor-
mance criterions; with self-organizing networks not
only the number of units needed is unknown, but
also their connectivity structure. As Miller, Todd
and Hegde [?] express it, \the network design stage
remains something of a black art". The same is true
for the selection of proper neuron activation function-
ality as well as learning rules for adjusting network
weights and connectivity.

However, the \black art of network design" is not as
\black" as it seems. Often the network designer has a
rough idea about which neural network models could
be tried to solve, say, classi�cation, motion control
or feature mapping tasks. In most cases there are
some \rules of thumb" for special parameter values
like the number of hidden units, the learning rate,
the neuron activation function etc. So why not use
this experience to enhance evolutional development
of problem speci�c neural network models?

Nature solves part of the design problems of nat-
ural nervous systems through evolution mechanisms.
To put it very simply, the network development pro-
cess is naturally done in two stages: First, a coarse
connectivity structure within specialized networks is
evolved; the information about this structuring pro-
cess is contained in genetic strings and has evolved
through genetic mechanisms. Second, �ne tuning
of the network is done through neurological mech-
anisms controlled by environmental input signals,
which cause the network to \learn" and adjust its per-
formance to specialized tasks. Natural genetic cod-
ing, however, is much more complex and hierarchi-
cally organized than currently used bit-string codings
applied in most of the genetic algorithm systems.

With these ideas in mind we want to develop an
evolutional system which supports the di�erent neu-
ral network design phases as described above. With
\evolutional system" we mean a hybrid system capa-
ble of using genetic or evolutional as well as neural
mechanisms for optimization, adaptation and learn-

Figure 1: Neural net model

ing.

First of all we are proposing a coarse structure for
an evolutional system for problemspeci�c neural net-
work design. Secondly, we give a short description of
our grammar-based approach for evolving neural net
connectivity. The outlined system is currently being
implemented and will serve as a basis for a hybrid
system to get a better understanding when to switch
from genetic search and adaptation methods to neu-
rally inspired parameter adaptation and learning as
well as to examine the use of higher-order codings
and evolutional operators for a broad range of prob-
lem domains.

2 Related work

Several articles have been published concerning neu-
ral network design with the help of genetic algo-
rithms. Most of the articles focus on genetic op-
timization techniques of neural net connectivity for
the specialized class of feed-forward networks trained
by error backpropagation algorithms [?], [?], [?]. In
[?] and [?] two neural network development sys-
tems are described in detail, where genetic opera-
tors and search are used to evolve architectures for
feed forward networks which are then trained through
(modi�ed versions of) backpropagation algorithms
and evaluated by testing the resulting networks on
prede�ned test data. In [?] neural learning is re-
placed by a genetic algorithm, leaving the �ne-tuning
or optimization of weight values to the genetic oper-
ators. Koza and Rice [?] evolve net connectivity and
weights simultaneously by using a LISP S-expression
coding. Bornholdt and Graudenz [?] let their GA-
system operate on linked list data structures coding
the net structure as well as the weights.

3 Hierarchical neural network

design: A brief overview

We use an approach similar to [?] and [?] to evolve
neural net connectivity, single neuron functionality
and connection values. The network model used (see
�gure 1) consists of a prede�ned set of input and out-
put neurons and a set of cortex neurons to be evolved.
The input neurons are connected in feedforward di-
rection only, i.e. inputs can be passed to either hid-
den neurons or output neurons directly. The cortex
neurons are connected either to hidden or output neu-
rons.
The functionality of the hidden neurons is de-

picted in �gure 2: A summation function collects
the neuron's incoming signals; this function might
be a weighted summation of the inputs oi, a Sigma-
Pi-function or another appropriate input process-
ing function. The summation value is processed by
an activation function (linear, sigmoid, radial basis
etc.) resulting in an internal activity of the neuron,
which is taken by the output function (identity, lin-
ear threshold etc.) to compute an externally visible
output value op that can be passed to other neurons.

Sum Aktiv Out

O1

Oi

On

Op

Neuron p
wp1

wpi

wpn

Figure 2: Model of a cortex neuron

The design process for a neural network then has
to evolve a connectivity structure for the input, cor-
tex and output neurons, a set of functional parame-
ters de�ning the functionality of the hidden neurons,
and a set of weight values for all connections. For
each of these three, partly interdependent phases we

Topology Pool

Neuron Functionality Pool

...

... Level 1

Level 2

Level 3

...

Weights Pool Weights Pool

Environmental
Constraints

Environmental
Constraints

Environmental
Constraints

Feedback
Fitness

Feedback
Fitness

 (2) ...

(1)

(2)

(3)

(2)(3)

(3)

Topology
Evaluation

Weights
Evaluation

Topology
Creation

Neuron
Functionality
Creation

Neuron
Evaluation

Weights
Creation

Figure 3: Design Hierarchy

use di�erent string populations and codings. So the
string length is usually rather short, and the popu-
lation sizes can be kept small without giving up too
much of a population's diversity. Thus, search spaces
for the genetic algorithms are reduced. The results of
the structured evoluation and evalutation processes
can be interpreted more easily by a human supervi-
sor.

The evolution process for a neural network could
be described as in �gure 3. At each level there is
a creation module which evolves a pool of compet-
ing chromosomes (= strings of coded parameters) and
an evaluation module testing chromosome �tness via
problemspeci�c constraints. For each level of pools
there are two �tness values to be taken into account
for each chromosome: environmental constraints de-
�ne a \coarse" �tness value, whereas a kind of �tness
�ne tuning can be achieved by using \feedback" �t-
ness values from levels below. At each level special-
ized parameter representations (\chromosomes") are
used to generate new chromosome populations from
previous ones. Strings and respective feedback �t-
ness values are the only interface between the dif-
ferent evolution levels. Figure 4 outlines the coarse
structure of an evolution module serving as a building
block for the hierarchical evolution system.

A brief example might explain these ideas. Sup-
pose we want to evolve feedforward networks for pat-
tern classi�cation. So the constraints for net topol-
ogy (level 1) will accept only chromosomes describing
feedforward connectivity, and will restrict the num-

ber of neurons, the maximal path length from input
to output neurons or the connection density. Neuron
functionality (level 2) could be constrained to acti-
vation functions that settle to zero for large abso-
lute values. As a last constraint the weights (level 3)
might be restricted to real values from the interval
between zero and one.

Environmental
Constraints

level n:
feedback
fitness

 (2)
Evaluation String creation

f0

...

f1

f2

fm

feedback fitnesses fi from different levels,

si: dynamical fitness scalings

s0 s1 s2 sm

fn

sn

string

internal
fitness

string

to levels 0, 1, ... , m

Figure 4: Structure of a string evolution module

With this structured network design it is easy to al-
ter the sequence of modules and the number of mod-
ules used to evolve and optimize problemspeci�c net
architectures. Furthermore, genetic modules may be
replaced by, e.g., neurally inspired algorithms: Topol-
ogy evolution might be done by a self-organizing pro-
cess controlled by a set of input signals to the net-
work. Neuron functionality can be tuned by a learn-
ing rule adapting, say, the threshold value for the

Topology ::= Path PathList�

PathList ::= \;" Path

Path ::= InputNeuron NeuronList OutputNeuron

NeuronList ::= (CortexNeuron j OutputNeuron)�

InputNeuron ::= i, where i 2 Sensory

OutputNeuron ::= o, where o 2 Output

CortexNeuron ::= k, where k 2 Cortex

Figure 5: Production rules P of grammar G for net topology description

internal activation function. Finally, weight changes
may be achieved with error-correcting rules (Hebb,
generalized delta etc).

4 Net topology evolution:

A grammar-based approach

Concerning the problem domain of net topology evo-
lution we had especially two ideas in mind:

First of all, we want a parameter coding that is eas-
ily interpretable by human experts without the need
to explain complicated decoding algorithms. This
means that the structures we want to evolve should
be rather close to (easily understandable) formal de-
scriptions of the problem domain. 1

Secondly, we wanted our system to behave much
like a human expert trying to systematically improve
network performance, although the evolution system
should be far more e�cient and persistent. With
these operators the evolution processes should be
much more intelligible, especially for people not in-
terested in a deep understanding of evolution system
tuning. This is an important prerequisite for an evo-
lution system which shall be used not only for toy
problems, but for \real world applications". 2

In the following sections we will exemplify the ba-
sics of our approach to net topology evolution; this is
only one level in our evolution system but the same
ideas are applicable to the other levels as well. We will
describe the coding and the operators used in evolv-
ing net topologies for the neural net model depicted
in �gure 1.

1Impressive results have been obtained by Koza [?] with
the genetic programming paradigm based on the evolution of
LISP-S-expressions. A more general grammar-based approach
and some more arguments for the use of higher-order, problem-
dependent codings have been presented by Antonisse [?].

2It seems to be a general problem of genetic or evolutionary
systems that control parameter tuning remains a very di�cult
problem. This is especially true for the domain of neural net-
work optimization. But this only means that the \black art
problem" only has been shifted from one domain to another.

4.1 Grammar-based genetic parame-

ter coding

In the current version of our network design system
we use a contextfree grammar to describe and evolve
strings that represent net connectivity structures. 3

Our (contextfree) grammar G := (N;T; S; P) is
charcterized by

� non-terminalsN = f Topology, Path, PathList,
NeuronList, InputNeuron, CortexNeuron,
OutputNeuron g,

� terminals T = f\;"g[Sensory[Cortex[Output,

� a startsymbol S = Topology and

� production rules P as speci�ed in �gure 5. 4

We refer to n input neurons,m output neurons and
a previously unde�ned number of cortex neurons by
the following sets of symbols:

Sensory := fi1; i2; :::; ing
Output := fo1; o2; :::; omg
Cortex := f1; 2; 3; :::g

Note that the numbers n and m of sensory and
output neurons, respectively, are prede�ned due to
the problem domain, whereas the number of cortex
neurons has to be evolved.

3A �rst advantage of the grammar approach is that the rules
of the grammar can be used to generate strings which then
automatically belong to the language L(G) of the grammar.
Within the current prototype implementation strings are not
modi�ed by operators referring directly to the given grammar
G; this will be done in future versions of the evolution system.
Closure with respect to L(G) is only assured by appropriate
de�nitions of the string operators.

4The non-terminals on the left side of the \::="-sign can be
replaced by the strings on the right side. The string creation
process begins with the startsymbol. A string t is de�ned to be
in the language L(G) of G if t can be created from startsymbol
S by a �nite number of applications of the production rules P ,
and if t only consists of terminal symbols from T .

Each string generated by grammar G produces a
list of paths from input to output neurons. As we
will see even loops or recurrent connections can be
modelled by this grammar. The following example
string is produced by the grammar:

w = i11223o1 ; i13o11o2 ; i221o2

The input neuron set is Sensory := fi1; i2g, the
cortex neuron set is Cortex := f1; 2; 3g, and the set
of output neurons is Output := fo1; o2g. Three paths
describe the connection structure from input neurons
over cortex neurons to output neurons (see �gure 6):

p1 = i1 ! 1! 2! 2! 3! o1
p2 = i1 ! 3! o1 ! 1! o2
p3 = i2 ! 2! 1! o2

Figure 6: Example network produced by grammar G

As each path starts with an input and ends with
an output neuron it is guaranteed that input signals
eventually reach some of the output neurons and that
there are no useless neurons which do not lie on any
path from input to output neurons. Thus, all cor-
tex neurons take part in the calculation of the output
signals. If cortex neuron 3 had no output connection
then it would be useless as it would only receive sig-
nals but never pass its own signals to other neurons;
this e�ect is automatically prevented by the gram-
mar.
The path descriptions can be decoded easily into

a network (like in �gure 6) by mapping the paths
into an adjacency matrix; with this matrix at hand
duplicate parts of the path description are eliminated
(as e.g. the edge from neuron 1 to neuron o2 in path
p2 and p3). As we will see in the following sections,
redundancy of the connectivity coding is essential for
the evolution process.

4.2 Mutation on grammar-based chro-

mosomes

Mutation on the grammar-based chromosomes should
assure that we do not leave the language L(G) of the
grammar G, i.e. we want closed operators on the
strings.
Let w = p1; p2; :::; pn be a path concatenation, and

let w0 be the path resulting from applying the follow-
ing mutation operators.

1. Create a new path p and insert p into w at posi-
tion k:

w0 = p1; p2; :::; pk�1; p; pk; :::; pn

2. Remove a path pk from w:

w0 = p1; p2; :::; pk�1; pk+1; :::; pn

3. Select a path pk = ikck1ck2:::ckmok from w and
insert a new neuron c 2 Cortex [Output any-
where between ik and ok. Neuron c can be one of
the neurons still available or can be an additional
cortex neuron:

p0k = ikck1:::ckl�1cckl:::ckmok

w0 = p1; p2; :::; pk�1; p
0

k; pk+1; :::; pn

4. Select a path pk = ikck1:::ckl�1cklckl+1:::ckmok
from w and remove a neuron ckl:

p0k = ikck1:::ckl�1ckl+1:::ckmok

w0 = p1; p2; :::; pk�1; p
0

k; pk+1; :::; pn

It is easy to see that we do not leave the grammar
language L(G) when we apply these operators. In
our implementation we use these mutation operators
in the following way:

� Operators (1) and (2) are responsible for global
search in the path description domain. That is
why they are used with rather low probability
rates. 5

� An \edge-add" operator selects a path from the
chromosome, duplicates the path, introduces and
deletes neurons through operators (3) and (4) on
the duplication string, and then inserts the mu-
tated path into the chromosome. This introduces
duplicate connectivity descriptions but extends
the topological structure very smoothly because

5The e�ects of operators (1) and (2) are comparable to the
mutation operators used for genetic algorithms on bit-strings.

it integrates existing single neurons into existing
paths; due to redundant coding this does not dis-
turb the overall connection structures very much
but may just introduce a signal path necessary to
solve an input-output mapping. Degree of redun-
dancy is restricted by limiting the path lengths
as well as the number of paths per string.

� To remove single edges we use operator (4).

4.3 Crossover on grammar-based

chromosomes

The crossover operator picks out two chromosomes
chrom1 and chrom2 and selects two crossover points
k1; k2 and l1; l2 within each chromosome, respectively.
The crossover points must lie between the paths, i.e.
at the locations of the path separators \;". Then
the path lists of chrom1 and chrom2 between the
crossover points { the chromosomes are treated as
ring structures { are exchanged resulting in new chro-
mosomes chrom0

1 and chrom0

2:
6

chrom1 = p1; : : : ; pk1�1; pk1 ; : : : ; pk2 ; pk2+1 : : : ; pn

chrom2 = q1; : : : ; ql1�1; ql1 ; : : : ; ql2 ; ql2+1 : : : ; qm

chrom
0

1 = p1; : : : ; pk1�1; ql1 ; : : : ; ql2 ; pk2+1 : : : ; pn

chrom
0

2 = q1; : : : ; ql1�1; pk1 ; : : : ; pk2 ; ql2+1 : : : ; qm

5 Some implementation de-

tails

5.1 Simulation system

Currently we have implemented levels 1 and 3 of the
design hierarchy (see �g. 3). 7 The topology and
weights creation modules can be distributed over a
network of workstations communicating via socket in-
terfaces. The topology module creates path descrip-
tions as referred to in the last section and sends these
strings in the compressed form of connectivity matri-
ces to an array of subprocesses. These weights cre-
ation processes work independently from each other;
they evaluate each topology string they have been
sent by generating a pool of weights settings for the
received topology. Each weights setting together with
the topology then describes a �xed network structure

6Without loss of generality: k1 � k2, l1 � l2 and d1 :=
(k2 � k1) < (l2 � l1) =: d2

7The functional properties of the processing elements (neu-
rons) remain �xed during the evolution processes.

which now can be evaluated for a prede�ned test en-
vironment (e.g. a pattern classi�cation or parameter
control task). For a �xed number of generations a ge-
netic algorithm 8 for weights evolution then tries to
�nd an optimal weights setting within the given envi-
ronment. Finally, a weights string evolves which lets
the network solve its task in an optimal way, and a �t-
ness value serving as a performance measure for this
network structure is returned to the topology mod-
ule. These �tness values then control the evolution
process at level 1.

5.2 First simulation results

For our �rst test experiment we de�ned a control
task similar to the well-known pole-balancing task.
A small ball thrown on a seesaw at random position
and with random initial speed has to be balanced to
the seesaw's centre. The control task is said to be
successfully solved whenever the ball comes to rest
near the seesaw hinge (see �g. ??).
The seesaw is controlled by networks as depicted in

�g. ?? consisting of three input neurons and a single
output neuron. The suitable number of cortex neu-
rons has to be evolved. The input neurons take the
current seesaw angle, the velocity of the ball and the
position of the ball, accordingly. The output neuron
controls the seesaw's delta angle.

5.2.1 A simple test experiment

Evaluation of a population of networks { all with the
same topology structure { is performed as follows:

1. Evaluate each weight setting:

Select initial position and speed of the ball.

Let the network control the ball for a �xed number of
cycles.

To measure the network's performance distinguish
three cases:

(a) The ball is tossed from the seesaw.

(b) The ball is still on the seesaw but does not come
to rest.

(c) The network succeeds to bring the ball to rest;
the ball's distance to the seesaw's centre is
taken into account.

2. Perform selection and other GA-operators for a pre-
de�ned number of generations on the weights setting
population.

3. Re-evaluate the best evolved weights settings:

In order to calculate a normalized �tness value, se-
lect initial test positions and speeds of the ball for a

8We use binary as well as oating point representations for
the weight values.

a. b. c.

d. e. f.

Figure 7: Performance of evolved control networks

�xed number of times. Let the network control the
ball for a �xed number of test cycles and measure its
performance.

Return the mean of these �tnesses as the �nal �tness
value for the champion weight setting and the current
topology. 9

5.2.2 Evolved networks

Figure ?? gives a brief overview of control networks
evolved. Each picture shows a seesaw (with its control
net depicted below) for three di�erent initial settings
for the position and speed of the ball. The graphs
on the right side plot the ball's position and speed
and the seesaw's angle for every update cycle. Inter-
estingly enough, the evolution process has developed
very di�erent strategies to control the ball: The worst
strategy is not to react at all; �nally the ball falls o�
the seesaw (a). Other networks try to keep the ball
on the seesaw by periodically balancing (b); mostly
the ball never comes to rest. Very smooth reaction
of the seesaw sometimes succeeds in stopping the ball

9This ensures that the returned �tness values for the di�er-
ent topologies are comparable, if for the calculation of the �nal
�tness value the same test intervals and cycles are used.

from rolling, however, the ball rests far from the see-
saw's centre (c). The best strategies force the ball to
the centre by periodically balancing (d,e) { some net-
works need a long time for that { or by immediately
slowing down the ball and carefully pushing it to the
centre (f).

6 Conclusion and further re-

search

Up to now we only have some �rst and very simple
simulation results which are promising, however. The
hierachical approach has to be tested for more com-
plex problems. Furthermore, it has to be investigated
in how much the network design hierarchy helps in
evolving proper net architectures according to a num-
ber of constraints and performance measures. Last
but not least, the system is still missing a \grammar
frontend" which generically produces string represen-
tations and genetic operators from a given grammar
speci�cation.

