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1 Fascinating Evolution: Introductory Examples

This  chapter  demonstrates  one  of  the  fundamental  principles  of  evolution:
iterated  selection  and  mutation  by  several  simple,  but  yet  –  hopefully  –
convincing examples.

1.1 Cumulative Selection: "Me thinks it is like a weasel …"

How  can  iterated  selection  and  random  mutation  help  in  finding  a
predefined sequence of characters?

1.2 Mimesis: Evolution of Butterfly Mimicry

Butterflies  sitting  on  barks  of  trees  adapt  their  wing  colours  to  their
environments.  A  simple  simulation  shows  how  this  adaptation  can  be
achieved through evolution.

1.3 Evolutionary Creativity: Biomorphs

On the basis of "biomorphs", simple recursive line figures first introduced
by R. Dawkins are used to discuss evolutionary principles.  We exemplify
the creativity of interactive, open-ended evolution.
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2 Evolutionary Algorithms for Optimization

In  this  section,  we  give  a  short  introduction  to  adaptive  systems,  to  the
preconditions  of  evolution,  and  to  evolution  as  adaptive  systems.  Finally,  a
basic scheme for evolutionary algorithms is presented.

2.1 Adaptive Systems and Evolution

A general  scheme  for  adaptive  systems  as  proposed  by  John  Holland  is
presented here [Holland, 1975], [Holland, 1992].

2.2 Preconditions for Evolution to Occur

What  are  the  necessary  ingredients  for  a  system  to  exhibit  evolutionary
effects?

2.3 Evolution as a Reproductive Plan

A "reproductive plan" is a simplified model of an adaptive system which
may serve as the basic scheme of evolutionary algorithms.
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3 GA: Genetic Algorithms

In  this  chapter,  we  will  explore  a  major  class  of  evolutionary  algorithms:
Genetic Algorithms (GAs). We will explore various kinds of GA chromosome
structures, their main genetic operators, the basic evolution scheme, and look
at some GA-evolution experiments in the domain of parameter optimization.

This chapter on Genetic  Algorithms concludes  with a brief discussion  of GA-
building blocks, the Schema Theorem, and a few experiments on GA-schemata.

3.1 GA-Introduction

This  section  gives  a  brief  overview of  Genetic  Algorithms,  their  origins,
their  primary  characteristics  with  regard  to  chromosomes,  genetic
operators, and selection schemes.

3.2 Polyploid GA-Chromosomes

Nature  encodes  its  cellular  "programs",  which  implicitly  describe  all
necessary  ingredients  for  an  organism£ s  development,  by  a  four-letter
alphabet  known  as  nucleotide  bases.  In  the  following  sections,  GA-
chromosomes  are  defined  in  a  more  general  form  of  strings  or  vectors
over a discrete alphabet.

· Haploid Chromosomes

A single-stranded chromosome of length n  is defined as a vector

(1)s = Hs1, ..., snL with si œ A, 1 § i § n,

for a discrete k -letter alphabet A = 8a1, ..., ak <.
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· Diploid Chromosomes and Dominance

The  interpretation  of  double-stranded  chromosomes  raises  the  question:
which  of  two  competing  alleles  should  be  expressed  by  the  genotype-
phenotype mapping.

3.3 Point-Mutation on GA-Chromosomes

Gene  variations  are  the  core  ingredient  in  evolution  used  by  Nature  to
explore new phenotypic structures and functionalities territory.  Mutations
as well as recombination are the driving forces of natural evolution and of
Genetic Algorithms.

· Mutation on Haploid Chromosomes

The GA mutation operator wmut : SA Ø SA , where SA denotes the set of all
GA  chromosomes  over  alphabet  A ,  generates  a  new  chromosome
smut = Hs1

£ , ..., s2
£ L  as follows:

(2)si £ = 9 s œ A - 8si< if c@0,1D § pm
si otherwise

=.
Here  c@0,1D  is  a  uniformly  distributed  random  variable  from  the  interval@0, 1D . The probability for a mutation per gene is denoted by pm .

· Mutation on Diploid Chromosomes

Mutations  on  diploid  or  m-ploid  (multi-stranded)  chromosomes  are
independently performed on each strand.

· Mutation on RNA-Chromosomes

Using  rule-based  programming,  we  show  a  simple  simulation  of  the
translation process from RNA-nucleotide bases to amino acids.

· Mutation with Faces

Effects  of  mutations  on  10-dimensional  parameter  vectors  are  illustrated
by parametrized facial expressions (Chernoff figures).
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3.4 Recombinations of GA Chromosomes

Recombination  operators  are  the  major  driving  force  for  GA  evolution
dynamics,  as  GAs  rely  on  the   advantageous  effects  of  combining
previously discovered useful building blocks from the gene pool.

· Recombination on GA-Chromosomes

For  single-strand  GA  chromosomes,  all  the  ES  recombination  schemes
already  discussed  for   Evolution  Strategies  can  be  used  to  mix  genetic
information of several (usually: two) chromosomes.

· Meiotic Recombination with diploid Chromosomes

For  double-stranded  chromosomes  we  describe  a  recombination  scheme
which is observed during the cell division process of meiosis.

· Recombination with Faces

Effects  of  recombination  on  10-dimensional  parameter  vectors  are
illustrated by parametrized facial expressions (Chernoff figures).

3.5 Further Genetic Operators

Several  other  genetic  operators  are  used  for  variation  of  the  genetic
encoding on the chromosomes.  We only mention a few of these operators
that  are  closely  related  to  their  counterparts  as  found  with  cellular
genomes in nature. 

· Inversion

This  operator  changes  the order  of  a random sequence  of  "genes".  For a
more general version, any permutation can be used to rearrange the genes.

· Deletion

With deletion a subsequence of a chromosome gets lost.

Illustrating Evolutionary Computation with Mathematica Table of Contents

© C. Jacob 8



· Duplication

With  duplication,  a  subsequence  of  the  chromosome  is  copied  and
inserted  into  the  chromosome.  Usually  the  new  section  is  inserted  right
after the copied sequence.

· Crossover between non-homologous Chromosomes

With  recombinations  among  chromosomes  of  unequal  length,  deletions
and duplications occur as side effects.

3.6 Selection

In  contrast  to  the  Evolution  Strategy  of  "survival  of  the  best",  genetic
algorithms  apply  more  of  a   natural  selection  scheme  through  fitness
proportionate  selection  and  rank-based  selection.  We  also  discuss  elitist
selection and further selection schemes, which are useful not only for GAs
but for evolutionary algorithms in general.

3.7 Evolution Schemes

Genetic  algorithms  use  an  evolution  scheme  closely  related  to  a  comma
Evolution  Strategy.  The  major  difference,  however,  lies  in  the  fitness
dependent  selection  of  individuals.  We show extensions  of the canonical
GA evolution scheme which allows individuals to survive for more than a
single generation (in comparison to a Plus-ES).

3.8 Genetic Algorithms in Action

This  section  provides  examples  of  how  to  use  genetic  algorithms  for
parameter  optimization;  what  effects  the  operators  of  mutation  and
recombination  have  on  a  genepool;  how  the  contributations  of  the  other
operators  of  inversions,  deletion  and  duplications  look  like;  and  how
genetic algorithms react to changes of the fitness function definition.
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· Visualizing the Genotypes (binary alphabet)

A  population£ s  genepool  is  represented  as  a  black  and  white  matrix
pattern.

· Visualizing the Genotypes (m-ary alphabet)

A  population£ s  genepool  is  represented  as  a  matrix  pattern  with  alleles
depicted as graylevels.

· Mutation versus Recombination

A  visual  comparison  of  a  pure  selection-mutation  scheme  versus  a
selection-recombination  scheme  reveals  the  main  characteristics  of
mutating and recombining genetic operators.

· Comparison of Genetic Operators (Summary)

The effects of several genetic operators,  such as mutation, recombination,
inversion, deletion, or duplication, are illustrated for a simple optimization
task.

· GA-Evolution with Changing Environments

A genetic algorithm is used to find the maxima of a multi-modal function.

Part 1: Ascent to higher regions

During the evolution  run, the fitness function  is changed and the GA has
to react by adapting its population of search points to the new situation.

Part 2: Reaction on a change of the objective function

The  evolution  scheme  switches  from  a  Plus-  to  a  Comma-GA  strategy,
which leads to an enhanced exploration of the search space.

Part 3: Continued evolution with a Comma-GA-Strategy

Switching back to a Plus-GA strategy results in a higher convergence rate
for the populations.
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Part 4: Finally, a Plus-GA-Strategy again

3.9 Schemata

So-called "schemata"  are  used to describe  common patterns  of genotypic
structures that serve as building blocks for the genepool and hence, for the
search process.

· Patterns describing genotypic building blocks

Allele patterns are described by schemata.

· Schematheorem

The  schematheorem  describes  the  effects  of  selection,  mutation,  and
recombination  on  the  schemata.  The  schematheorem  gives  a  simple
characterization  of  successful  building  blocks  that  will  be  reproduced
exponentially during GA evolution runs.

· Schemata Experiments

This section  presents  a few rudimentary  examples  of schemata  and gives
an indication  of  some  of  the  difficulties  arising  with  the  computation  of
schema fitnesses.
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4 ES: Evolution Strategies

In  this  chapter  we  will  explore  another  major  school  of  evolutionary
algorithms: Evolution Strategies (ES).

4.1 ES-Introduction

This  section  gives  a  brief  introduction  to  Evolution  Strategies,  their
origins,  their  primary  characteristics  with  regard  to  "chromosomes",
"genetic operators", selection schemes, and preferred application areas.

4.2 ES-Chromosomes

Here  we  explain  the  data  structures  we  will  use  to  represent  ES-
chromosomes in Mathematica  and how we implement them. Basically, an
ES-chromosome g”÷  is defined as a two-fold vector of the form:

g”÷  = (p”÷ , s”) = HH p1, p2, ..., pnL, Hs1, s2, ..., snLL  ) with pi , si œ —,

where p”÷  and s”  represent the object and strategy parameters, respectively.

4.3 ES-Mutations

Mutation  is  considered  the  major  ES-operator  for  variations  on  the
chromosomes.
Mutations  of  the  object  and  strategy  parameters  are  accomplished  in
different  ways.  Basically,  ES-mutation  on  a  chromosome  g”÷ = Hp”÷ , s”L  can
be described as follows:

g”÷ mut = H p”÷ + N0Hs”L, aHs”LL.
Here  N0  denotes  normal  distribution  with  mean  zero,  and  a  defines  a
function for adapting the strategy parameters.
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· ES-mutations and selection: The basic idea

What are the main characteristics of the ES-mutation-selection scheme?

· Mutating object parameters

How  does  mutation  as  performed  on  object  parameters  work?  What  are
the most commonly used mutations?

· Stepsize adaptation

How can the variances  that control  mutation  step sizes be tuned to better
evolutionary performance?

4.4 ES-Recombinations

· Introduction

Recombination operators compose new chromosomes from corresponding
parts of two or more chromosomes, thus mimicking natural recombination
mechanisms  as  observed  in  cellular  genomes.  For  the binary  case  where
two ES-chromosomes,  a”÷ = Hp”÷ a , s”aL  and b

”÷
= Hp”÷ b , s”bL  are to be recombined

by  an  operator  wrec ,  we  can  describe  the  composition  of  a  new
chromosome w£  as follows a£ :

w£ =wrec  Ia”÷ , b
”÷ M = Hp”÷ £ , s”£ L = HH p1

£ , …, pn
£ L, Hs1

£ , …, sn
£ LL .

Each  element  of  the  object  and  strategy  parameter  vectors  is  a
recombination of the respective entries of a”÷  and b

”÷
:

pi
£ = rpHpai , pbiL  and si

£ = rsHsai , sbiLL.
Here the functions  rp  and rs define the component-wise  recombinations
for the object and strategy parameters respectively.

The  following  sections  about  ES-recombinations  will  explore  these
functions for discrete and intermediate recombinations as well as different
combination schemes (local and global), and will finally extend the binary
case to multi-recombinations between more than two chromosomes. 
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The  following  sections  about  ES-recombinations  will  explore  these
functions for discrete and intermediate recombinations as well as different
combination schemes (local and global), and will finally extend the binary
case to multi-recombinations between more than two chromosomes. 

· Discrete and intermediate recombination

Some  commonly  used  recombination  mappings  on  the  "genes"  of  ES-
chromosomes are explained.

· Local and global recombinations

Constraints  on  the  domain  of  the  recombination  operators  lead  to  quite
different effects with respect to mixing of genetic information.

· Examples

Further  examples  show  the  great  variety  of  the  discussed  recombination
schemes.

4.5 ES-Selection and Evolution Scheme

In this section, we will discuss several variants of evolutionary schemes as
defined  in  the  context  of  Evolution  Strategies.  Here,  explanations  of  the
formal  ES-notation  that  turn  out  to  be  quite  flexible  in  characterizing
different evolution processes (including GAs and GP) can be found. All of
these  ES-evolution  models  are  further  illustrated  with  the  aid  of  a
graphical notation.

· Introduction

Here we present a graphical notation used to explain the basic algorithmic
schemes of Evolution Strategies.

· (m+l)-ES and (m, l)-ES

Starting  from  the  most  simple  (1+1)-Evolution  Strategy  with  one  parent
producing a single offspring, the selection-mutation scheme is extended to
more  general  Plus-  and  Comma-schemes  with  m  parents  (possibly)
competing with l mutated offspring.
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·  (m / r ,+ l)-ES: Evolution Strategy and Recombination

Extending  the  set  of  ES-operators  by  recombination  leads  to  the  ES-
schemes discussed in this section.

· Meta-Evolution Strategies

Independently  evolving  subpopulations  that,  from time  to  time  exchange
"genetic  material"  and  compete  against  one another  for  resources,  act  as
evolving meta-individuals.

4.6 Evolution Strategies in Action

· Introduction

Exploring  the  basic  dynamics  of  evolutionary  processes  as  defined  by
Evolution Strategies is the main topic of this section.  ES-schemes will be
used  to  solve  parameter  optimization  problems  within  multi-modal
domains.  Two  simple  examples  will  demonstrate  how  Evolution
Strategies can be used to search for global maxima. First, it will be shown
how  three  populations  independently  evolve  to  areas  of  better  fitness;
finally, an example for meta-evolution on subpopulations is presented.

The following  ES experiments  are  conducted  as  parameter  optimizations
within  a two-dimensional,  multi-modal  objective  function.  The  task is  to
find the location of the global maximum.

· Multi-modal parameter optimization

We compare three evolution runs according to a H10 ê 2, 20L-ES in search
of a global maximum.

· Three competing sub-populations on their way up …

An  experiment  according  to  a  H3 + 3 H10 ê 2 + 5L5L5
-ES  demonstrates  the

power of meta-evolutions.

Illustrating Evolutionary Computation with Mathematica Table of Contents

© C. Jacob 15



· Discovering all maxima: ‡ Part1, ‡ Part 2, ‡ Part 3

Three independent  populations  step by step will  find their way to the top
three locations overlooking the "mountain region".
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5 Programming by Evolution

There are no notebooks available for Chapter 5 in the book..
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6 EP: Evolutionary Programming

6.1  Evolution of Finite State Automata

This  notebook  shows  an  example  evolution  of  finite  state  automata,  which
perform prediction tasks.
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7 GP: Genetic Programming

In  this  chapter  we  explore  the  "automatic  programming"  of  computers  by
evolution.  We  start  with  a  brief  history  of  evolutionary  programming  by
presenting  approaches  of  how  to  use  evolution  mechanisms  to  "breed"
computer  programs.  The  genetic  programming  approach,  where  terms  or
simple symbolic expressions are used to encode data structures, is discussed in
more  detail  and  demonstrated  by  example  of  evolving  balanced  mobiles.
Finally, further variants of genetic programming are outlined.

7.1 GP with Tree Genomes: Introduction

A  very  successful  approach  encoding  data  structures  as  symbolic
expressions was proposed by John Koza [Koza, 1992].

7.2 Terms as Genotypic Structures

Using  terms  or  simple  symbolic  expressions  to  represent  "program
chromosomes" for encoding instructions as well as data structures leads to
a flexible and elegant approach for programming by evolution. 

7.3 Recombination on Terms

Recombination  on terms is performed by interchanging  randomly  chosen
subtrees  (subexpressions).  This  GP  term  crossover  is  similar  to  the  GA
recombination operators of crossover.

7.4 Mutation on Terms

Mutations  on  terms  substitute  a  randomly  chosen  subtree  by  a  newly
generated expression.
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7.5 GP-Evolutionscheme

The GP evolution  scheme is closely related  to the GA evolution  scheme.
The  major  differences  lie  in  the  probabilistic  selection  of  the  genetic
operators.

7.6 GP in Action: Evolving Balanced Mobiles

The  evolution  of  symbolic  expressions  that  encode  mobile  structures
illustrates the GP evolution scheme and its operators.

· Mobiles: Encoding, visualization, and evaluation

· GP-evolution of balanced mobiles
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8 Evolvica – Evolution with Symbolic Expressions

This  chapter  describes  the  genetic  programming  system  Evolvica  and  its
concepts  using  symbolic  expressions  and  template-  or  pattern-based  genetic
operators.

8.1 Templates defining Building Blocks

Similar  to  the  schemata  of  genetic  algorithms,  templates  are  used  in
Evolvica's  genetic  programming  approach  for  two  purposes:  (1)  for
generating  expressions  and  (2)  for  identifying  substructures.  In  this
section we describe  how to use templates  for expression  generation  from
problem-specific building blocks.

· Generating Expressions over Templates

Templates  provide  the  basic  building  blocks  from  which  expressions  are
composed.

· Expression Generation with Weighted Templates

Attributing  the  templates  with  weights  implements  a  competition  among
building blocks. 

8.2 Templates as Filters – Extraction of Contextsensitive Substructures

Templates can be used as filters to identify substructures that obey certain
conditions.  This  is  useful  for  genetic  operators  such  as  recombination,
where one has to be careful to select "matching" substructures that can be
interchanged.  This  section  demonstrates  some  variants  of  substructure
identification.

· Templates identifying substructures

Here we use straight-forward templates to extract expressions.
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· Hierarchical extraction of substructures

The templates introduced here allow even hierarchical expression filtering.

· Embedded structures within structures

Extended  templates  have  to  be  used  to  be  able  to  flexibly  identify
structures embedded within structures.

8.3 Selective Genetic Operators

The  following  genetic  operators,  which  all  work  on  general  symbolic
expressions,  use  templates  to  identify  substructures  which  are  to  be
modified by the operators.  

· Mutation

This  is  an  extension  of  the  standard  GP  mutation  operator  to  work  on
general  symbolic  expressions;  it  uses templates  for substructure  selection
as well as for expression generation.

· Recombination

This  is  an  extension  of  the  standard  GP  recombination  operator  to work
on general symbolic expressions.

· Duplication

This is an analogous extension of the standard GA duplication operator to
work on general symbolic expressions.

· Deletion

This  is  an  analogous  extension  of  the  standard  GA  deletion  operator  to
work on general symbolic expressions.

Illustrating Evolutionary Computation with Mathematica Table of Contents

© C. Jacob 22



· Permutation and Inversion

This  is  an  analogous  extension  of  the standard  GA permutation  operator
to work on general symbolic expressions.

· Encapsulation and Decapsulation

Encapsulation  is  a  genetic  operator  for  contracting  and  conserving
subexpressions by hiding them from other genetic operators.

· Pattern Extraction

Pattern  extraction  is  a  generalization  of  the  encapsulation  operator  for
different levels of contraction.

8.4 Evolving AntTrackers

The  usefulness  of  the  genetic  operators  described  above  is  illustrated  by
an  example  of  evolving  simple  programs  controlling  a  robot  in  a  maze,
which has to collect food pieces. 

· Experiment Setup

Here  we  describe  the  program  encoding,  the  genetic  operators  used  for
this experiment, the population size, etc. 

· Analysis of an evolution experiment

Analyzing  a  typical  evolution  run  reveals  the  dynamics  of  genetic
programming for this optimization task.
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9 Computer Models of Developmental Programs

In  this  chapter  we  discuss  cellular  automata  (CA)  and  the  evolution  of  CA
rules by means of genetic  programming.  Lindenmayer-systems  are introduced
as  an  alternative  way  of  describing  structure  formation  processes.  We  also
demonstrate  how  genetic  programming  can  be  used  to  evolve  and  design  L-
systems that exhibit certain characteristics.

9.1 Cellular Automata

Cellular  automata  (CA)  are  a  formidable  representative  of  decentralized
computing  with rewrite  systems.  CAs  work on a  1-,  2-  or 3-dimensional
grid  of  cells,  where  each  cell  updates  its  state  according  to  simple  rules
which  only  take  the  states  of  nearby  cells  into  account.  Usually,  cell
updates  are  performed  synchronously  but  independent  from  each  other
without global control.

· Pattern formation in one dimension

Also the simplest cellular automata – a single line of cells – can exhibit a
great variety of patterns, as is shown by example of a binary CA.

· Morphogenesis and selfreproduction

Self-reproduction  properties  are  illustrated  through  the  example  of
Christopher Langton´s loop automata.

· Mutation and selfreproduction

What  happens  if  we  mutate  a  set  of  carefully  designed  CA  rules  for  a
selfreproducing loop?
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9.2 Lindenmayer-Systems

· Modeling growth with L-systems

Lindenmayer  systems  are  used  to  model  elementary  growth  processes
such as cell divisions within a cellular layer. This section also serves as an
introduction  to  the  basic  concepts  of  L-systems  and  their  variants,  from
deterministic,  context-free  to  parametrized,  stochastic  and  context-
sensitive L-systems.

· Turtle - Interpretation : Describing structures in 3D space

The  dynamics  of  three-dimensional  structures  can  be  described  by  a
extending L-systems with a virtual drawing device, called a turtle.

· Bracketed L-Systems: Modeling branching structures

Branching  structures  can  be  modelled  by  introducing  modules  or  stacks
into L-systems.

· Unfolding of parametrized fractal structures

This  is  a  simple,  yet  illustrative  example  of  the  intricate  influence  of  L-
system parameters on the overall shape of a fractal structure.
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10 Evolutionary Inference of L-Systems

10.1  Evolution of Fractal Structures

· Evolving 2D Fractal Structures

An  example  of  evolving  fractal  structures  that  are  encoded  by
parametrized Lindenmayer systems and turtle interpretation.
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11 Artificial Plant Evolution

11.1 Genetic L-System Programming

· L-Systems for Plantlike Structures

A  few  examples  of  Lindenmayer  systems  that  encode  growth  programs
for  plants  are  presented  here.  The  L-systems  used  here  rely  heavily  on
turtle interpretations.

· Growth Modeling of Lychnis coronaria

· Breeding ArtFlowers

L-systems, encoded as symbolic expressions are subjected to evolution on
the  basis  of  Genetic  Programming.  Some  first  GLP-examples  use  L-
systems that describe structure formations of plants.

 

11.2  Evolution of Plant Ecosystems

This notebook shows an example of coevolution in a simple plant ecosystem.
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Setting the EVOLVICA Directory ...

In case you want  to try  out the implemented  Evolvica  functions,  some of the
Evolvica  notebooks  require  the  definition  of  the  directory  where  THIS
NOTEBOOK resides in.

Please enter the directory path of this notebook (IEC-Evolvica.nb) here:

Below are examples of how to set the directory path under different operating
systems:

For Macintosh or Unix Systems:

EvolvicaDirectory =
ToFileName@8"", "Cube OS X", "Users", "jacob",

"Documents", "EVOLvica"<, "EvolvicaNotebooks"D
Cube OS X:Users:jacob:

Documents:EVOLvica:EvolvicaNotebooks

EvolvicaDirectory =
ToFileName@8"~jacob", "Desktop", "EvolvicaNotebooks"<,
"EvolvicaNotebooks"D

~jacobêDesktopêEvolvicaNotebooksêEvolvicaNotebooks
For Windows Systems:

EvolvicaDirectory = ToFileName@8"", "C:", "My Documents", "Summer CPSC", "Evolvica",
"EvolvicaNotebooks"<, "EvolvicaNotebooks"D

C:\My Documents\Summer CPSC\
Evolvica\EvolvicaNotebooks\EvolvicaNotebooks
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While  the cursor  is still  in the above  cell, evaluate  the cell  by hitting SHIFT-
RETURN or select Kernel Ø Evaluation Ø Evalute Cells from the menu.

Do the same with the following cell. If you do not get an error message (such
as  "Cannot  set  current  directory  ...")  your  Evolvica  directory  has  been  set
successfully.

SetDirectory@EvolvicaDirectoryD
êUsersêjacobêDesktopê

EvolvicaNotebooksêEvolvicaNotebooks
Note:  It  is  assumed  that  you  did  not  change  the  recommended  Evolvica
directory  structure,  i.e.,  you  haven't  altered  the  directory  hierarchy  of  the
notebooks you downloaded from the IEC website.

Illustrating Evolutionary Computation with Mathematica Table of Contents

© C. Jacob 29


