EVOLUTION OF CELLULAR AUTOMATA MACHINES

Alan Fedoruk

March 11, 2003

INTRODUCTION

Exploring the use genetic algorithms to evolve rules to program cellular automata

- Cellular Automata (CA) have been studied for many years and have many interesting properties including universal computation—von Neumann [7], Conway [1], Wolfram [8].
- von Neumann showed that a CA can implement a Turing machine and therefore exhibits universal computation.
- Wolfram uses simple programs (CAs and others) as models for most real-world processes and is trying to build a *New Kind of Science* around that idea. Complexity does not need a complex model!

- Conway's *Game of Life* has been extensively studied as a model for real-world processes, to implement a universal computer and as a fun diversion.
- 1D CAs are possibly the simplest example of decentralized system which exhibits emergent computation.
- Problem: The huge rule space and the low level of the rules makes it difficult to program CAs for non-trivial computation. One solution: use genetic algorithms to evolve *programs*.
- Today's topics: Work done by Sipper using non-uniform CAs and the work done by the EvCA group at SFI.

Focus

- Mitchell, Crutchfield, Das et al, 1994-1999 The Santa Fe Institute: the Evolving Cellular Automata (EvCA) Group
 - evolve 1D CAs to perform 2 tasks : density and synchronization
 - computation mechanics framework [3] to analyze how global interaction is emerging from local interactions
- Sipper 1997 Evolution of Parallel Cellular Machines [6]
 - uses non-uniform CAs
 - follows up on work at EvCA
 - overall goal evolvable hardware

TERMINOLOGY

- IC Initial Condition
- r radius of neighbourhood (r=2, neighourhood, n = 5)
- N size of lattice
- M time iterations to evolve
- Cellular Automata as a Computer
 - not a Turing Machine approach
 - IC is the input, state of the lattice after M iterations is output
 - program emerges as the evolution of the lattice by repeated application of the rules

EVCA GROUP WORK

Use genetic algorithms to evolve rules to program cellular automata to perform the density and synchronization tasks

- r=3, rule space = 2¹²⁸; N = 149; IC randomly selected from 2¹⁴⁹ possibilities
- 100 rules are randomly generated, fittest 20 (elite) moved to next generation, other 80 generated with crossover and mutation from elite
- 100 new ICs chosen at each generation, run with each generated rule
- fitness: fraction of correct solutions
- run for 100 generations

100% [2]

ANALYSIS (CONTINUED)

- using a GA is an effective means of finding rules in the huge rule space
- the computation mechanics framework [3, 4] models how local interactions can lead to emerging global behaviour
- particles transmit information from one location to another
- a table of domains, particles and particle interactions can be constructed
 - in the example, domains are all 1s black, all 0s white and (01)s checkered
 - particles are defined by domains they separate and their speed
 - particles can decay, react or annihilate
- the particle model can also be used to predict behaviour [4]

EVOLVING NON-UNIFORM CAS — SIPPER

- tackles the same problems: Density and Synchronization
- uses a non-uniform CA: each cell may contain a different rule
- rather than evolving a global set of solutions: fitness is calculated at the cell level and genetic operations applied to the neighbourhood

EXPERIMENTS

- r=3, N=149, M=150, rule space = $(2^{128})^{149} = 2^{19072}$; IC randomly selected from 2^{149} possibilities
- r=1, N=149, M=150, rule space = $(2^8)^{149} = 2^{1192}$; IC randomly selected from 2^{149} possibilities

Both experiments used an initial set of randomly chosen rules. 300 ICs were used to calculate fitness.

RESULTS

- r=3 density task: found a non-uniform rule with $\approx 92\%$ effectiveness; the best uniform showed $\approx 95\%$
- r=1 density task: for uniform CAs best possible is 83% effectiveness, non-uniform showed $\approx 93\%$
- r=1 synchronization task: for uniform CAs best possible is 84%, non-uniform showed 100%

ANALYSIS

- Non-uniform CAs can attain high performance on non-trivial computation.
- Coevolution can be used to perform the computation results in quasi-uniform system.
- Non-uniform CAs have lower connectivity requirements i.e. lower *r* with same results.

ANALYSIS

Sipper also performed experiments with different application areas using 1D and 2D CAs

- Random Number Generators produce random digits
- Rectangle identify a rectangle in a grid
- Thinning find thin representations of rectangles
- Ordering Move all 0s to the left
- Density 2D
- Synchronization 2D

HOW DOES EVOLUTION WORK

Both research groups tried to examine how the evolution occurred.

- EvCA group found evolution happened in leaps. They dubbed these epochs.
- Sipper examined how the various genes interacted and how they affected the resulting evolved program.

SUMMARY

- CAs perform distributed, parallel computation with only local interaction.
- Genetic algorithms are an effective way to program CAs, whether using non-uniform or uniform CAs.
- Global behaviour can emerge; information is transported through the grid which can be modelled via particles and domains.
- Models processes occurring in natural systems

FURTHER READING

- The Santa Fe Institute, Evolving Cellular Automata Group: http://www.santafe.edu/projects/evca/
- Moshe Sipper Webpage: http://www.moshesipper.com/
- Stephen Wolfram: http://www.stephenwolfram.com/

References

- [1] E. Berlekamp, J. H. Conway, and R. Guy. *Winning Ways for Your Mathematical Plays, vol. 2.* Academic Press, New York, 1982.
- [2] R. Das, J. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronized cellular automata. In L. J. Eshelman, editor, *Proceedings of the Sixth International Conference on Genetic Algorithms*, pages 336–343, 1995.
- [3] J. E. Hanson and J. P. Crutchfield. The arractor-based protrait of a cellular automaton. *Journal of Statistical Physics*, 66(5/6):1415–1462.
- [4] W. Hordijk, J. P. Crutchfield, and M. Mitchell. Embedded-particle computation in evolved cellular automata. In T. Toffoli, M. Biafore, and J. Lea, editors, *Physics and Computation '96 (Pre-proceedings), New England Complex Systems Institute*, pages 153–158, 1996.

- [5] M. Mitchell, J. P. Crutchfield, and R. Das. Evolving cellular automata with genetic algorithms: A review of recent work. In *Proceedings of the First International Conference on Evolutionary Computation and its Applications (EvCA'96)*, 1996.
- [6] M. Sipper. Evolution of Parallel Cellular Machines: The Celluar Programming Approach. Springer, 1997.
- [7] J. von Neumann and A. W. Burks. *Theory of Self- Reproducing Automata*. Univ. of Illinois Press, Urbana, IL, 1966.
- [8] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.