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INTRODUCTION

Exploring the use genetic algorithms to evolve rules to
program cellular automata

Cellular Automata (CA) have been studied for many years and have
many interesting properties including universal computation—von
Neumann [7], Conway [1], Wolfram [8].

von Neumann showed that a CA can implement a Turing machine
and therefore exhibits universal computation.

Wolfram uses simple programs (CAs and others) as models for most
real-world processes and is trying to build a New Kind of Science
around that idea. Complexity does not need a complex model!
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Conway’s Game of Life has been extensively studied as a model for
real-world processes, to implement a universal computer and as a fun
diversion.

1D CAs are possibly the simplest example of decentralized system
which exhibits emergent computation.

Problem: The huge rule space and the low level of the rules makes it
difficult to program CAs for non-trivial computation. One solution:
use genetic algorithms to evolve programs.

Today’s topics: Work done by Sipper using non-uniform CAs and the
work done by the EvCA group at SFI.
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FOCUS

Mitchell, Crutchfield, Das et al, 1994-1999 – The Santa Fe Institute:
the Evolving Cellular Automata (EvCA) Group
– evolve 1D CAs to perform 2 tasks : density and synchronization
– computation mechanics framework [3] to analyze how global

interaction is emerging from local interactions

Sipper 1997 – Evolution of Parallel Cellular Machines [6]
– uses non-uniform CAs
– follows up on work at EvCA
– overall goal – evolvable hardware
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TERMINOLOGY

IC – Initial Condition

r – radius of neighbourhood (r=2, neighourhood, n = 5)

N – size of lattice

M – time iterations to evolve

Cellular Automata as a Computer
– not a Turing Machine approach
– IC is the input, state of the lattice after M iterations is output
– program emerges as the evolution of the lattice by repeated

application of the rules
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APPLICATION AREAS

Density and Synchronization Tasks

Figure 1: Examples of Density and Synchronization
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EVCA GROUP WORK

Use genetic algorithms to evolve rules to program cellular
automata to perform the density and synchronization tasks

r=3, rule space = 2128; N = 149; IC randomly selected from 2149

possibilities

100 rules are randomly generated, fittest 20 (elite) moved to next
generation, other 80 generated with crossover and mutation from elite

100 new ICs chosen at each generation, run with each generated rule

fitness: fraction of correct solutions

run for 100 generations
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RESULTS

Evolved Particle Rule for the Density Task

Figure 2: Evolution of particle rule with low and high density input. Effective-
ness 95% [5]
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RESULTS

Evolved Rule for the Synchronization Task

Figure 3: Two runs using evolved rule for synchronization task. Effectiveness =
100% [2]
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ANALYSIS

Figure 4: High Density run showing domains, particles and interactions
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ANALYSIS (CONTINUED)

using a GA is an effective means of finding rules in the huge rule
space

the computation mechanics framework [3, 4] models how local
interactions can lead to emerging global behaviour

particles transmit information from one location to another

a table of domains, particles and particle interactions can be
constructed
– in the example, domains are all 1s – black, all 0s – white and

01 s – checkered
– particles are defined by domains they separate and their speed
– particles can decay, react or annihilate

the particle model can also be used to predict behaviour [4]
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EVOLVING NON-UNIFORM CAS —
SIPPER

tackles the same problems: Density and Synchronization

uses a non-uniform CA: each cell may contain a different rule

rather than evolving a global set of solutions: fitness is calculated at
the cell level and genetic operations applied to the neighbourhood
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EXPERIMENTS

r=3, N=149, M=150, rule space = 2128 149 219072; IC randomly
selected from 2149 possibilities

r=1, N=149, M=150, rule space = 28 149 21192; IC randomly
selected from 2149 possibilities

Both experiments used an initial set of randomly chosen rules. 300 ICs
were used to calculate fitness.

March 11, 2003 12-9



Evolution of Cellular Automata Machines

RESULTS

r=3 density task: found a non-uniform rule with 92% effectiveness;
the best uniform showed 95%

r=1 density task: for uniform CAs best possible is 83% effectiveness,
non-uniform showed 93%

r=1 synchronization task: for uniform CAs best possible is 84%,
non-uniform showed 100%
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ANALYSIS

Non-uniform CAs can attain high performance on non-trivial
computation.

Coevolution can be used to perform the computation — results in
quasi-uniform system.

Non-uniform CAs have lower connectivity requirements i.e. lower r
with same results.
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ANALYSIS

Sipper also performed experiments with different application areas using
1D and 2D CAs

Random Number Generators – produce random digits

Rectangle – identify a rectangle in a grid

Thinning – find thin representations of rectangles

Ordering – Move all 0s to the left

Density – 2D

Synchronization – 2D
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HOW DOES EVOLUTION WORK

Both research groups tried to examine how the evolution occurred.

EvCA group found evolution happened in leaps. They dubbed these
epochs.

Sipper examined how the various genes interacted and how they
affected the resulting evolved program.
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SUMMARY

CAs perform distributed, parallel computation with only local
interaction.

Genetic algorithms are an effective way to program CAs, whether
using non-uniform or uniform CAs.

Global behaviour can emerge; information is transported through the
grid which can be modelled via particles and domains.

Models processes occurring in natural systems
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FURTHER READING

The Santa Fe Institute, Evolving Cellular Automata Group:
http://www.santafe.edu/projects/evca/

Moshe Sipper Webpage: http://www.moshesipper.com/

Stephen Wolfram: http://www.stephenwolfram.com/
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