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Cellular AutomataCellular Automata

• The CA space is a lattice of cells (usually 1D, 2D, 3D)
with a particular geometry.

• Each cell contains a variable from a limited range of values
(e.g., 0 and 1).

• All cells update synchronously.

• All cells use the same updating rule (in uniform CA),
depending only on local relations.

• Time advances in discrete steps.
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One-dimensional Finite CA ArchitectureOne-dimensional Finite CA Architecture

time

• Neighbourhood size:
K = 5

local connections
per cell

• Synchronous
update in discrete
time steps

A. Wuensche: The Ghost in the Machine, Artificial Life III, 1994.
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Time Evolution of Cell Time Evolution of Cell ii with  with KK-Neighbourhood-Neighbourhood

Ci
(t+1) = f (Ci -[ K / 2]

( t ) ,..., Ci -1
( t) ,Ci

( t ),Ci +1
( t ) ,..., Ci +[ K / 2]

( t ) )

With periodic boundary conditions:

x < 1: Cx = CN+ x

x > N : Cx = Cx - N
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Value Range and Update RulesValue Range and Update Rules

• For V different states (= values) per cell there are VK

permuations of values in a neighbourhood of size K.

• The update function f can be implemented as a lookup
table with VK entries, giving VVK

 possible rules.

00000: 1 … V
00001: _
00010: _
…
11110: _
11111: _

VK

1.3 ¥ 1015451292

3.4 ¥ 103812872

4.3 ¥ 1093252

256832

Vv^KvKKv
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Cellular Automata: Local Rules Cellular Automata: Local Rules —— Global Effects Global Effects

Demos
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History of Cellular AutomataHistory of Cellular Automata

• Alternative names:
– Tesselation automata

– Cellular spaces

– Iterative automata

– Homogeneous structures

– Universal spaces

• John von Neumann (1947)
– Tries to develop abstract model of self-reproduction in biology (from

investigations in cybernetics; Norbert Wiener)

• J. von Neumann & Stanislaw Ulam (1951)
– 2D self-reproducing cellular automaton

– 29 states per cell

– Complicated rules

– 200,000 cell configuration

– (Details filled in by Arthur Burks in 1960s.)
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History of Cellular Automata (2)History of Cellular Automata (2)

• Threads emerging from J. von Neumann’s work:
– Self-reproducing automata (spacecraft!)
– Mathematical studies of the essence of

• Self-reproduction and
• Universal computation.

• CAs as Parallel Computers (end of 1950s / 1960s)
–  Theorems about CAs (analogies to Turing machines) and their

formal computational capabilities
– Connecting CAs to mathematical discussions of dynamical

systems (e.g., fluid dynamics, gases, multi-particle systems)

• 1D and 2D CAs used in electronic devices (1950s)
– Digital image processing (with so-called cellular logic systems)
– Optical character recognition
– Microscopic particle counting
– Noise removal
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History of Cellular Automata (3)History of Cellular Automata (3)

• Stansilaw Ulam at Los Alamos Laboratories
– 2D cellular automata to produce recursively defined geometrical

objects (evolution from a single black cell)
– Explorations of simple growth rules

• Specific types of Cas (1950s/60s)
– 1D: optimization of circuits for arithmetic and other operations
– 2D:

• Neural networks with neuron cells arranged on a grid
• Active media: reaction-diffusion processes

• John Horton Conway (1970s)
– Game of Life (on a 2D grid)
– Popularized by Martin Gardner: Scientific American
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Stephen WolframStephen Wolfram’’s World of CAss World of CAs
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Stephen WolframStephen Wolfram’’s World of CAss World of CAs
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Stephen WolframStephen Wolfram’’s World of CAss World of CAs
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Example Update RuleExample Update Rule

• V = 2, K = 3

• The rule table for rule 30:

111  110  101  100  011  010  001  000

  0      0      0      1      1      1      1      0

See examples ...

128 64 32 16 8 4 2 1

16 8 4 2+ + + = 30



Christian Jacob, University of CalgaryEmergent Computing — CPSC 565 — Winter 2003 17

CA DemosCA Demos

• Evolvica CA Notebooks
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Four Wolfram Classes of CAFour Wolfram Classes of CA

• Class 1:
A fixed, homogeneous, state is eventually reached
(e.g., rules 0, 8, 128, 136, 160, 168).

168

136

160

0
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Four Wolfram Classes of CAFour Wolfram Classes of CA

• Class 2:
A pattern consisting of separated periodic regions is
produced (e.g., rules 4, 37, 56, 73).

73

37

56

4
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Four Wolfram Classes of CAFour Wolfram Classes of CA

• Class 3:
A chaotic, aperiodic, pattern is produced
(e.g., rules 18, 45, 105, 126).

126

45

105

18
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Four Wolfram Classes of CAFour Wolfram Classes of CA

• Class 4:
Complex, localized structures are generated
(e.g., rules 30, 110).

11030
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Class 4: Rule 30Class 4: Rule 30
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Class 4: Rule 110Class 4: Rule 110
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Further Classifications ofFurther Classifications of  CA EvolutionCA Evolution

• Wolfram classifies CAs according to the patterns they evolve:

– 1. Pattern disappears with time.
– 2. Pattern evolves to a fixed finite size.
– 3. Pattern grows indefinitely at a fixed speed.
– 4. Pattern grows and contracts irregularly.

• Qualitative Classes

– 1. Spatially homogeneous state
– 2. Sequence of simple stable or periodic structures
– 3. Chaotic aperiodic behaviour
– 4. Complicated localized structures, some propagating

–3/text.html: Fig. 1

–85-cellular/7/text.html: Fig. 3 (first row)
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Further Classifications of CA Evolution (2)Further Classifications of CA Evolution (2)

• Classes from an Information Propagation Perspective

– 1. No change in final state

– 2. Changes only in a finite region

– 3. Changes over an ever-increasing region

– 4. Irregular changes

• Degrees of Predictability for the Outcome of the CA Evolution

– 1. Entirely predictable, independent of initial state
– 2. Local behavior predictable from local initial state
– 3. Behavior depends on an ever-increasing initial region
– 4. Behavior effectively unpredictable
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2-D CA: Emergent Pattern Formation in Excitable Media2-D CA: Emergent Pattern Formation in Excitable Media

Neuron excitationNeuron excitation

Neuron excitation (relaxed)Neuron excitation (relaxed)

HodgepodgeHodgepodge
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Random BooleanRandom Boolean
NetworksNetworks

Generalized Cellular AutomataGeneralized Cellular Automata
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[S. Kauffman: At Home in the Universe]

Crystallization of Connected WebsCrystallization of Connected Webs
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Random Nets Demo
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Random Network ArchitectureRandom Network Architecture

Network at time t

Network at time t+1

wiring scheme

pseudo neighbourhood
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Time Evolution of the Time Evolution of the i-i-th th CellCell

• Cell i is connected to K cells wi1, wi2, …, wiK; with wij from {1,…, N}.

• NK possible alternative wiring options.

• Update rule for cell i:

Ci
(t+1) = fi(Cwi1

( t) ,Cwi2

( t ) , ..., CwiK

( t ) )
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Wiring/Rule SchemesWiring/Rule Schemes

• A random network of size N with neighbourhood size K
can be assigned

alternative wiring and rule schemes.

• Example:
V = 2, N = 16, K = 15; S = 2832 .

S = (NK )N ¥ (V VK

)N
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States and CyclesStates and Cycles

State Cycle 1

State Cycle 2

State Cycle 3

System State Following State

[S. Kauffman: Leben am Rande des Chaos]
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KauffmanKauffman’’s Random Boolean Networkss Random Boolean Networks

http://members.rogers.com/fmobrien/experiments/boolean_net/BooleanNetworkApplet_both.html

Boolean functions represented by shades of green.
Stuart Kauffman used this network to investigate the

interaction of proteins within living systems.

Binary values that have changed are white.
Unchanged values are blue.

These networks settle very quickly into an oscillatory
state.
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[A. Wuensche, Discrete Dynamics Lab]

Attractor Attractor CyclesCycles
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[A. Wuensche, Discrete Dynamics Lab]

Basin of Attraction FieldBasin of Attraction Field

Nodes: n =13; Connectivity: k = 3; States: 213 = 8192
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[A. Wuensche, Discrete Dynamics Lab]

Basin of Attraction FieldBasin of Attraction Field

Nodes: n =13; Connectivity: k = 3; States: 213 = 8192

68 984 784 1300 264

76 316 120 64 120

256 2724 604 84 428



Christian Jacob, University of CalgaryEmergent Computing — CPSC 565 — Winter 2003 38

Calculating Pre-ImagesCalculating Pre-Images
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Calculating Pre-Images (2)Calculating Pre-Images (2)
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Mutations on Random Boolean NtworksMutations on Random Boolean Ntworks

[A. Wuensche 98]
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Attractor Attractor = Cell Type ?= Cell Type ?

• From the set of all possible gene activation patterns, the
regulatory network selects a specific sequence of
activations over time.

• A differenciated cell doesn’t change its type any more.
– Hence, only a constrained set of genes is active

– = state cycle

– = attractor?
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Cell Types Cell Types vsvs. . AttractorsAttractors
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Amount of DNA of a single chromosome set of a cell (in g)

Number of cell types

Number of attractors
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Intermediate ArchitecturesIntermediate Architectures

Cellular
automata

Random
networks

Homogeneous rule
Varying degrees of random wiring

Homogeneous wiring template
Varying degree of rule mix
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