(Co-)Evolution of Morphologies and Behaviours

Presenter: Jie Gao & Seamus Carroll February 11, 2003

Artificial Evolution

- In general: Artificial evolution is the controlled micromanipulation of genetic information from one generation to the next
 - 1. Variational step: choice and/or transplantation of genes
 - 2. Selection step: survival and continued reproduction in a protected environment

Artificial Evolution in CS

- Most related to
 - Virtual creatures
 - -Virtual environment/world
 - Genetic algorithms
 - Simulation of evolution and behaviours

Karl Sims

- Early work: Evolution in computer graphics
- Evolving virtual creates which can swim, walk, jump, ...
- Co-evolving 3D virtual creatures in competition

Evolution in Computer Graphics

- Genetic Algorithms
- Use Lisp symbolic expressions as the genotypes
- Unlimited length in genotypes parameters and expression rules

Some Evolved Graphics

Febrary 11, 2003 CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Evolving Virtual Creatures

- Representation of the creatures
 - Morphology
 - Control
- Evolution
- Simulation

Morphology

- Phenotype: Hierarchy of 3D parts
- Genotype: Directed graph
 - Nodes indicate the corresponding rigid part; links indicate how the rigid parts are connected
 - The virtual creature is developed from the defined *root-node*, following all the connections
 - The connections can be recursive and duplicated!

Information Stored

- Nodes:
 - Dimensions (rigid shape, size, ...)
 - Joint-type (rigid, revolute, twist, ...)
 - Recursive-limit
 - Local neurons
- Connections:
 - Position, orientation, scale, reflection
 - -Terminal-only (for hand-like rigid)

Example of Morphology

- The parameters are omitted
- The labels "body", "leg" do not actually exist in the genetic expression

Febrary 11, 2003

• Sensors \rightarrow "Brain" \rightarrow Joints

- Sensors
 - Spread in each part of the body
- Sensor types:
 - Joint angle sensors
 - Contact sensors
 - Photo-sensors

- Neurons:
 - Internal neural nodes: enable arbitrary behaviours
 - Different neural nodes can perform diverse functions*: sum, product, divide, sum-threshold, greater-than, sign-of, min, sigmoid, ...

- Effectors:
 - Receive the input from sensors and neural nodes, and then execute joint force, resulting the behaviour of the creature
 - One effector can receive positive or negative inputs so that it can do both "push" and "pull"*

Comments on Control

* Some implementations of the control are not so biological realistic (diverse neural nodes, effectors that can "push" and "pull"), but they simplify the work

A Sample - Genotype

A Sample - Phenotype

A Sample – "Brain"

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Evolution

- Mutation
 - The internal parameters of each node
 - A new random node is added
 - The parameter of each connection
 - New random connections added and old ones removed
 - Garbage collect

Evolution

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Simulation

- Let the creature evolve in a virtual 3D world
- Body parts are represented by rectangular solids
- Velocities, forces, contacts and collisions are modelled
- When simulating underwater environments, viscosity is considered

Evolving towards Behaviours

- Swimming
 - -Turn off gravity; add viscosity
- Walking
 - Turn on gravity, turn off viscosity;
 add a ground plane with friction
- Jumping
- Following
 - Photosensors are enabled

The Results

Swimming
 Walking

Febrary 11, 2003

Febrary 11, 2003

More Results

Result - Video

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Co-evolution in Competition

- Design an arena for the virtual creatures to compete
 - A cube is placed in the centre of the ground plane
 - Two starting zones are assigned

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Competition

- Two creatures try to control the cube
- Start from the starting zone
- Winner: has the most control over the cube after a certain duration of simulated time

Fitness

- The margin of victory: relative fitness value
- One creature being closer, or its opponent being further both cause higher score

Competition Patterns

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Results - Simple

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Results -Complicated

From Virtuality to Reality

• The Golem project ...

Golem

- Introduction
- Automatic Design
- Simulator
- Automatic Fabrication
- Results
- Future Direction

Introduction

- Golem Project
 - (Genetically Organized Lifelike Electro Mechanics)
 - http://demo.cs.brandeis.edu/golem/
- Motivation
 - To have robotically designed and robotically fabricated robots.

Introduction cont...

- Differentiation between Karl Sims work and Golem
 - Complexity of behaviour
 - Methods for fitness evaluation
 - End result
 - Simulated vs Physical

Automatic Design

- Basic Design
 - Use only elementary building blocks and operators in the design and fabrication process
 - Structural (Morphology) building blocks
 - Bars and actuators
 - Control building blocks
 - Neurons and synapses

Automatic Design

 Schematic illustration of an evolvable robot

Robot Representation

Robot:=(vertices)(bars)(neurons)(actuators)

Vertex:=(x,y,z)

- Bar:=(vertex 1 index, vertex 2 index, relaxed length, stiffness)
- Neuron:=(threshold, synapse coefficients of connections to all neurons)

Actuator:=(bar index, neuron index, bar range)

- Evolution Procedure
 - Start population of 200 machines
 - Zero bars and zero neurons
 - Fitness determined by locomotive ability
 - Net distance that the centre of mass moved on an infinite plane in a fixed duration
 - 300→600 generations typical

- Notes on Evolution
 - Body (morphology) and brain (control) evolve simultaneously
 - At minimum, neural network generating varying output must connect to an actuator for any motion to occur
 - Can take tens of generations

• Typical evolution process:

Febrary 11, 2003

• Various Evolutionary Patterns

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

• Two samples of entire generations

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Simulation

- The mechanics and the neural network are simulated concurrently
- Supports low-momentum motion like crawling and walking but not jumping
- Modelled material properties correspond to that of the rapid prototyping process

Simulation

 Comparison of simulation to physical model

 Robots are automatically expanded into solid computer models

• Solid bodies created

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Notes

- Robots assembled as one unit
- Humans snap in motors and connect microcontrollers
 - Extent of human input
- Evolved neural network is executed on microcontroller to activate motors

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Results

- Robots typically contained 20 building blocks
- Significant redundancy present in some robots
- Symmetry exhibited in some robots

Results cont...

• Distance travelled over 12 cycles of neural control

Machine	Virtual (cm)	Physical (cm)
Tetrahedron	38.5	38.4
Arrow	59.6	22.5
Pusher	85.1	23.4

Results cont...

Results cont...

Febrary 11, 2003

CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Future Direction

Slowing fitness over time

Febrary 11, 2003 CPSC 601.73 Presentation by Jie Gao & Seamus Carroll

Discussion