
DNA Computing

State of the Art
2003-01-28

CPSC 601.73 www.cpsc.ucalgary.ca/~omair/cpsc60173/Presentation

http://www.cpsc.ucalgary.ca/~omair/cpsc60173/Presentation

Interesting Facts

• DNA molecule is 1.7
meters long

• Stretch out all the
DNA in your cells and
you could reach the
moon 6000 times!

Interesting Facts

• DNA is the basic
medium of
information storage
for all living cells. It
has contained and
transmitted the data
of life for billions of
years

Interesting Facts
• Roughly 10 trillion DNA

molecules could fit into a
space the size of a
marble. Since all these
molecules can process
data simultaneously, you
could theoretically have
10 trillion calculations
going on in a small space
at once

Leonard M. Adleman
• In 1994, Leonard Adleman took a giant

step towards a different kind of
chemical or artificial biochemical
computer. He used fragments of DNA
to compute the solution to a complex
graph theory problem. Adleman's
method utilizes sequences of DNA's
molecular subunits to represent
vertices of a network or `"graph".
Thus, combinations of these
sequences formed randomly by the
massively parallel action of
biochemical reactions in test tubes
described random paths through the
graph. Using the tools of biochemistry,
Adleman was able to extract the
correct answer to the graph theory
problem out of the many random paths
represented by the product DNA
strands.

Richard J. Lipton

• Generalized to Satisfiability Problems
– Problems that are NP Complete
– A hard NP problem is one in which the time

required for algorithms to find a solution
increases exponentially with the number of
variables involved. (In an easy NP problem,
the algorithm running time increases in
proportion to the number of variables.)

NP Complete Problems

• A hard NP problem can eat up a lot of computer
cycles if carried out by brute force. For example,
the Hamilton path problem —commonly known
as the traveling salesman problem — is a hard
NP problem. If there are N cities in a Hamilton
path problem, there are N!/2 possible paths,
where N! is N factorial, which is the multiplication
of every integer from 1 to N — for example, 4!=
1 x 2 x 3 x 4.

NP Complete Problems
• As the number of cities grows,

the number of possible path
combinations soars. For
example, if there are nine
cities, there are 180,000
possible paths. Eleven cities
would have 19.8 million paths,
13 cities would have about 3
billion paths, and 17 cities
would have about 200 trillion
paths. For larger and larger
numbers of cities, brute force
attempts to calculate all paths
would quickly overwhelm even
a supercomputer.

Example: Genetic Checkmate

• Princeton University
(Dec 3, 1999)

• Using DNA
Computing
techniques solved a
simple Knight
Problem

The Knight Problem

Generally what configurations of knights
can one place on an n x n chess board
such that no knight is attacking any other
knight on the board?

The Knight Problem

• Made use of an 10-bit RNA library
• Applied the problem to a 3x3 chessboard

as a 9-bit instance of the problem.
• A true or “1” value represented by

presence of a knight at position a-i
• Whereas false or “0” represents the

absence of a knight at that position.

The Knight Problem
• we represent the problem as follows (∧, ‘‘and’’; ∨, ‘‘or’’):
� ((¬h ∧ ¬f) ∨ ¬a) ∧ ((¬g ∧ ¬i) ∨¬b) ∧ ((¬d ∧ ¬h) ∨ ¬c) ∧
� ((¬c ∧ ¬i) ∨ ¬d) ∧ ((¬a ∧ ¬g) ∨ ¬f) ∧ ((¬b ∧ ¬f) ∨ ¬g) ∧
� ((¬a ∧ ¬c) ∨ ¬h) ∧((¬d ∧ ¬b) ∨ ¬i).
• In this particular example, this simplifies to
� ((¬h ∧ ¬f) ∨¬a) ∧ ((¬g ∧ ¬i) ∨¬b) ∧((¬d ∧ ¬h) ∨¬c)∧
� ((¬c ∧ ¬i) ∨¬d) ∧((¬a ∧ ¬g) ∨¬f).
• This reduces the number of operations that one has to perform

The Knight Problem
• We are already familiar with the operations we are

capable of performing on DNA namely:
• merge(N1, N2) = N
• N = duplicate(N1)
• detect(N)
• separate/extract

– N ← +(N, w)
– N ← -(N, w)

• length seperate
– N ← (N, ≤ n)

• position separate
– N ← B(N1, w)
– N ← E(N1, w)

The Knight Problem

• In addition this particular problem was
solved using RNA rather then DNA

• RNA was chosen because it is better
suited for a destruct algorithm

• using Ribonuclease (RNase) H digestion,
a destructive algorithm that would
hydrolyze RNA strands that did not fit the
constraints of a chosen problem

The Knight Problem
– RNA’s 2’ hydroxyl group makes it more prone to hydrolysis
– RNA strands can be marked for destruction by introducing complementary DNA oligonucleotides
– RNase H serves as a “universal RNA restriction enzyme”.
– Another way to describe:
– So, if we want to destroy a string containing 0 on position a, we add a complementary DNA sequence that

sticks to the targeted RNA sequence, and afterwards we introduce this RNase H enzyme to “clean” the
solution.

• RNase H digestions destroyed the RNA strand of RNA DNA hybrids marked by hybridization of
the pool RNA to the complementary bit oligonucleotides shown in Table 2.

The Knight Problem – RNA Library

• Prepared as 2 halves
using mix and split
phosphoramidite
chemistry with
sequences shown on
Table 1.

The Knight Problem – RNA Library

• Prepared as 2 halves
using mix and split
phosphoramidite
chemistry with
sequences

The Knight Problem – RNA Library

• To build the library three
criteria were used
1. Each bit encoding must be

fundamentally different.
Hence sequences were
chosen to maximize the
Hamming Distance
between different library
strands. (no more than 5
matches over 20-nt
windows, both within and
between all 2^10 possible
strands).

The Knight Problem – RNA Library

• To build the library three
criteria were used
2. Strands biased to avoid

secondary structure, each
bit would be equally
accessible to the enzymes
and oligonucleotides.
Accomplished using 3 letter
alphabet, A,C, and U for
bits and spacers.
Eliminating potential G-C
and G-U pairs.

The Knight Problem – RNA Library

• To build the library three
criteria were used
3. The strands would avoid

hybridization to themselves
or any other library strands
by more then seven
consecutive base pairs.
Otherwise this would
interfere to operate on RNA
strands by making regions
inaccessible to reagents.

The Knight Problem – RNA Library

• To satisfy all combo,
PERMUTE (a computer
program) was used to
generate random
nucleotide combos until
all three criteria were met.

• Prefix and Suffix provide
PCR primer binding sites.
Table 1.0 shows
sequences.

• Library was physically
built using a mix and split
strategy.

The Knight Problem – RNA Library
Mix and Split

• Bit n set to 0 and spacer n synthesized
on one column.

• Bit n set to 1 and spacer n synthesized
on the other column.

• These were mixed together
• Next variable position similarly

created.
• In the end 2^10 (1024) library strands

were created (all possible solutions)
• Prefix and suffix used to verify

degeneracy of the DNA pool.
• RNase H digestions destroyed the

RNA strand of RNA DNA hybrids
marked by hybridization of the pool
RNA to the complementary bit
oligonucleotides shown in Table 2.

• PCR product cloned directly using
PCR

The Knight Problem - Algorithm
– Initially we have all solutions (1024)
– Each string has form x1,…,xn
– Where xi = 1 or 0
– x1 =a, x2=b, …, x9=i (this is our mapping)
– destroy strings that fail to satisfy the first clause
– ((¬h ∧ ¬f) ∨ ¬a) as follows:

i) Execute OR clause and divide the library into two
halves. In one test tube, we select those strands that
contain a 1 at position ‘a’ by annealing DNA bit
oligonucleotide a0 to the library. Hence digesting
those strands with position ‘a’ set to 0 (thereby setting
bit at position ‘a’ to 1).
Simultaneously, destroy any 1’s at those bit positions
that must be set to 0 to full the clause (bits ‘f’ and ‘h’ in
this case).
In the other test tube we anneal DNA bit
oligonucleotide a1 to perform a mirror operation
setting bit position ‘a’ to 0.

ii) Undigested molecules are recovered and reverse
transcribed. Contents of both tubes are mixed and
amplified.
Library is split again to execute the next or clause..

The Knight Problem - Algorithm
• Bit Shuffling

– Recombination likely to occur during PCR amp of heterogeneous
target sequences. Especially since several stretches are
shared.

– 25 cycles of PCR
– 20 clones randomly chosen
– 40% the result of bit shuffling
– Bit shuffling was a serious problem
– 15 cycles of PCR done
– 20 random clones chosen
– No bit shuffling found
– Therefore High proportion of incompletely extended strands

annealing to heterogeneous target sequences. Fixed by
reducing PCR cycles.

The Knight Problem

• Readout Methods
– Multiplex Linear PCR
– Creates a bar code for each strand.

Knight Problem

• RNA Solutions
– 43 Clones Randomly

chosen
– 42 Represented a

Solution
– 127 Knights on 43

Boards and only on
knight had an
unacceptable position.

– 97.7% success rate
effectively.

State of the Art

• Interdisciplinary field,
includes molecular
biology, chemistry,
computer science,
mathematics

State of the Art
– End to Disease?

• Most research on DNA
processors is being done
by biotech companies
hoping to cash in on recent
breakthroughs on human
genome

• Microprocessor chips –
contain fragments of DNA
in place of electrical
circuitry

• Contain array of specific
genetic info

• These arrays called
microarrays

• Can compare chip to real
human DNA to see how
human DNA changes when
it becomes cancerous or is
afflicted with a virus

State of the Art
– Micro Factories

• Motorized tweezers 1000x smaller then the head of a pin
• Molecular sized motors could assemble complex structures

such as electronic circuits.
• Natural protein motors in living cells cause muscle

contractions
• Took double helix DNA structure, which usually floats with

its arms open
• Arms open and close by adding or subtracting another

DNA strand
• Pair of dye molecules to witness motion
• Significant is that we can induce motion at the molecular

level

State of the Art
– Breaking DES Using Molecular Computer (Data

Encryption Standard)
• Method of encrypting 64-bit messages with a 56-bit key
• Used extensively in US
• Using special purpose electronic computer and differential

cryptanalysis DES can be found in several days.
• However, would require 2^43 examples of encrypted and

decrypted messages (plain text/cipher text pairs) and
would slow down by a factor of 256 if key was increased to
64bits.

• Could be solved using Adleman’s original technique.
Would take 4 months but need only a single plain-
text/cipher-text pair or an example of cipher text with
several plain text candidates to be successful.

• + they could do it using less then a gram of DNA.

State of the Art
– Olympus Optical Co. – First practical

DNA Computer
• Tokyo (July 3rd, 2002)
• Olympus Optical Co. Ltd.
• First commercially practical DNA computer
• Specializes in gene analysis
• Akira Toyama, an assistant prof at Tokyo

University
• Standard gene analysis approach very time

consuming (3 days)
• Now done in 6hrs
• Joint project called NovousGene Inc. spec

in genome informatics
• Two sections –

– Molecular Calculation component
» DNA combination of molecules
» Implements chemical reactions
» Searches
» Pulls out right DNA results

– Electronic Calculation component
» Executes processing programs
» Analysis these results

• Available for commercial use by
researchers by 2003 sometime

State of the Art

– Israel’s First DNA computer
• Trillion could fit in a test tube
• Billions of ops/sec 99.8% accuracy
• First programmable autonomous computing

machine
• Input, output, software, and hardware all made of

biomolecules
• DNA comp inside cells to monitor cell vitals.

Making DNA Computers Error
Resistant

• DNA computers are Not ERROR Free!
• DNA calculations fall into 3 basic classes

1. Decreasing Volume (# strands are reduced
with each step)

2. Constant Volume (# strands constant
throughout all steps)

3. Mixed Algorithms

Making DNA Computers Error
Resistant

• Aldeman and Lipton are even more special. Each
strand is “good” or “bad”

• Good strands encode a solution
• Bad strands do not
• If a good strand is damaged or lost the algorithm

fails
• If a bad strand is not removed and many are left at

end then the algorithm fails

Making DNA Computers Error
Resistant

Two sources of errors
1) Every operation can cause an error (extraction)

– extraction is not perfect usually 95% strands match the
desired pattern

– In addition, strands that do not match will sometimes be
removed anyways. Rates typically 1 part in 10^6

2) DNA has ½ life, and decays at a finite rate. If an
algorithm takes months good solutions will
dissolve away.

Making DNA Computers Error
Resistant

• First main result - Map Adleman’s and
Lipton’s algorithms into a new algorithms
that are constant volume. These new
algorithms are highly resistant to errors.

• Also they will run in same number of steps
approximately, the time penalty is small.

Making DNA Computers Error
Resistant

Assume the following following:
• 2^n strands of DNA at start
• only one is good
• Hence worst case
• The algorithm consists of s extraction steps
• Good strand always matches, bad ones may or

may not
• A Type I error (or false negative) error occurs

when a strand is not correctly extracted
• Let p be the probability that this happens (Type I

error)

Making DNA Computers Error
Resistant

• A Type II error (or false positive) error
occurs when a strand should NOT be
extracted but is anyways.

• Let q be the probability that this happens
(Type II error)

• Typical values of p = 0.95 and q = 10^-6

Making DNA Computers Error
Resistant

• If x is a bad strand, let M(x) be the number of
extractions for which it does NOT match the
pattern. M(x) is at least 1

• Assume that computation decreases its volume
at a uniform rate.

• Also, assume that every step reduces volume at
uniform rate

• Thus we have 2^n strands and s steps therefore
volume goes down by a factor of 2 every s/n
steps. If s=900 and n=60 then every 15 steps
DNA volume halves.

Making DNA Computers Error
Resistant

Modifications to the algorithms come here
(twofold)

1) every s/n steps double the amount of
DNA (PCR)

– addition in cost to time is small
– even if PCR process is slow, only occurs s/n

steps (therefore small percentage of total
time).

Making DNA Computers Error
Resistant

2) modify “Final Detect Step”.
• Before we assume that ideally one strand remains
• Replace detect step
• Instead we remove a strand and sequence it
• Check if it’s a solution if so then we are done
• If not try again with another strand
• Try m times, if we fail then no solution is found

Making DNA Computers Error
Resistant

Now the algorithms can fail in 2 ways
1) no good strands exist (there is no

solution)
2) There might be good strands but there

are so many bad strands that the
probability that the final step gets a
solution is small.

Making DNA Computers Error
Resistant

• Leads to the following: Let Ps be the
Survival Probability, the probability that a
good strand is left in tube

• Let Pr be the Selection Probability, the
probability that at least δ (small delta)
strands are good

Making DNA Computers Error
Resistant

• Pr and Ps together determine success of new
algorithm

• We use them to calculate the upper bound of
algorithm failure

• failure at most is:
• 1 – Ps + Ps(1 – Pr) + PsPr(1 – δ)^m

• remember m is repeated detects and δ number
of good strands

• THUS, the probability that the algorithm works
is:

• PsPr(1 – δ)^m

Making DNA Computers Error
Resistant

• If we can bind Ps and Pr we get more
control over our success

Making DNA Computers Error
Resistant

• First consider Ps:
– without PCR the probability that a good strand survives is p^s (s

extractions performed)
– but every s/n steps survivors are doubled (both good and bad).
– This is an example of branching process. Famous for modeling

nuclear reactions and spread of diseases.
– Let r be the probability that a single good strand survives to the next

PCR step. i.e. r = p^(s/n). If it survives then we have 2 good ones.
Therefore greater chance for future extractions.

– Following Feller (the guy behind the branching process). What we want
to look at is the extinction probability ζ (small zeta). For this particular
branding process it is the smallest positive solution to the equation.

– 1 – r + rζ^2 = ζ
– simplify this down to : ζ = 1/r -1. The probability Ps, that some good

strand survives is 1 – ζ. Therefore:
– Ps = 1 – ζ = 2 – 1/r = 2 – p-s/n

Making DNA Computers Error
Resistant

– Table 1.0 shows some
example results. Table
shows that some good
strands survive the
entire series of steps.

Making DNA Computers Error
Resistant

– Now must show that Pr is large. i.e. that it is
likely that the ratio of good strands to bad is
not too small.

– We can ignore PCR since we interested in
ratios only. And the PCR does not effect
ratios whatsoever

Making DNA Computers Error
Resistant

• Considering Pr:
– Recall, bad strand x does NOT match pattern of an extract for M(x) extractions.

Therefore bad x will survive M(x) Type II errors. Thus at most bad strands
survive:

– Σ q^M(x)
x

– Remember q = probability that Type II error occurs.
– We simplify this sum to by defining Mk as the number of bad strands x that have

M(x)=k.
– The above is then equal to:
– M1q + M2q^2 + M3q^3 + …
– Missing terms insignificant since q = 10^-6 (very small) and there are at most

2^70 strands
– Key point here is that M1q + M2q^2 + M3q^3 determines how long final detect

step takes. Let this quantity be l. Then detect step would require O(l) steps.
– We would want to minimize this. Without further assumptions l can be large.

Making DNA Computers Error
Resistant

– Points in our favor here:
• Practical problems – few bad strands meet many

solution constraints. Typically M(x) is very large
for bad strands. Even if M1=10^8 and M2=10^14
and M3=10^20 l is only 300.

• We can restructure computation to reduce l. If l is
large just repeat whole computation then all M(x)
values are doubled.

• Transform problem to reduce the number of
“almost solutions” (reduce l) related with
Probabilistic Checkable Proofs.

Making DNA Computers Error
Resistant

• The above works for algorithms where
there is a reduction in volume (and we
take advantage of it to bring it up). This
wouldn’t work for constant volume
algorithms. The physical materials used
would double after every PCR. Quickly we
would find that there is too much physical
material to handle.

• Here another technique needed!

Making DNA Computers Error
Resistant

• Double Encoding of data
• Here the idea is to use only ½ the length

of the available DNA strand. Here the
binary bit is encoded twice. Increasing the
chances of it being found when we detect
and extract.

Conclusion
• All of the original papers

(mostly in PDF format)
can be found on my
website at

• www.ucalgary.ca/~omair/
cpsc60173/Presentation

• Also, a small summary
will be provided of each
article and link posted.

Omair Quraishi CPSC 601.73 www.cpsc.ucalgary.ca/~omair/cpsc60173/Presentation

http://www.ucalgary.ca/~omair/cpsc60173/Presentation
http://www.ucalgary.ca/~omair/cpsc60173/Presentation
http://www.ucalgary.ca/~omair/cpsc60173/Presentation
http://www.ucalgary.ca/~omair/cpsc60173/Presentation
http://www.cpsc.ucalgary.ca/~omair/cpsc60173/Presentation

	DNA Computing
	Interesting Facts
	Interesting Facts
	Interesting Facts
	Leonard M. Adleman
	Richard J. Lipton
	NP Complete Problems
	NP Complete Problems
	Example: Genetic Checkmate
	The Knight Problem
	The Knight Problem
	The Knight Problem
	The Knight Problem
	The Knight Problem
	The Knight Problem
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem – RNA Library
	The Knight Problem - Algorithm
	The Knight Problem - Algorithm
	The Knight Problem
	Knight Problem
	State of the Art
	State of the Art
	State of the Art
	State of the Art
	State of the Art
	State of the Art
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Making DNA Computers Error Resistant
	Conclusion

