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Interesting Facts

• DNA molecule is 1.7 
meters long

• Stretch out all the 
DNA in your cells and 
you could reach the 
moon 6000 times!



Interesting Facts

• DNA is the basic 
medium of 
information storage 
for all living cells.  It 
has contained and 
transmitted the data 
of life for billions of 
years 



Interesting Facts
• Roughly 10 trillion DNA 

molecules could fit into a 
space the size of a 
marble.  Since all these 
molecules can process 
data simultaneously, you 
could theoretically have 
10 trillion calculations 
going on in a small space 
at once 



Leonard M. Adleman
• In 1994, Leonard Adleman took a giant 

step towards a different kind of 
chemical or artificial biochemical 
computer. He used fragments of DNA 
to compute the solution to a complex 
graph theory problem. Adleman's
method utilizes sequences of DNA's 
molecular subunits to represent 
vertices of a network or `"graph". 
Thus, combinations of these 
sequences formed randomly by the 
massively parallel action of 
biochemical reactions in test tubes 
described random paths through the 
graph. Using the tools of biochemistry, 
Adleman was able to extract the 
correct answer to the graph theory 
problem out of the many random paths 
represented by the product DNA 
strands.



Richard J. Lipton 

• Generalized to Satisfiability Problems
– Problems that are NP Complete
– A hard NP problem is one in which the time 

required for algorithms to find a solution 
increases exponentially with the number of 
variables involved. (In an easy NP problem, 
the algorithm running time increases in 
proportion to the number of variables.) 



NP Complete Problems

• A hard NP problem can eat up a lot of computer 
cycles if carried out by brute force. For example, 
the Hamilton path problem —commonly known 
as the traveling salesman problem — is a hard 
NP problem. If there are N cities in a Hamilton 
path problem, there are N!/2 possible paths, 
where N! is N factorial, which is the multiplication 
of every integer from 1 to N — for example, 4!= 
1 x 2 x 3 x 4. 



NP Complete Problems
• As the number of cities grows, 

the number of possible path 
combinations soars. For 
example, if there are nine 
cities, there are 180,000 
possible paths. Eleven cities 
would have 19.8 million paths, 
13 cities would have about 3 
billion paths, and 17 cities 
would have about 200 trillion 
paths. For larger and larger 
numbers of cities, brute force 
attempts to calculate all paths 
would quickly overwhelm even 
a supercomputer. 



Example: Genetic Checkmate

• Princeton University 
(Dec 3, 1999)

• Using DNA 
Computing 
techniques solved a 
simple Knight 
Problem



The Knight Problem

Generally what configurations of knights 
can one place on an n x n chess board 
such that no knight is attacking any other 
knight on the board?  



The Knight Problem

• Made use of an 10-bit RNA library
• Applied the problem to a 3x3 chessboard 

as a 9-bit instance of the problem.
• A true or “1” value represented by 

presence of a knight at position a-i
• Whereas false or “0” represents the 

absence of a knight at that position.



The Knight Problem
• we represent the problem as follows (∧, ‘‘and’’; ∨, ‘‘or’’):
� ((¬h ∧ ¬f ) ∨ ¬a) ∧ ((¬g ∧ ¬i) ∨¬b) ∧ ((¬d ∧ ¬h) ∨ ¬c) ∧
� ((¬c ∧ ¬i) ∨ ¬d) ∧ ((¬a ∧ ¬g) ∨ ¬f ) ∧ ((¬b ∧ ¬f ) ∨ ¬g) ∧
� ((¬a ∧ ¬c) ∨ ¬h) ∧((¬d ∧ ¬b) ∨ ¬i).
• In this particular example, this simplifies to
� ((¬h ∧ ¬f ) ∨¬a) ∧ ((¬g ∧ ¬i) ∨¬b) ∧((¬d ∧ ¬h) ∨¬c)∧
� ((¬c ∧ ¬i) ∨¬d) ∧((¬a ∧ ¬g) ∨¬f ).
• This reduces the number of operations that one has to perform 



The Knight Problem
• We are already familiar with the operations we are 

capable of performing on DNA namely:
• merge(N1, N2) = N
• N = duplicate(N1)
• detect(N)
• separate/extract

– N ← +(N, w)
– N ← -(N, w)

• length seperate
– N ← (N, ≤ n)

• position separate
– N ← B(N1, w)
– N ← E(N1, w)



The Knight Problem

• In addition this particular problem was 
solved using RNA rather then DNA

• RNA was chosen because it is better 
suited for a destruct algorithm

• using Ribonuclease (RNase) H digestion, 
a destructive algorithm that would 
hydrolyze RNA strands that did not fit the 
constraints of a chosen problem 



The Knight Problem
– RNA’s 2’ hydroxyl group makes it more prone to hydrolysis
– RNA strands can be marked for destruction by introducing complementary DNA oligonucleotides
– RNase H serves as a “universal RNA restriction enzyme”.
– Another way to describe:
– So, if we want to destroy a string containing 0 on position a, we add a complementary DNA sequence that 

sticks to the targeted RNA sequence, and afterwards we introduce this RNase H enzyme to “clean” the 
solution.

• RNase H digestions destroyed the RNA strand of RNA DNA hybrids marked by hybridization of 
the pool RNA to the complementary bit oligonucleotides shown in Table 2.



The Knight Problem – RNA Library

• Prepared as 2 halves 
using mix and split 
phosphoramidite
chemistry with 
sequences shown on 
Table 1.



The Knight Problem – RNA Library

• Prepared as 2 halves 
using mix and split 
phosphoramidite
chemistry with 
sequences



The Knight Problem – RNA Library

• To build the library three 
criteria were used
1. Each bit encoding must be 

fundamentally different.  
Hence sequences were 
chosen to maximize the 
Hamming Distance 
between different library 
strands.  (no more than 5 
matches over 20-nt 
windows, both within and 
between all 2^10 possible 
strands). 



The Knight Problem – RNA Library

• To build the library three 
criteria were used
2. Strands biased to avoid 

secondary structure, each 
bit would be equally 
accessible to the enzymes 
and oligonucleotides.  
Accomplished using 3 letter 
alphabet, A,C, and U for 
bits and spacers.  
Eliminating potential G-C 
and G-U pairs. 



The Knight Problem – RNA Library

• To build the library three 
criteria were used
3. The strands would avoid 

hybridization to themselves 
or any other library strands 
by more then seven 
consecutive base pairs.  
Otherwise this would 
interfere to operate on RNA 
strands by making regions 
inaccessible to reagents. 



The Knight Problem – RNA Library

• To satisfy all combo, 
PERMUTE (a computer 
program) was used to 
generate random 
nucleotide combos until 
all three criteria were met.

• Prefix and  Suffix provide 
PCR primer binding sites.  
Table 1.0 shows 
sequences.

• Library was physically 
built using a mix and split 
strategy.



The Knight Problem – RNA Library
Mix and Split

• Bit n set to 0 and spacer n synthesized 
on one column.

• Bit n set to 1 and spacer n synthesized 
on the other column.

• These were mixed together
• Next variable position similarly 

created.
• In the end 2^10 (1024) library strands 

were created (all possible solutions)
• Prefix and suffix used to verify 

degeneracy of the DNA pool.
• RNase H digestions destroyed the 

RNA strand of RNA DNA hybrids 
marked by hybridization of the pool 
RNA to the complementary bit 
oligonucleotides shown in Table 2. 

• PCR product cloned directly using 
PCR



The Knight Problem - Algorithm
– Initially we have all solutions (1024)
– Each string has form x1,…,xn
– Where xi = 1 or 0
– x1 =a, x2=b, …, x9=i (this is our mapping)
– destroy strings that fail to satisfy the first clause
– ((¬h ∧ ¬f ) ∨ ¬a) as follows:

i) Execute OR clause and divide the library into two 
halves.  In one test tube, we select those strands that 
contain a 1 at position ‘a’ by annealing DNA bit 
oligonucleotide a0 to the library.  Hence digesting 
those strands with position ‘a’ set to 0 (thereby setting 
bit at position ‘a’ to 1).
Simultaneously, destroy any 1’s at those bit positions 
that must be set to 0 to full the clause (bits ‘f’ and ‘h’ in 
this case).
In the other test tube we anneal DNA bit 
oligonucleotide a1 to perform a mirror operation 
setting bit position ‘a’ to 0.

ii) Undigested molecules are recovered and reverse 
transcribed.  Contents of both tubes are mixed and 
amplified.  
Library is split again to execute the next or clause..



The Knight Problem - Algorithm
• Bit Shuffling

– Recombination likely to occur during PCR amp of heterogeneous 
target sequences.  Especially since several stretches are 
shared.

– 25 cycles of PCR
– 20 clones randomly chosen
– 40% the result of bit shuffling
– Bit shuffling was a serious problem
– 15 cycles of PCR done
– 20 random clones chosen
– No bit shuffling found
– Therefore High proportion of incompletely extended strands 

annealing to heterogeneous target sequences.  Fixed by 
reducing PCR cycles.



The Knight Problem

• Readout Methods
– Multiplex Linear PCR
– Creates a bar code for each strand.  



Knight Problem

• RNA Solutions
– 43 Clones Randomly 

chosen
– 42 Represented a 

Solution
– 127 Knights on 43 

Boards and only on 
knight had an 
unacceptable position.

– 97.7% success rate 
effectively.



State of the Art

• Interdisciplinary field, 
includes molecular 
biology, chemistry, 
computer science, 
mathematics 



State of the Art
– End to Disease?

• Most research on DNA 
processors is being done 
by biotech companies 
hoping to cash in on recent 
breakthroughs on human 
genome

• Microprocessor chips –
contain fragments of DNA 
in place of electrical 
circuitry

• Contain array of specific 
genetic info

• These arrays called 
microarrays

• Can compare chip to real 
human DNA to see how 
human DNA changes when 
it becomes cancerous or is 
afflicted with a virus



State of the Art
– Micro Factories

• Motorized tweezers 1000x smaller then the head of a pin
• Molecular sized motors could assemble complex structures 

such as electronic circuits.
• Natural protein motors in living cells cause muscle 

contractions
• Took double helix DNA structure, which usually floats with 

its arms open
• Arms open and close by adding or subtracting another 

DNA strand
• Pair of dye molecules to witness motion
• Significant is that we can induce motion at the molecular 

level



State of the Art
– Breaking DES Using Molecular Computer (Data 

Encryption Standard)
• Method of encrypting 64-bit messages with a 56-bit key
• Used extensively in US
• Using special purpose electronic computer and differential 

cryptanalysis DES can be found in several days. 
• However, would require 2^43 examples of encrypted and 

decrypted messages (plain text/cipher text pairs) and 
would slow down by a factor of 256 if key was increased to 
64bits.  

• Could be solved using Adleman’s original technique.  
Would take 4 months but need only a single plain-
text/cipher-text pair or an example of cipher text with 
several plain text candidates to be successful.

• + they could do it using less then a gram of DNA.



State of the Art
– Olympus Optical Co.  – First practical 

DNA Computer
• Tokyo (July 3rd, 2002)
• Olympus Optical Co. Ltd.
• First commercially practical DNA computer
• Specializes in gene analysis
• Akira Toyama, an assistant prof at Tokyo 

University
• Standard gene analysis approach very time 

consuming (3 days)
• Now done in 6hrs
• Joint project called NovousGene Inc. spec 

in genome informatics
• Two sections –

– Molecular Calculation component
» DNA combination of molecules
» Implements chemical reactions
» Searches
» Pulls out right DNA results

– Electronic Calculation component
» Executes processing programs
» Analysis these results

• Available for commercial use by 
researchers by 2003 sometime



State of the Art

– Israel’s First DNA computer
• Trillion could fit in a test tube
• Billions of ops/sec 99.8% accuracy
• First programmable autonomous computing 

machine
• Input, output, software, and hardware all made of 

biomolecules
• DNA comp inside cells to monitor cell vitals.



Making DNA Computers Error 
Resistant

• DNA computers are Not ERROR Free!
• DNA calculations fall into 3 basic classes

1. Decreasing Volume (# strands are reduced 
with each step)

2. Constant Volume (# strands constant 
throughout all steps)

3. Mixed Algorithms



Making DNA Computers Error 
Resistant

• Aldeman and Lipton are even more special.  Each 
strand is “good” or “bad”

• Good strands encode a solution
• Bad strands do not
• If a good strand is damaged or lost the algorithm 

fails
• If a bad strand is not removed and many are left at 

end then the algorithm fails



Making DNA Computers Error 
Resistant

Two sources of errors
1) Every operation can cause an error (extraction)

– extraction is not perfect usually 95% strands match the 
desired pattern

– In addition, strands that do not match will sometimes be 
removed anyways.  Rates typically 1 part in 10^6

2) DNA has ½ life, and decays at a finite rate.  If an 
algorithm takes months good solutions will 
dissolve away.



Making DNA Computers Error 
Resistant

• First main result - Map Adleman’s and 
Lipton’s algorithms into a new algorithms 
that are constant volume.  These new 
algorithms are highly resistant to errors.

• Also they will run in same number of steps 
approximately, the time penalty is small.



Making DNA Computers Error 
Resistant

Assume the following following:
• 2^n strands of DNA at start
• only one is good
• Hence worst case
• The algorithm consists of s extraction steps
• Good strand always matches, bad ones may or 

may not
• A Type I error (or false negative) error occurs 

when a strand is not correctly extracted
• Let p be the probability that this happens (Type I 

error)



Making DNA Computers Error 
Resistant

• A Type II error (or false positive) error 
occurs when a strand should NOT be 
extracted but is anyways.

• Let q be the probability that this happens   
(Type II error)

• Typical values of p = 0.95 and q = 10^-6



Making DNA Computers Error 
Resistant

• If x is a bad strand, let M(x) be the number of 
extractions for which it does NOT match the 
pattern.  M(x) is at least 1

• Assume that computation decreases its volume 
at a uniform rate.

• Also, assume that every step reduces volume at 
uniform rate

• Thus we have 2^n strands and s steps therefore 
volume goes down by a factor of 2 every s/n
steps.  If s=900 and n=60 then every 15 steps 
DNA volume halves. 



Making DNA Computers Error 
Resistant

Modifications to the algorithms come here 
(twofold)

1) every s/n steps double the amount of 
DNA (PCR)

– addition in cost to time is small
– even if PCR process is slow, only occurs s/n

steps (therefore small percentage of total 
time).



Making DNA Computers Error 
Resistant

2) modify “Final Detect Step”.
• Before we assume that ideally one strand remains
• Replace detect step
• Instead we remove a strand and sequence it
• Check if it’s a solution if so then we are done
• If not try again with another strand
• Try m times, if we fail then no solution is found



Making DNA Computers Error 
Resistant

Now the algorithms can fail in 2 ways
1) no good strands exist (there is no 

solution)
2) There might be good strands but there 

are so many bad strands that the 
probability that the final step gets a 
solution is small.



Making DNA Computers Error 
Resistant

• Leads to the following: Let Ps be the 
Survival Probability, the probability that a 
good strand is left in tube

• Let Pr be the Selection Probability, the 
probability that at least δ (small delta) 
strands are good



Making DNA Computers Error 
Resistant

• Pr and Ps together determine success of new 
algorithm

• We use them to calculate the upper bound of 
algorithm failure

• failure at most is: 
• 1 – Ps + Ps(1 – Pr) + PsPr(1 – δ)^m

• remember m is repeated detects and δ number 
of good strands

• THUS, the probability that the algorithm works 
is: 

• PsPr(1 – δ)^m



Making DNA Computers Error 
Resistant

• If we can bind Ps and Pr we get more 
control over our success



Making DNA Computers Error 
Resistant

• First consider Ps:
– without PCR the probability that a good strand survives is p^s (s 

extractions performed)
– but every s/n steps survivors are doubled (both good and bad).
– This is an example of branching process.  Famous for modeling 

nuclear reactions and spread of diseases.
– Let r be the probability that a single good strand survives to the next 

PCR step.  i.e. r = p^(s/n).  If it survives then we have 2 good ones.  
Therefore greater chance for future extractions.

– Following Feller (the guy behind the branching process).  What we want 
to look at is the extinction probability ζ (small zeta).  For this particular 
branding process it is the smallest positive solution to the equation.

– 1 – r + rζ^2 = ζ
– simplify this down to : ζ = 1/r -1. The probability Ps, that some good 

strand survives is 1 – ζ.  Therefore:
– Ps = 1 – ζ = 2 – 1/r = 2 – p-s/n



Making DNA Computers Error 
Resistant

– Table 1.0 shows some 
example results. Table 
shows that some good 
strands survive the 
entire series of steps.



Making DNA Computers Error 
Resistant

– Now must show that Pr is large.  i.e. that it is 
likely that the ratio of good strands to bad is 
not too small.

– We can ignore PCR since we interested in 
ratios only.  And the PCR does not effect 
ratios whatsoever



Making DNA Computers Error 
Resistant

• Considering Pr:
– Recall, bad strand x does NOT match pattern of an extract for M(x) extractions.  

Therefore bad x will survive M(x) Type II errors.  Thus at most bad strands 
survive:

– Σ q^M(x) 
x

– Remember q = probability that Type II error occurs.
– We simplify this sum to by defining Mk as the number of bad strands x that have 

M(x)=k.
– The above is then equal to:
– M1q + M2q^2 + M3q^3 + …
– Missing terms insignificant since q = 10^-6 (very small) and there are at most 

2^70 strands
– Key point here is that M1q + M2q^2 + M3q^3 determines how long final detect 

step takes.  Let this quantity be l.  Then detect step would require O(l) steps.
– We would want to minimize this.  Without further assumptions l can be large.



Making DNA Computers Error 
Resistant

– Points in our favor here:
• Practical problems – few bad strands meet many 

solution constraints.  Typically M(x) is very large 
for bad strands.  Even if M1=10^8 and M2=10^14
and M3=10^20 l is only 300.

• We can restructure computation to reduce l. If l is 
large just repeat whole computation then all M(x) 
values are doubled.

• Transform problem to reduce the number of 
“almost solutions” (reduce l) related with 
Probabilistic Checkable Proofs.



Making DNA Computers Error 
Resistant

• The above works for algorithms where 
there is a reduction in volume (and we 
take advantage of it to bring it up).  This 
wouldn’t work for constant volume 
algorithms.  The physical materials used 
would double after every PCR.  Quickly we 
would find that there is too much physical 
material to handle.

• Here another technique needed!



Making DNA Computers Error 
Resistant

• Double Encoding of data
• Here the idea is to use only ½ the length 

of the available DNA strand.  Here the 
binary bit is encoded twice.  Increasing the 
chances of it being found when we detect 
and extract.



Conclusion
• All of the original papers 

(mostly in PDF format) 
can be found on my 
website at

• www.ucalgary.ca/~omair/
cpsc60173/Presentation

• Also, a small summary 
will be provided of each 
article and link posted.
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