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Adleman’s Experiments

 [eonard Adleman was able to use encoded DNA to solve
the Hamiltonian Path for a single-solution 7-node graph.

e The drawbacks to using DNA as a viable computational
device mainly deal with the amount of time required to

actually analyze and determine the solution from a test
tube of DNA.

 For Adleman’s experiment, oligonucleotides of length 20
are required to encode the vertices and edges of the graph.

e Due to the nature of DNA’s 4-base language, this allowed
for 4?0 different combinations.

« Even longer oligonucleotides would be required for larger
graphs.
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Defining a Rule Set

* Given the nature of DNA, we can easily determine a set of
rules to operate on DNA.

* Defining a Rule Set allows for “programming” the DNA,
much like programming on a conventional computer.

e The rule set assumes the following:

— DNA exists in a test tube.

— DNA is in single stranded form.
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Operation: Merge

« Merge merges two test tubes of DNA to form a single test
tube.

* (Quven test tubes N, and N, we can merge the two to form a

single test tube N such that N consists of all the elements
in N, U N,.

 Formal Definition:

— N =merge(N,, N,)
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Operation: Amplify

« Amplify takes a test tube of DNA and duplicates it.

* (Quven test tube N, we duplicate it to form test tube N,
which 1s i1dentical to N;.

 Formal Definition:

— N =duplicate(N,)
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Operation: Detect

* Detect looks at a test tube of DNA and returns true 1f 1t has
at least a single strand of DNA 1n it, false otherwise.

* (@Gi1ven test tube N, detect returns ture 1f 1t contains at least a
single strand of DNA, else return false.

 Formal Definition:

— detect(N)
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Operation: Separate & Extract

» Separate separates the contents of a test tube of DNA based on some
subsequence of bases.

* (@iven a test tube N and a word w over the alphabet {A, C, G, T},
produce two tubes +(N, w) and —(N, w), where +(N, w) contains all
strands in N that contain the word w, and —(N, w) contains all strands
in N that do not contain the word w.

 Formal Definition:

— N < +(N, w)
— N< -(N,w)
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Operation: Length-Separate

» Length-Separate takes a test tube and separates 1t based on
the length of the sequences.

* (Given a test tube N and an integer n we produce a test tube
that contains all DNA strands with length less than or
equal to n.

 Formal Definition:

— N< (N, =n)

Biological Computation — CPSC 601.73 — Winter 2003 8 Christian Jacob, University of Calgary



Operation: Position-Separate

« Position-Separate takes a test tube and separates the
contents of a test tube of DNA based on some beginning or
ending sequence.

* (Qiven a test tube N, and a word w, produce the tube N
consisting of all strands 1n N, that begin/end with the word
w.

 Formal Definition:

- N < B(Nla W)
- N < E(Nla W)
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A Simple DNA Computation Example

From the given rules, we can now manipulate our
strands of DNA to get a desired result.

«  Here 1s an example DNA program that looks for DNA
strands that contain the subsequence AG and the
subsequence CT:

1. input(N)

2. N < +(N, AG)
3. N<+(N,CT)
4.  detect(N)
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An Explanation ...

1. 1nput(N)

— Input a test tube N containing single stranded sequences of DNA

2. N < +(N, AG)

- Extract all strands that contain the AG subsequence.

3. N < +N,CT)

- Extract all strands that contain the CT subsequence.

- Note that this is done to the test tube that has all AG subsequence strands extracted, so

the final result is a test tube which contains all strands with both the subsequence AG and
CT.

4. detect(N)

= Returns TRUE if the test tube has at least one strand of DNA in it, else returns FALSE.
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Back to Adelman’'s Experiment...

» Now that we have some simple rules at our disposal, we can easily create a
simple program to solve the Hamiltonian Path problem for a simple 7-node
graph as outlined by Adelman.
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The Program: 7-Node Hamilton-Path

1. 1nput(N)

P
2. N<B(N,s,) N

3. N<EN,s,) ©
6 VT

4. N < +(N, < 140)
5. fori= 1to 5 dobegin N < +(N,s;)end

6. detect(N)
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Explanation(T)

1. Input(N)
. Input a test tube N that contains all of the valid vertices and edges encoded in
the graph.

2. N<B(N,s,))

. Separate all sequences that begin with the starting node.

3. N<EN,s,)

. Further separate all sequences that end with the ending node.
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Explanation(IT)

5. N < (N, = 140)

. Further 1solate all strands that have a length of 140 nucleotides or less
(as there are 7 nodes and a 20 oligonucleotide encoding).

6. fori= 1to 5 dobegin N < +(N,s,)end

. Now separate all sequences that have the required nodes, thus giving us
our solution(s), if any.

7. detect(N)

. See i1f we actually have a solution within our test tube.
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Adding Memory - The Sticker Model

« In most computational models, we define a memory, which
allows us to store information for quick retrieval.

 DNA can be encoded to serve as memory through the use
of 1ts complementarity properties.

* We can directly correlate DNA memory to conventional
bit memory in computers through the use of the so called

“Sticker Model.”
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The Sticker Model

* We can define a single strand of DNA as being a memory
strand.

e This memory strand serves as the template from which we
can encode bits into.

* We then use complementary stickers to attach to this
template memory strand and encode our bits.
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* Consider the following strand of DNA.:

CCCC

GGGG

AAAA

TTTT

e This strand 1s divided into 4 distinct sub-strands.

« Each of these sub-strands has exactly one complementary

sub-strand as foll

OWS.

GGGG

CCCC

TTTT

AAAA
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* As adouble Helix, the DNA forms the following complex:

CCCC | GGGG | AAAA | TTTT
GGGG | CCCC | TTTT | AAAA

* [f we were to take each sub-strand as a bit position, we
could then encode binary bits into our memory strand.
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« Each time a sub-sequence sticker has attached to a sub-
sequence on the memory template, we say that the bit slot
1S on.

 If there 1s no sub-sequence sticker attached to a sub-
sequence on the memory template, then we say that the bit

slot 1s off.
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Some Memory Examples

* For example, 1f we wanted to encode the bit sequence 1001,

we would have:

CCCC

GGGG

AAAA

TTTT

GGGG

AAAA

* This 1s a direct coding of 1001 into the memory template.
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Disadvantages

» This is a rather good encoding, however, as we increase the size of our
memory, we have to ensure that our sub-strands have distinct
complements in order to be able to “set” and “clear” specific bits in our
memory.

* We have to ensure that the bounds between sub-sequences are also
distinct to prevent complementary stickers from annealing across
borders.

* The biological implications of this are rather difficult, as annealing
long strands of sub-sequences to a DNA template is very error-prone.
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Advantages

e The clear advantage is that we have a distinct memory
block that encodes bits.

« The differentiation between subsequences denoting
individual bits allows a natural border between encoding
sub-strands.

» Using one template strand as a memory block also allows
us to use 1ts complement as another memory block, thus
effectively doubling our capacity to store information.
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« Now that we have a memory structure, we can being to
migrate our rules to work on our memory strands.

* We can add new rules that allow us to program more into
our system.
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Operation: Separate

» Separate now deals with memory strands. It simply takes a test tube of

DNA memory strands and separates it based on what is turned on or
off.

* (@iven a test tube, N, and an integer i, we separate the tubes into +(N, 7)
which consists of all memory strands for which the i-¢4 sub-strand is
turned on (e.g. a sticker is attached to the i-t4 position on the memory
strand).

The —(N, i) tube contains all memory strands for which the it4 sub-
strand 1s turned off.

 Formal Definition:
~ N < +(N, i)
~ N< (N,
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Operation: Set

« Set simply sets a position on a memory position (1.€.. turns
it on 1f 1t 1s off) on a strand of DNA.

* Given a test tube, N, and an integer i, where 1<i <k (k1s
the length of the DNA memory strand), we set the i-th
position to on.

 Formal Definition:
— set(N, i)
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Operation: Clear

e Clear simply clears a position on a memory position (1.€..
turns 1t off if 1t 1s on) on a strand of DNA.

* Given a test tube, N, and an integer i, where 1=i <k (k1s
the length of the DNA memory strand), we clear the i-th
position to off.

 Formal Definition:
— clear(N, 1)
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Operation: Read

« Read simply reads a test tube, which has an 1solated
memory strand and determines what the encoding of that
strand 1s.

» Read also reports when there 1s no memory strand in the
test tube.

 Formal Definition:
— read(N)
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Defining a Library

» To effectively use the Sticker Model, we define a library
for input purposes.

* The library consists of a set of strands of DNA.

* Each strand of DNA 1n this library is divided into two
sections:

— an initial data input section, and

— a storage/output section.
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Library Setup

The formal notation for a library 1s as follows:

— (k, ]) library (where k and [ are integers, [ < k)

e krefers to the size of the memory strand.

« [refers to the length of the positions allowed for input data.

e The mitial setup of the memory strand is such that the first
[ positions are set with input data, and the last £ —/
positions are clear.

Biological Computation — CPSC 601.73 — Winter 2003 30 Christian Jacob, University of Calgary



A simple Example

* Consider the following encoding for a library:
(3, 2) library.

e This means we have a memory strand that 1s of size 3, and
has 2 positions allowed for input data.

* Thus the first 2 positions are used for input data, and the
final position 1s used for storage/input.
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A Quick Visualization

« Here 1s a visualization of this library:

CCCC | CCCC | CCCC

CCCC | GGGG | AAAA

GGGG | CCCC

CCCC | GGGG | AAAA
CCCC

CCCC | GGGG | CCCC

GGGG

Encoding: 000

Encoding: 110

Encoding: 010

Encoding: 100
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Memory Considerations

 From this visualization we see that we can achieve an
encoding of 2/ different kinds of memory complexes.

 We can formally define a memory complex as follows:
WOk

where w 1s the arbitrary binary sequence of length /, and 0O
represents the off state of the following -/ sequences on
the DNA memory strand.
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An Interesting Example: Minimal Set Cover

« Consider the following NP-complete problem:

— Minimal Set Cover

» Given a finite set S = {1, 2, ..., p} and a finite collection of subsets
{C, ..o, Cq} of S, we wish to find the smallest subset I C {1, 2, ..., ¢}

such that all of the points in S are covered by this subset:

U.. c=s.

 We can solve this problem by using the brute force method

of going through every single combination of the subsets
1Cys o C b

* We will use our rules to implement the same strategy using
our DNA system.
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Minimal Set Cover: Using DNA (I)

* The initial test tube N,will be a
(p+q, q) library.

e This basically means that our memory stick has p+q
positions to model the p points we want to cover and the g
subsets that we have 1n the problem.

e The g will be our data input positions, which are the g
subsets that we have in the problem.

 What we have 1s the first g positions are the data input
section, and the last p positions are our storage area.
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Minimal Set Cover: Using DNA (IT)

*  We encode all of the subsets that we have in our problem into the first
g positions of our DNA strand.

« The memory complexes in N, represent all possible subsets 7 of the set
{1,2, ..., q}.
» This set contains at least one potential solution to our problem.

» Each position in our g positions represents a single subset that is in our
problem.

» A position that is turned on represents inclusion of that set in the
solution.

*  We simply go through each of the possibilities for the g subsets in our
problem.
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Minimal Set Cover: Using DNA (III)

« The p positions represent the points that we have to cover,
one position for each point.

* The algorithm takes each set in g and checks which points
n p 1t covers.

e Then 1t sets that particular point position in p to on.

* Once all of the positions in p are turned on, we know that
we have a sequence of subset covers that covers all points.

 Then all we have to do 1s look at all solutions and
determine which one contains the smallest amount of
subset covers.
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Minimal Set Cover: But How is it Done?

* So far we have mapped each subset cover to a position and
each point to a position.

 However, each subset cover has a set of points, which 1t
COVeErs.

 How do we encode this into our algorithm?

 We do this by introducing a program specific rule, known
as cardinality.
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Definition: Cardinality of a Set

* The cardinality of a set, X, returns the number of elements
1n a set.

* Formally, we define cardinality as:
— card(X).

e From this we can determine what elements are 1n a
particular subset cover 1n terms of its position relative to
the points in p.

* Therefore, the elements in a subset C, where 1< i < g, are
denoted by C/, where 1< < card(C)).
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Minimal Set Cover: Checking Each Point

 Now that we can easily determine the elements within each
subset cover, we can proceed with the algorithm.

* We check each position 1n g and 1f 1t is turned on, we
simply see what points this subset covers.

* For each point that it covers, we set the corresponding
position 1n p to on.

* Once all positions in p have been turned on, then we have
a solution to the problem.
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Minimal Set Cover: The Program ...

N, 1s a (p+q, q) library.

fori=1tog
Separate +(N, i) and (N, 1)
forj =1 to card(C))
Set(+(N,, i), ¢ + C/)
N, <= merge((N,, i), -(N,, 7))

fori=g+1tog+p
N, < +(N,, i)
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Minimal Set Cover: Unraveling it All (T)

//Loop through all of the positions from 1 to g
fori=1togq

//Separate all of the on and off positions.

Separate +(N,, i) and (N, i)

//loop through all of the elements that the subset covers.
forj =1 to card(C))

//Set the appropriate position that this element covers in p.

Set(+(N,, i), g + C/)

//Now, merge both of the solutions back together.
N, <= merge(+(N, i), -(N_, 7))
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Minimal Set Cover: Unraveling it All (IT)

//Finally, we loop through all of the positions in p ...
fori=g+1tog+p

//... and separate all strands that have position i on.

N, < +(N,, i)

* The final N, contains only memory complexes, where each
of the p last substrands 1s on.

« That 1s, all these solutions cover the set S.
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Minimal Set Cover: Notes on DNA Computing

* In a sequential computation the amount of work 1s
enormous: for g = 100, we have to apply the procedure for
each of the 219 memory complexes.

* Things are different with DNA and the Sticker model:

— All memory complexes in N,, where the first substrand is on (that
is C, 1s one of the sets in the proposed cover of \S), are processed
simultaneously.

— The result is brought over to the next step.

— Here the memory complexes having the second substrand on are
processed simultaneously.

— Hence, only g steps are required, rather than 29 steps.
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Minimal Set Cover: Output of the Solution

 Now we have all of the potential solutions in one test tube,
we still have to determine the final solution.

« Note that the Minimal Set Cover problem finds the
smallest number of subsets that covers the entire set.

* In our test tube, we have all of the solutions that cover the
set, and one of these will have the smallest amount of
subsets.

* We therefore have to write a program to determine this.
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Minimal Set Cover: Finding the Solution ...

fori=0tog—1
forj=idownto 0
separate +(N;, i + 1) and «(N,, i + 1)
N,y <= merge(+(N, i+ 1), N, )
N, <-(N, i+ 1)

read(N,);
else if it was empty, read(N,);
else 1f it was empty, read(N,);
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Minimal Set Cover: Finding the Solution (2)

» The program takes each test tube and separates them based on number
of positions in g turned on.

e Thus for example, ...

— all memory strands with 1 position in g turned on are separated into one
test tube V,,

— all memory strands with 2 positions in g turned on are separated into one
test tube V,,

— etc.

* Once this is done, we simply read each tube starting with the smallest
number of subsets turned on to find a solution to our problem (of
which there may be many).
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Example: Extracting the Solution

e Minimal set cover:
extracting the (minimal set) solution

¢ g=4
* (5 and any combination of sets C,, C,, C, cover S.

* No combination of C,, C,, C, covers S.

* NO - { (19 3)9 (29 3)9 (394)9
(1,2,3),(1,3,4),(2,3,4),
(1,2,3,4)}
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Example: Extracting the Solution (2)

N, N, N, N, N,
(1,3), (2,3),
initial (3.4), empty empty empty empty
(13293)’ (29374)’
(1,2,3,4)

1=0 (2,3), (3.,4), (1,3), (1,2,3),
separate (2,3,4) (1,3,4), empty empty empty

on 1 (1,2,3,4)

1=1 (1,3), (1,3,4) (1,2,3),
separate (1,2,3,4) empty empty

on 2 (3,4) (273)7 (27394)

i=2 (1,2,3), empty
separate (1,2,3,4)

on 3 (1,3), (1,3.4),

(2,3), (2,3,4)
empty (3,4)

=3 (1,3),(2,3), | (1,2,3),(1,3.4), (1,2,3,4)
separate (3,4) (2,3,4)

on 4 empty empty
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Final Considerations

» The operations outlined above can be used to program more practical
solutions to other programs.

* One such area is in cryptography, where it 1s postulated that a DNA
system such as the one outlined is capable of breaking the common
DES (Data Encryption Standard) used in many cryptosystem.

» Usinga (579, 56) library, with 20 oligonucleotide length memory
strands, and an overall memory strand of 11,580 nucleotides, it is
estimated that one could break the DES with about 4 months of
laboratory work.
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