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AdlemanAdleman’’ss Experiments Experiments

• Leonard Adleman was able to use encoded DNA to solve
the Hamiltonian Path for a single-solution 7-node graph.

• The drawbacks to using DNA as a viable computational
device mainly deal with the amount of time required to
actually analyze and determine the solution from a test
tube of DNA.

• For Adleman’s experiment, oligonucleotides of length 20
are required to encode the vertices and edges of the graph.

• Due to the nature of DNA’s 4-base language, this allowed
for 420 different combinations.

• Even longer oligonucleotides would be required for larger
graphs.
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Defining a Rule SetDefining a Rule Set

• Given the nature of DNA, we can easily determine a set of
rules to operate on DNA.

• Defining a Rule Set allows for “programming” the DNA,
much like programming on a conventional computer.

• The rule set assumes the following:

– DNA exists in a test tube.

– DNA is in single stranded form.
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Operation: MergeOperation: Merge

• Merge merges two test tubes of DNA to form a single test
tube.

• Given test tubes N1 and N2 we can merge the two to form a
single test tube N such that N consists of all the elements
in N1 » N2.

• Formal Definition:

– N = merge(N1, N2)
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Operation: AmplifyOperation: Amplify

• Amplify takes a test tube of DNA and duplicates it.

• Given test tube N1 we duplicate it to form test tube N,
which is identical to N1.

• Formal Definition:

– N = duplicate(N1)
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Operation: DetectOperation: Detect

• Detect looks at a test tube of DNA and returns true if it has
at least a single strand of DNA in it, false otherwise.

• Given test tube N, detect returns ture if it contains at least a
single strand of DNA, else return false.

• Formal Definition:

– detect(N)
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Operation: Separate & ExtractOperation: Separate & Extract

• Separate separates the contents of a test tube of DNA based on some
subsequence of bases.

• Given a test tube N and a word w over the alphabet {A, C, G, T},
produce two tubes +(N, w) and –(N, w), where +(N, w) contains all
strands in N that contain the word w, and –(N, w) contains all strands
in N that do not contain the word w.

• Formal Definition:

– N  ¨  +(N, w)

– N ¨   -(N, w)
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Operation: LengthOperation: Length-Separate-Separate

• Length-Separate takes a test tube and separates it based on
the length of the sequences.

• Given a test tube N and an integer n we produce a test tube
that contains all DNA strands with length less than or
equal to n.

• Formal Definition:

– N ¨ (N, £ n)
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Operation: PositionOperation: Position-Separate-Separate

• Position-Separate takes a test tube and separates the
contents of a test tube of DNA based on some beginning or
ending sequence.

• Given a test tube N1 and a word w, produce the tube N
consisting of all strands in N1 that begin/end with the word
w.

• Formal Definition:

– N ¨ B(N1, w)

– N ¨ E(N1, w)
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A A SimpleSimple  DNA Computation ExampleDNA Computation Example

• From the given rules, we can now manipulate our
strands of DNA to get a desired result.

• Here is an example DNA program that looks for DNA
strands that contain the subsequence AG and the
subsequence CT:

1. input(N)
2. N ¨ +(N, AG)

3. N ¨ +(N, CT)

4. detect(N)
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An An Explanation Explanation ……

1. input(N) 
– Input a test tube N containing single stranded sequences of DNA

2. N ¨ +(N, AG)
– Extract all strands that contain the AG subsequence.

3. N ¨ +(N, CT)
– Extract all strands that contain the CT subsequence.

–  Note that this is done to the test tube that has all AG subsequence strands extracted, so
the final result is a test tube which contains all strands with both the subsequence AG and
CT.

4. detect(N)
– Returns TRUE if the test tube has at least one strand of DNA in it, else returns FALSE.



Christian Jacob, University of CalgaryBiological Computation — CPSC 601.73 — Winter 2003 12

Back to AdelmanBack to Adelman’’s Experiments Experiment……

• Now that we have some simple rules at our disposal, we can easily create a
simple program to solve the Hamiltonian Path problem for a simple 7-node
graph as outlined by Adelman.
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The The Program: 7-Node Hamilton-PathProgram: 7-Node Hamilton-Path

1. input(N)

2. N ¨ B(N, s0)

3. N ¨ E(N, s6)

4. N ¨ +(N, £ 140)

5. for i =  1 to 5 do begin N ¨ +(N, si) end

6. detect(N)
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Explanation(I)Explanation(I)

1. Input(N)
• Input a test tube N that contains all of the valid vertices and edges encoded in

the graph.

2. N ¨ B(N, s0)
• Separate all sequences that begin with the starting node.

3. N ¨ E(N, s6)
• Further separate all sequences that end with the ending node.
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Explanation(II)Explanation(II)

5. N ¨ (N, £ 140)
• Further isolate all strands that have a length of 140 nucleotides or less

(as there are 7 nodes and a 20 oligonucleotide encoding).

6. for i =  1 to 5 do begin N ¨ +(N, si) end
• Now separate all sequences that have the required nodes, thus giving us

our solution(s), if any.

7. detect(N)
• See if we actually have a solution within our test tube.
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Adding Memory Adding Memory –– The Sticker Model The Sticker Model

• In most computational models, we define a memory, which
allows us to store information for quick retrieval.

• DNA can be encoded to serve as memory through the use
of its complementarity properties.

• We can directly correlate DNA memory to conventional
bit memory in computers through the use of the so called
“Sticker Model.”
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The Sticker ModelThe Sticker Model

• We can define a single strand of DNA as being a memory
strand.

• This memory strand serves as the template from which we
can encode bits into.

• We then use complementary stickers to attach to this
template memory strand and encode our bits.
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How It How It Works Works (I)(I)

• Consider the following strand of DNA:

• This strand is divided into 4 distinct sub-strands.

• Each of these sub-strands has exactly one complementary
sub-strand as follows:

CCCC GGGG AAAA TTTT

GGGG CCCC TTTT AAAA
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How It Works (II)How It Works (II)

• As a double Helix, the DNA forms the following complex:

• If we were to take each sub-strand as a bit position, we
could then encode binary bits into our memory strand.

CCCC GGGG AAAA TTTT

GGGG CCCC TTTT AAAA
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How it Works (III)How it Works (III)

• Each time a sub-sequence sticker has attached to a sub-
sequence on the memory template, we say that the bit slot
is on.

• If there is no sub-sequence sticker attached to a sub-
sequence on the memory template, then we say that the bit
slot is off.
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Some Memory ExamplesSome Memory Examples

• For example, if we wanted to encode the bit sequence 1001,
we would have:

• This is a direct coding of 1001 into the memory template.

CCCC GGGG AAAA TTTT

GGGG AAAA
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DisadvantagesDisadvantages

• This is a rather good encoding, however, as we increase the size of our
memory, we have to ensure that our sub-strands have distinct
complements in order to be able to “set” and “clear” specific bits in our
memory.

• We have to ensure that the bounds between sub-sequences are also
distinct to prevent complementary stickers from annealing across
borders.

• The biological implications of this are rather difficult, as annealing
long strands of sub-sequences to a DNA template is very error-prone.
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AdvantagesAdvantages

• The clear advantage is that we have a distinct memory
block that encodes bits.

• The differentiation between subsequences denoting
individual bits allows a natural border between encoding
sub-strands.

• Using one template strand as a memory block also allows
us to use its complement as another memory block, thus
effectively doubling our capacity to store information.
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So now what?So now what?

• Now that we have a memory structure, we can being to
migrate our rules to work on our memory strands.

• We can add new rules that allow us to program more into
our system.
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Operation: SeparateOperation: Separate

• Separate now deals with memory strands.  It simply takes a test tube of
DNA memory strands and separates it based on what is turned on or
off.

• Given a test tube, N, and an integer i, we separate the tubes into +(N, i)
which consists of all memory strands for which the i-th sub-strand is
turned on (e.g. a sticker is attached to the i-th position on the memory
strand).
The  –(N, i) tube contains all memory strands for which the ith sub-
strand is turned off.

• Formal Definition:
– N ¨  +(N, i)

– N ¨  –(N, i)
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Operation: SetOperation: Set

• Set simply sets a position on a memory position (i.e.. turns
it on if it is off) on a strand of DNA.

• Given a test tube, N, and an integer i, where 1£ i £ k (k is
the length of the DNA memory strand), we set the i-th
position to on.

• Formal Definition:
– set(N, i)
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Operation: ClearOperation: Clear

• Clear simply clears a position on a memory position (i.e..
turns it off if it is on) on a strand of DNA.

• Given a test tube, N, and an integer i, where 1£ i £ k (k is
the length of the DNA memory strand), we clear the i-th
position to off.

• Formal Definition:
– clear(N, i)



Christian Jacob, University of CalgaryBiological Computation — CPSC 601.73 — Winter 2003 28

Operation: ReadOperation: Read

• Read simply reads a test tube, which has an isolated
memory strand and determines what the encoding of that
strand is.

• Read also reports when there is no memory strand in the
test tube.

• Formal Definition:
– read(N)
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Defining a LibraryDefining a Library

• To effectively use the Sticker Model, we define a library
for input purposes.

• The library consists of a set of strands of DNA.

• Each strand of DNA in this library is divided into two
sections:

– an initial data input section, and

– a storage/output section.
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Library SetupLibrary Setup

• The formal notation for a library is as follows:

– (k, l) library (where k and l are integers, l £ k )

• k refers to the size of the memory strand.

• l refers to the length of the positions allowed for input data.

• The initial setup of the memory strand is such that the first
l positions are set with input data, and the last k – l
positions are clear.
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A simple ExampleA simple Example

• Consider the following encoding for a library:

(3, 2) library.

• This means we have a memory strand that is of size 3, and
has 2 positions allowed for input data.

• Thus the first 2 positions are used for input data, and the
final position is used for storage/input.
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CCCC GGGG AAAA

GGGG CCCC

CCCC GGGG AAAA

CCCC

CCCC GGGG CCCC

GGGG

CCCC CCCC CCCC

A Quick VisualizationA Quick Visualization

• Here is a visualization of this library:

Encoding:  000

Encoding:  110

Encoding:  010

Encoding:  100
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Memory ConsiderationsMemory Considerations

• From this visualization we see that we can achieve an
encoding of 2l different kinds of memory complexes.

• We can formally define a memory complex as follows:  

w0k-l,

where w is the arbitrary binary sequence of length l, and 0
represents the off state of the following k-l sequences on
the DNA memory strand.
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An Interesting An Interesting Example: Minimal Set CoverExample: Minimal Set Cover

• Consider the following NP-complete problem:

– Minimal Set Cover
• Given a finite set S = {1, 2, …, p} and a finite collection of subsets

{C1, …, Cq} of S, we wish to find the smallest subset I Õ {1, 2, …, q}
such that all of the points in S are covered by this subset:

»i Œ I Ci = S.

• We can solve this problem by using the brute force method
of going through every single combination of the subsets
{C1, …, Cq}.

• We will use our rules to implement the same strategy using
our DNA system.
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Minimal Set Cover: Minimal Set Cover: Using DNA (I)Using DNA (I)

• The initial test tube N0 will be a

(p+q, q) library.

• This basically means that our memory stick has p+q
positions to model the p points we want to cover and the q
subsets that we have in the problem.

• The q will be our data input positions, which are the q
subsets that we have in the problem.

• What we have is the first q positions are the data input
section, and the last p positions are our storage area.
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Minimal Set Cover: Minimal Set Cover: Using DNA (II)Using DNA (II)

• We encode all of the subsets that we have in our problem into the first
q positions of our DNA strand.

• The memory complexes in N0 represent all possible subsets I of the set
{1, 2, …, q}.

• This set contains at least one potential solution to our problem.

• Each position in our q positions represents a single subset that is in our
problem.

• A position that is turned on represents inclusion of that set in the
solution.

• We simply go through each of the possibilities for the q subsets in our
problem.
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Minimal Set Cover: Minimal Set Cover: Using DNA (III)Using DNA (III)

• The p positions represent the points that we have to cover,
one position for each point.

• The algorithm takes each set in q and checks which points
in p it covers.

• Then it sets that particular point position in p to on.

• Once all of the positions in p are turned on, we know that
we have a sequence of subset covers that covers all points.

• Then all we have to do is look at all solutions and
determine which one contains the smallest amount of
subset covers.
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Minimal Set Cover: Minimal Set Cover: But How is it Done?But How is it Done?

• So far we have mapped each subset cover to a position and
each point to a position.

• However, each subset cover has a set of points, which it
covers.

• How do we encode this into our algorithm?

• We do this by introducing a program specific rule, known
as cardinality.
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Definition: Cardinality of a SetDefinition: Cardinality of a Set

• The cardinality of a set, X, returns the number of elements
in a set.

• Formally, we define cardinality as:
– card(X).

• From this we can determine what elements are in a
particular subset cover in terms of its position relative to
the points in p.

• Therefore, the elements in a subset Ci, where 1£ i £ q, are
denoted by Ci

j, where 1£ j £ card(Ci).
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Minimal Set Cover: Minimal Set Cover: Checking Checking EachEach  PointPoint

• Now that we can easily determine the elements within each
subset cover, we can proceed with the algorithm.

• We check each position in q and if it is turned on, we
simply see what points this subset covers.

• For each point that it covers, we set the corresponding
position in p to on.

• Once all positions in p have been turned on, then we have
a solution to the problem.
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Minimal Set Cover: Minimal Set Cover: The The Program Program ……

N0 is a (p+q, q) library.

for i = 1 to q
Separate +(No, i) and –(No, i)

for j = 1 to card(Ci)

Set(+(No, i), q + Ci
j)

No ¨ merge((No, i), -(No, i))

for i = q + 1 to q + p
No ¨ +(No, i)
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Minimal Set Cover: Minimal Set Cover: Unraveling it All (I)Unraveling it All (I)

//Loop through all of the positions from 1 to q

for i = 1 to q
//Separate all of the on and off positions.

Separate +(No, i) and –(No, i)

//loop through all of the elements that the subset covers.

for j = 1 to card(Ci)

//Set the appropriate position that this element covers in p.

Set(+(No, i), q + Ci
j)

//Now, merge both of the solutions back together.

No ¨ merge(+(No, i), -(No, i))
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Minimal Set Cover: Minimal Set Cover: Unraveling it All (II)Unraveling it All (II)

//Finally, we loop through all of the positions in p …

for i = q + 1 to q + p

//… and separate all strands that have position i on.

No ¨ +(No, i)

• The final N0 contains only memory complexes, where each
of the p last substrands is on.

• That is, all these solutions cover the set S.
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Minimal Set Cover: Notes on DNA ComputingMinimal Set Cover: Notes on DNA Computing

• In a sequential computation the amount of work is
enormous: for q = 100, we have to apply the procedure for
each of the 2100 memory complexes.

• Things are different with DNA and the Sticker model:

– All memory complexes in N0, where the first substrand is on (that
is C1 is one of the sets in the proposed cover of S), are processed
simultaneously.

– The result is brought over to the next step.

– Here the memory complexes having the second substrand on are
processed simultaneously.

– Hence, only q steps are required, rather than 2q steps.
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Minimal Set Cover: Minimal Set Cover: Output of the SolutionOutput of the Solution

• Now we have all of the potential solutions in one test tube,
we still have to determine the final solution.

• Note that the Minimal Set Cover problem finds the
smallest number of subsets that covers the entire set.

• In our test tube, we have all of the solutions that cover the
set, and one of these will have the smallest amount of
subsets.

• We therefore have to write a program to determine this.
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Minimal Set Cover: Minimal Set Cover: Finding the Finding the Solution Solution ……

for i = 0 to q – 1

for j = i down to 0

separate +(Nj, i + 1) and –(Nj, i + 1)
Nj+1 ¨ merge(+(Nj, i + 1), Nj+1)

Nj ¨ -(Nj, i + 1)

read(N1);

else if it was empty, read(N2);

else if it was empty, read(N3);

…
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Minimal Set Cover: Minimal Set Cover: Finding the Solution (Finding the Solution (2)2)

• The program takes each test tube and separates them based on number
of positions in q turned on.

• Thus for example, …

– all memory strands with 1 position in q turned on are separated into one
test tube N1,

– all memory strands with 2 positions in q turned on are separated into one
test tube N2,

– etc.

• Once this is done, we simply read each tube starting with the smallest
number of subsets turned on to find a solution to our problem (of
which there may be many).
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Example: Extracting the SolutionExample: Extracting the Solution

• Minimal set cover:
extracting the (minimal set) solution

• q = 4

• C3 and any combination of sets C1, C2, C4 cover S.

• No combination of C1, C2, C4 covers S.

• N0 = { (1, 3), (2, 3), (3,4),
    (1, 2, 3), (1, 3, 4), (2, 3, 4),
    (1, 2, 3, 4) }
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Example: Extracting the Solution (2)Example: Extracting the Solution (2)

(1,2,3,4)(1,2,3), (1,3,4),
(2,3,4)

(1,3), (2,3),
(3,4)

emptyempty

i = 3
separate

on 4

empty(1,2,3),
(1,2,3,4)

(1,3), (1,3,4),
(2,3), (2,3,4)

(3,4)empty

i = 2
separate

on 3

emptyempty
(1,2,3),
(1,2,3,4)

(1,3), (1,3,4)

(2,3), (2,3,4)(3,4)

i = 1
separate

on 2

emptyemptyempty
(1,3), (1,2,3),

(1,3,4),
(1,2,3,4)

(2,3), (3,4),
(2,3,4)

i = 0
separate

on 1

emptyemptyemptyempty
(1,3), (2,3),

(3,4),
(1,2,3), (2,3,4),

(1,2,3,4)

initial

N4N3N2N1N0
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Final ConsiderationsFinal Considerations

• The operations outlined above can be used to program more practical
solutions to other programs.

• One such area is in cryptography, where it is postulated that a DNA
system such as the one outlined is capable of breaking the common
DES (Data Encryption Standard) used in many cryptosystem.

• Using a (579, 56) library, with 20 oligonucleotide length memory
strands, and an overall memory strand of 11,580 nucleotides, it is
estimated that one could break the DES with about 4 months of
laboratory work.
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