Beginnings of Molecular Computing
&
Biological Mathematics

Christian Jacob
CPSC 601.73
23 January 2003

Biological Computation — CPSC 601.73 — Winter 2003 1 Christian Jacob, University of Calgary

Adleman’s Experiments

 [eonard Adleman was able to use encoded DNA to solve
the Hamiltonian Path for a single-solution 7-node graph.

e The drawbacks to using DNA as a viable computational
device mainly deal with the amount of time required to

actually analyze and determine the solution from a test
tube of DNA.

 For Adleman’s experiment, oligonucleotides of length 20
are required to encode the vertices and edges of the graph.

e Due to the nature of DNA’s 4-base language, this allowed
for 4?0 different combinations.

« Even longer oligonucleotides would be required for larger
graphs.

Biological Computation — CPSC 601.73 — Winter 2003 2 Christian Jacob, University of Calgary

Defining a Rule Set

* Given the nature of DNA, we can easily determine a set of
rules to operate on DNA.

* Defining a Rule Set allows for “programming” the DNA,
much like programming on a conventional computer.

e The rule set assumes the following:

— DNA exists in a test tube.

— DNA is in single stranded form.

Biological Computation — CPSC 601.73 — Winter 2003 3 Christian Jacob, University of Calgary

Operation: Merge

« Merge merges two test tubes of DNA to form a single test
tube.

* (Quven test tubes N, and N, we can merge the two to form a

single test tube N such that N consists of all the elements
in N, U N,.

 Formal Definition:

— N =merge(N,, N,)

Biological Computation — CPSC 601.73 — Winter 2003 4 Christian Jacob, University of Calgary

Operation: Amplify

« Amplify takes a test tube of DNA and duplicates it.

* (Quven test tube N, we duplicate it to form test tube N,
which 1s i1dentical to N;.

 Formal Definition:

— N =duplicate(N,)

Biological Computation — CPSC 601.73 — Winter 2003 5 Christian Jacob, University of Calgary

Operation: Detect

* Detect looks at a test tube of DNA and returns true 1f 1t has
at least a single strand of DNA 1n it, false otherwise.

* (@Gi1ven test tube N, detect returns ture 1f 1t contains at least a
single strand of DNA, else return false.

 Formal Definition:

— detect(N)

Biological Computation — CPSC 601.73 — Winter 2003 6 Christian Jacob, University of Calgary

Operation: Separate & Extract

» Separate separates the contents of a test tube of DNA based on some
subsequence of bases.

* (@iven a test tube N and a word w over the alphabet {A, C, G, T},
produce two tubes +(N, w) and —(N, w), where +(N, w) contains all
strands in N that contain the word w, and —(N, w) contains all strands
in N that do not contain the word w.

 Formal Definition:

— N < +(N, w)
— N< -(N,w)

Biological Computation — CPSC 601.73 — Winter 2003 7 Christian Jacob, University of Calgary

Operation: Length-Separate

» Length-Separate takes a test tube and separates 1t based on
the length of the sequences.

* (Given a test tube N and an integer n we produce a test tube
that contains all DNA strands with length less than or
equal to n.

 Formal Definition:

— N< (N, =n)

Biological Computation — CPSC 601.73 — Winter 2003 8 Christian Jacob, University of Calgary

Operation: Position-Separate

« Position-Separate takes a test tube and separates the
contents of a test tube of DNA based on some beginning or
ending sequence.

* (Qiven a test tube N, and a word w, produce the tube N
consisting of all strands 1n N, that begin/end with the word
w.

 Formal Definition:

- N < B(Nla W)
- N < E(Nla W)

Biological Computation — CPSC 601.73 — Winter 2003 9 Christian Jacob, University of Calgary

A Simple DNA Computation Example

From the given rules, we can now manipulate our
strands of DNA to get a desired result.

« Here 1s an example DNA program that looks for DNA
strands that contain the subsequence AG and the
subsequence CT:

1. input(N)

2. N < +(N, AG)
3. N<+(N,CT)
4. detect(N)

Biological Computation — CPSC 601.73 — Winter 2003 10 Christian Jacob, University of Calgary

An Explanation ...

1. 1nput(N)

— Input a test tube N containing single stranded sequences of DNA

2. N < +(N, AG)

- Extract all strands that contain the AG subsequence.

3. N < +N,CT)

- Extract all strands that contain the CT subsequence.

- Note that this is done to the test tube that has all AG subsequence strands extracted, so

the final result is a test tube which contains all strands with both the subsequence AG and
CT.

4. detect(N)

= Returns TRUE if the test tube has at least one strand of DNA in it, else returns FALSE.

Biological Computation — CPSC 601.73 — Winter 2003 11 Christian Jacob, University of Calgary

Back to Adelman’'s Experiment...

» Now that we have some simple rules at our disposal, we can easily create a
simple program to solve the Hamiltonian Path problem for a simple 7-node
graph as outlined by Adelman.

@{ ®\\®
|

YA

Biological Computation — CPSC 601.73 — Winter 2003 12 Christian Jacob, University of Calgary

The Program: 7-Node Hamilton-Path

1. 1nput(N)

P
2. N<B(N,s,) N

3. N<EN,s,) ©
6 VT

4. N < +(N, < 140)
5. fori= 1to 5 dobegin N < +(N,s;)end

6. detect(N)

Biological Computation — CPSC 601.73 — Winter 2003 13

Christian Jacob, University of Calgary

Explanation(T)

1. Input(N)
. Input a test tube N that contains all of the valid vertices and edges encoded in
the graph.

2. N<B(N,s,))

. Separate all sequences that begin with the starting node.

3. N<EN,s,)

. Further separate all sequences that end with the ending node.

Biological Computation — CPSC 601.73 — Winter 2003 14 Christian Jacob, University of Calgary

Explanation(IT)

5. N < (N, = 140)

. Further 1solate all strands that have a length of 140 nucleotides or less
(as there are 7 nodes and a 20 oligonucleotide encoding).

6. fori= 1to 5 dobegin N < +(N,s,)end

. Now separate all sequences that have the required nodes, thus giving us
our solution(s), if any.

7. detect(N)

. See i1f we actually have a solution within our test tube.

Biological Computation — CPSC 601.73 — Winter 2003 15 Christian Jacob, University of Calgary

Adding Memory - The Sticker Model

« In most computational models, we define a memory, which
allows us to store information for quick retrieval.

 DNA can be encoded to serve as memory through the use
of 1ts complementarity properties.

* We can directly correlate DNA memory to conventional
bit memory in computers through the use of the so called

“Sticker Model.”

Biological Computation — CPSC 601.73 — Winter 2003 16 Christian Jacob, University of Calgary

The Sticker Model

* We can define a single strand of DNA as being a memory
strand.

e This memory strand serves as the template from which we
can encode bits into.

* We then use complementary stickers to attach to this
template memory strand and encode our bits.

Biological Computation — CPSC 601.73 — Winter 2003 17 Christian Jacob, University of Calgary

* Consider the following strand of DNA.:

CCCC

GGGG

AAAA

TTTT

e This strand 1s divided into 4 distinct sub-strands.

« Each of these sub-strands has exactly one complementary

sub-strand as foll

OWS.

GGGG

CCCC

TTTT

AAAA

Biological Computation — CPSC 601.73 — Winter 2003

18

Christian Jacob, University of Calgary

* As adouble Helix, the DNA forms the following complex:

CCCC | GGGG | AAAA | TTTT
GGGG | CCCC | TTTT | AAAA

* [f we were to take each sub-strand as a bit position, we
could then encode binary bits into our memory strand.

Biological Computation — CPSC 601.73 — Winter 2003 19 Christian Jacob, University of Calgary

« Each time a sub-sequence sticker has attached to a sub-
sequence on the memory template, we say that the bit slot
1S on.

 If there 1s no sub-sequence sticker attached to a sub-
sequence on the memory template, then we say that the bit

slot 1s off.

Biological Computation — CPSC 601.73 — Winter 2003 20 Christian Jacob, University of Calgary

Some Memory Examples

* For example, 1f we wanted to encode the bit sequence 1001,

we would have:

CCCC

GGGG

AAAA

TTTT

GGGG

AAAA

* This 1s a direct coding of 1001 into the memory template.

Biological Computation — CPSC 601.73 — Winter 2003

21

Christian Jacob, University of Calgary

Disadvantages

» This is a rather good encoding, however, as we increase the size of our
memory, we have to ensure that our sub-strands have distinct
complements in order to be able to “set” and “clear” specific bits in our
memory.

* We have to ensure that the bounds between sub-sequences are also
distinct to prevent complementary stickers from annealing across
borders.

* The biological implications of this are rather difficult, as annealing
long strands of sub-sequences to a DNA template is very error-prone.

Biological Computation — CPSC 601.73 — Winter 2003 22 Christian Jacob, University of Calgary

Advantages

e The clear advantage is that we have a distinct memory
block that encodes bits.

« The differentiation between subsequences denoting
individual bits allows a natural border between encoding
sub-strands.

» Using one template strand as a memory block also allows
us to use 1ts complement as another memory block, thus
effectively doubling our capacity to store information.

Biological Computation — CPSC 601.73 — Winter 2003 23 Christian Jacob, University of Calgary

« Now that we have a memory structure, we can being to
migrate our rules to work on our memory strands.

* We can add new rules that allow us to program more into
our system.

Biological Computation — CPSC 601.73 — Winter 2003 24 Christian Jacob, University of Calgary

Operation: Separate

» Separate now deals with memory strands. It simply takes a test tube of

DNA memory strands and separates it based on what is turned on or
off.

* (@iven a test tube, N, and an integer i, we separate the tubes into +(N, 7)
which consists of all memory strands for which the i-¢4 sub-strand is
turned on (e.g. a sticker is attached to the i-t4 position on the memory
strand).

The —(N, i) tube contains all memory strands for which the it4 sub-
strand 1s turned off.

 Formal Definition:
~ N < +(N, i)
~ N< (N,

Biological Computation — CPSC 601.73 — Winter 2003 25 Christian Jacob, University of Calgary

Operation: Set

« Set simply sets a position on a memory position (1.€.. turns
it on 1f 1t 1s off) on a strand of DNA.

* Given a test tube, N, and an integer i, where 1<i <k (k1s
the length of the DNA memory strand), we set the i-th
position to on.

 Formal Definition:
— set(N, i)

Biological Computation — CPSC 601.73 — Winter 2003 26 Christian Jacob, University of Calgary

Operation: Clear

e Clear simply clears a position on a memory position (1.€..
turns 1t off if 1t 1s on) on a strand of DNA.

* Given a test tube, N, and an integer i, where 1=i <k (k1s
the length of the DNA memory strand), we clear the i-th
position to off.

 Formal Definition:
— clear(N, 1)

Biological Computation — CPSC 601.73 — Winter 2003 27 Christian Jacob, University of Calgary

Operation: Read

« Read simply reads a test tube, which has an 1solated
memory strand and determines what the encoding of that
strand 1s.

» Read also reports when there 1s no memory strand in the
test tube.

 Formal Definition:
— read(N)

Biological Computation — CPSC 601.73 — Winter 2003 28 Christian Jacob, University of Calgary

Defining a Library

» To effectively use the Sticker Model, we define a library
for input purposes.

* The library consists of a set of strands of DNA.

* Each strand of DNA 1n this library is divided into two
sections:

— an initial data input section, and

— a storage/output section.

Biological Computation — CPSC 601.73 — Winter 2003 29 Christian Jacob, University of Calgary

Library Setup

The formal notation for a library 1s as follows:

— (k,]) library (where k and [are integers, [< k)

e krefers to the size of the memory strand.

« [refers to the length of the positions allowed for input data.

e The mitial setup of the memory strand is such that the first
[positions are set with input data, and the last £ —/
positions are clear.

Biological Computation — CPSC 601.73 — Winter 2003 30 Christian Jacob, University of Calgary

A simple Example

* Consider the following encoding for a library:
(3, 2) library.

e This means we have a memory strand that 1s of size 3, and
has 2 positions allowed for input data.

* Thus the first 2 positions are used for input data, and the
final position 1s used for storage/input.

Biological Computation — CPSC 601.73 — Winter 2003 31 Christian Jacob, University of Calgary

A Quick Visualization

« Here 1s a visualization of this library:

CCCC | CCCC | CCCC

CCCC | GGGG | AAAA

GGGG | CCCC

CCCC | GGGG | AAAA
CCCC

CCCC | GGGG | CCCC

GGGG

Encoding: 000

Encoding: 110

Encoding: 010

Encoding: 100

Biological Computation — CPSC 601.73 — Winter 2003

32

Christian Jacob, University of Calgary

Memory Considerations

 From this visualization we see that we can achieve an
encoding of 2/ different kinds of memory complexes.

 We can formally define a memory complex as follows:
WOk

where w 1s the arbitrary binary sequence of length /, and 0O
represents the off state of the following -/ sequences on
the DNA memory strand.

Biological Computation — CPSC 601.73 — Winter 2003 33 Christian Jacob, University of Calgary

An Interesting Example: Minimal Set Cover

« Consider the following NP-complete problem:

— Minimal Set Cover

» Given a finite set S = {1, 2, ..., p} and a finite collection of subsets
{C, ..o, Cq} of S, we wish to find the smallest subset I C {1, 2, ..., ¢}

such that all of the points in S are covered by this subset:

U.. c=s.

 We can solve this problem by using the brute force method

of going through every single combination of the subsets
1Cys o C b

* We will use our rules to implement the same strategy using
our DNA system.

Biological Computation — CPSC 601.73 — Winter 2003 34 Christian Jacob, University of Calgary

Minimal Set Cover: Using DNA (I)

* The initial test tube N,will be a
(p+q, q) library.

e This basically means that our memory stick has p+q
positions to model the p points we want to cover and the g
subsets that we have 1n the problem.

e The g will be our data input positions, which are the g
subsets that we have in the problem.

 What we have 1s the first g positions are the data input
section, and the last p positions are our storage area.

Biological Computation — CPSC 601.73 — Winter 2003 35 Christian Jacob, University of Calgary

Minimal Set Cover: Using DNA (IT)

* We encode all of the subsets that we have in our problem into the first
g positions of our DNA strand.

« The memory complexes in N, represent all possible subsets 7 of the set
{1,2, ..., q}.
» This set contains at least one potential solution to our problem.

» Each position in our g positions represents a single subset that is in our
problem.

» A position that is turned on represents inclusion of that set in the
solution.

* We simply go through each of the possibilities for the g subsets in our
problem.

Biological Computation — CPSC 601.73 — Winter 2003 36 Christian Jacob, University of Calgary

Minimal Set Cover: Using DNA (III)

« The p positions represent the points that we have to cover,
one position for each point.

* The algorithm takes each set in g and checks which points
n p 1t covers.

e Then 1t sets that particular point position in p to on.

* Once all of the positions in p are turned on, we know that
we have a sequence of subset covers that covers all points.

 Then all we have to do 1s look at all solutions and
determine which one contains the smallest amount of
subset covers.

Biological Computation — CPSC 601.73 — Winter 2003 37 Christian Jacob, University of Calgary

Minimal Set Cover: But How is it Done?

* So far we have mapped each subset cover to a position and
each point to a position.

 However, each subset cover has a set of points, which 1t
COVeErs.

 How do we encode this into our algorithm?

 We do this by introducing a program specific rule, known
as cardinality.

Biological Computation — CPSC 601.73 — Winter 2003 38 Christian Jacob, University of Calgary

Definition: Cardinality of a Set

* The cardinality of a set, X, returns the number of elements
1n a set.

* Formally, we define cardinality as:
— card(X).

e From this we can determine what elements are 1n a
particular subset cover 1n terms of its position relative to
the points in p.

* Therefore, the elements in a subset C, where 1< i < g, are
denoted by C/, where 1< < card(C)).

Biological Computation — CPSC 601.73 — Winter 2003 39 Christian Jacob, University of Calgary

Minimal Set Cover: Checking Each Point

 Now that we can easily determine the elements within each
subset cover, we can proceed with the algorithm.

* We check each position 1n g and 1f 1t is turned on, we
simply see what points this subset covers.

* For each point that it covers, we set the corresponding
position 1n p to on.

* Once all positions in p have been turned on, then we have
a solution to the problem.

Biological Computation — CPSC 601.73 — Winter 2003 40 Christian Jacob, University of Calgary

Minimal Set Cover: The Program ...

N, 1s a (p+q, q) library.

fori=1tog
Separate +(N, i) and (N, 1)
forj =1 to card(C))
Set(+(N,, i), ¢ + C/)
N, <= merge((N,, i), -(N,, 7))

fori=g+1tog+p
N, < +(N,, i)

Biological Computation — CPSC 601.73 — Winter 2003 41

Christian Jacob, University of Calgary

Minimal Set Cover: Unraveling it All (T)

//Loop through all of the positions from 1 to g
fori=1togq

//Separate all of the on and off positions.

Separate +(N,, i) and (N, i)

//loop through all of the elements that the subset covers.
forj =1 to card(C))

//Set the appropriate position that this element covers in p.

Set(+(N,, i), g + C/)

//Now, merge both of the solutions back together.
N, <= merge(+(N, i), -(N_, 7))

Biological Computation — CPSC 601.73 — Winter 2003 42 Christian Jacob, University of Calgary

Minimal Set Cover: Unraveling it All (IT)

//Finally, we loop through all of the positions in p ...
fori=g+1tog+p

//... and separate all strands that have position i on.

N, < +(N,, i)

* The final N, contains only memory complexes, where each
of the p last substrands 1s on.

« That 1s, all these solutions cover the set S.

Biological Computation — CPSC 601.73 — Winter 2003 43 Christian Jacob, University of Calgary

Minimal Set Cover: Notes on DNA Computing

* In a sequential computation the amount of work 1s
enormous: for g = 100, we have to apply the procedure for
each of the 219 memory complexes.

* Things are different with DNA and the Sticker model:

— All memory complexes in N,, where the first substrand is on (that
is C, 1s one of the sets in the proposed cover of \S), are processed
simultaneously.

— The result is brought over to the next step.

— Here the memory complexes having the second substrand on are
processed simultaneously.

— Hence, only g steps are required, rather than 29 steps.

Biological Computation — CPSC 601.73 — Winter 2003 44 Christian Jacob, University of Calgary

Minimal Set Cover: Output of the Solution

 Now we have all of the potential solutions in one test tube,
we still have to determine the final solution.

« Note that the Minimal Set Cover problem finds the
smallest number of subsets that covers the entire set.

* In our test tube, we have all of the solutions that cover the
set, and one of these will have the smallest amount of
subsets.

* We therefore have to write a program to determine this.

Biological Computation — CPSC 601.73 — Winter 2003 45 Christian Jacob, University of Calgary

Minimal Set Cover: Finding the Solution ...

fori=0tog—1
forj=idownto 0
separate +(N;, i + 1) and «(N,, i + 1)
N,y <= merge(+(N, i+ 1), N,)
N, <-(N, i+ 1)

read(N,);
else if it was empty, read(N,);
else 1f it was empty, read(N,);

Biological Computation — CPSC 601.73 — Winter 2003 46 Christian Jacob, University of Calgary

Minimal Set Cover: Finding the Solution (2)

» The program takes each test tube and separates them based on number
of positions in g turned on.

e Thus for example, ...

— all memory strands with 1 position in g turned on are separated into one
test tube V,,

— all memory strands with 2 positions in g turned on are separated into one
test tube V,,

— etc.

* Once this is done, we simply read each tube starting with the smallest
number of subsets turned on to find a solution to our problem (of
which there may be many).

Biological Computation — CPSC 601.73 — Winter 2003 47 Christian Jacob, University of Calgary

Example: Extracting the Solution

e Minimal set cover:
extracting the (minimal set) solution

¢ g=4
* (5 and any combination of sets C,, C,, C, cover S.

* No combination of C,, C,, C, covers S.

* NO - { (19 3)9 (29 3)9 (394)9
(1,2,3),(1,3,4),(2,3,4),
(1,2,3,4)}

Biological Computation — CPSC 601.73 — Winter 2003 48 Christian Jacob, University of Calgary

Example: Extracting the Solution (2)

N, N, N, N, N,
(1,3), (2,3),
initial (3.4), empty empty empty empty
(13293)’ (29374)’
(1,2,3,4)

1=0 (2,3), (3.,4), (1,3), (1,2,3),
separate (2,3,4) (1,3,4), empty empty empty

on 1 (1,2,3,4)

1=1 (1,3), (1,3,4) (1,2,3),
separate (1,2,3,4) empty empty

on 2 (3,4) (273)7 (27394)

i=2 (1,2,3), empty
separate (1,2,3,4)

on 3 (1,3), (1,3.4),

(2,3), (2,3,4)
empty (3,4)

=3 (1,3),(2,3), | (1,2,3),(1,3.4), (1,2,3,4)
separate (3,4) (2,3,4)

on 4 empty empty

Biological Computation — CPSC 601.73 — Winter 2003 49 Christian Jacob, University of Calgary

Final Considerations

» The operations outlined above can be used to program more practical
solutions to other programs.

* One such area is in cryptography, where it 1s postulated that a DNA
system such as the one outlined is capable of breaking the common
DES (Data Encryption Standard) used in many cryptosystem.

» Usinga (579, 56) library, with 20 oligonucleotide length memory
strands, and an overall memory strand of 11,580 nucleotides, it is
estimated that one could break the DES with about 4 months of
laboratory work.

Biological Computation — CPSC 601.73 — Winter 2003 50 Christian Jacob, University of Calgary

References

e Paun, G., Rozenberg, G., and Salomaa, A., DNA
Computing, Springer,1998.

* Garret Suen, Beginning of Molecular Computing, CPSC
601.73 (W2002) presentation.

Biological Computation — CPSC 601.73 — Winter 2003 51 Christian Jacob, University of Calgary

