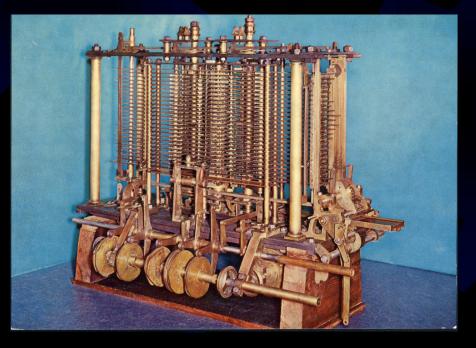
DNA Computing

Information Processing with DNA Molecules

Christian Jacob

January 21, 2003.


Mhy DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer

Why DNA Computing?

From silico to carbon. From microchips to DNA molecules. Limits to miniaturization with current computer technologies. Information processing capabilities of organic molecules ... replace digital switching primitives, enable new computing paradigms.

Challenges of DNA Computing

 Biochemical techniques are not yet sufficiently sophisticated or accurate.
 Compare Charles Babbage's "Analytical Engine" (1810-1820)

Key Features of DNA Computing
Massive parallelism of DNA strands
high density of information storage
ease of constructing many copies

Watson-Crick <u>complementarity</u>
 feature provided "for free"
 universal twin shuffle language

Still: Why DNA Computing?

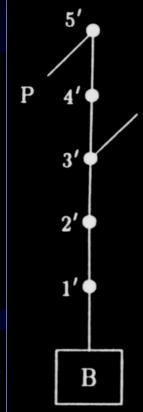
- Further reasons to investigate DNA computing:
 - support for standard computation
 - better understanding of how nature computes
 - new data structures (molecules)
 - new operations
 - cut, paste, adjoin, insert, delete, ...
 - new computability models.

Table of Contents
Why DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer

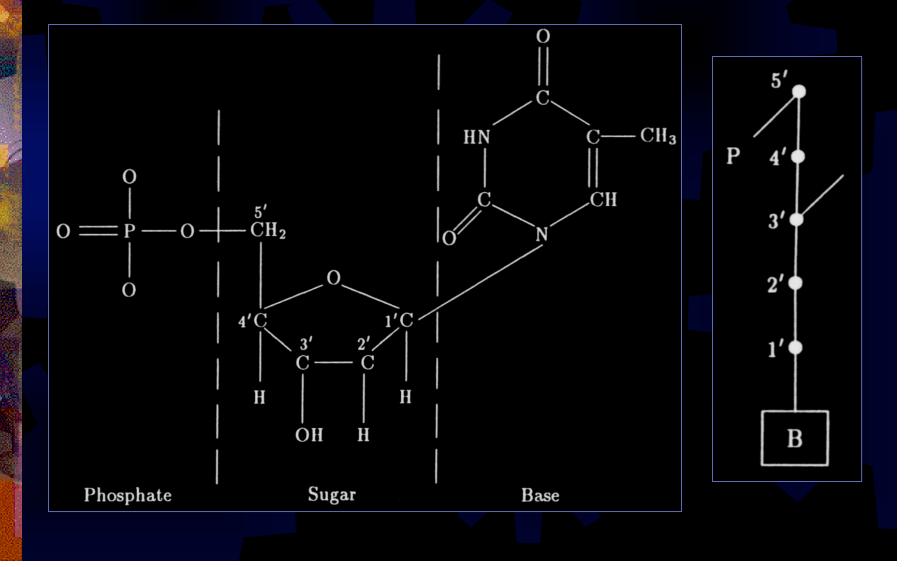
The Structure of DNA

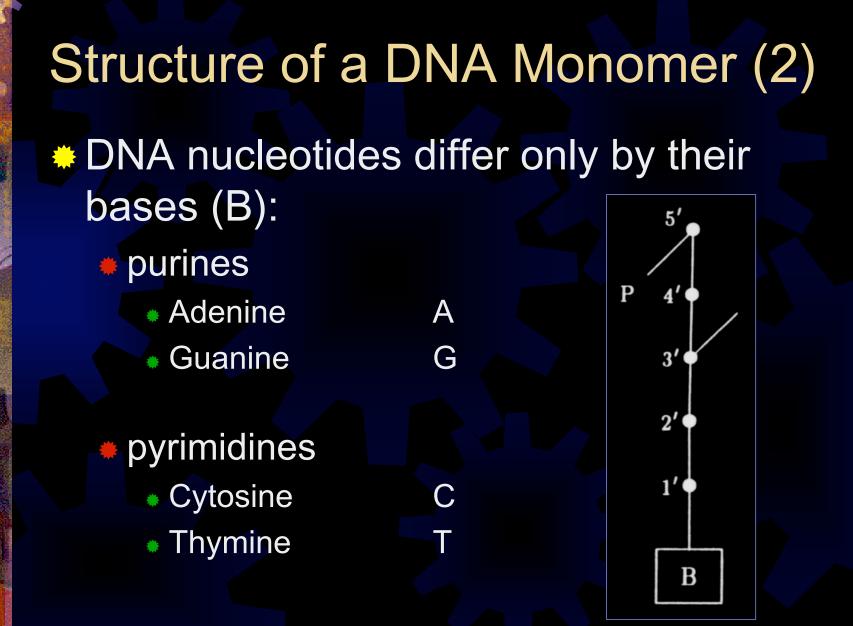
DNA is a polymer ("large" molecule).
DNA is strung together from monomers ("small" mols.): <u>deoxyribonucleotides</u>.

DNA = <u>Deoxyribo</u> <u>Nucleic</u> <u>Acid</u>


DNA supports two key functions for life:
 coding for the production of proteins,
 self-replication.

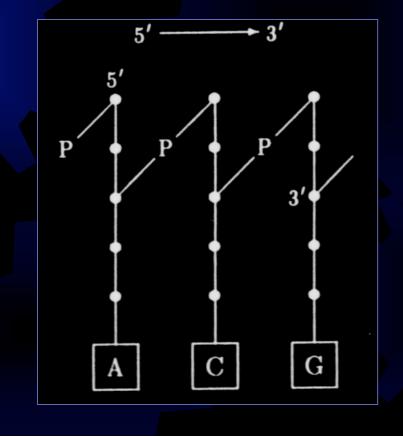
Structure of a DNA Monomer

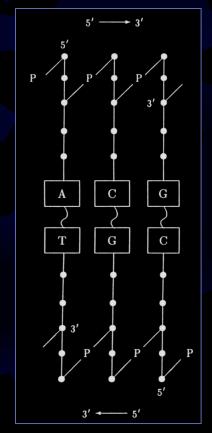

Each deoxyribonucleotide consists of three components:


a sugar — deoxyribose

- five carbon atoms: 1' to 5'
- hydroxyl group (OH) attached to 3' carbon
- a phosphate groupa nitrogenous base.

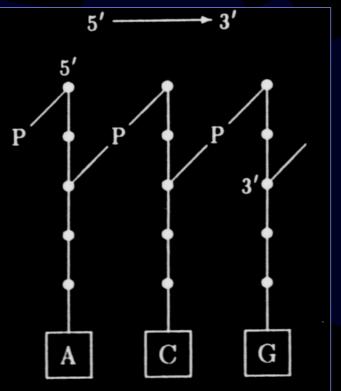
Chemical Structure of a Nucleotide

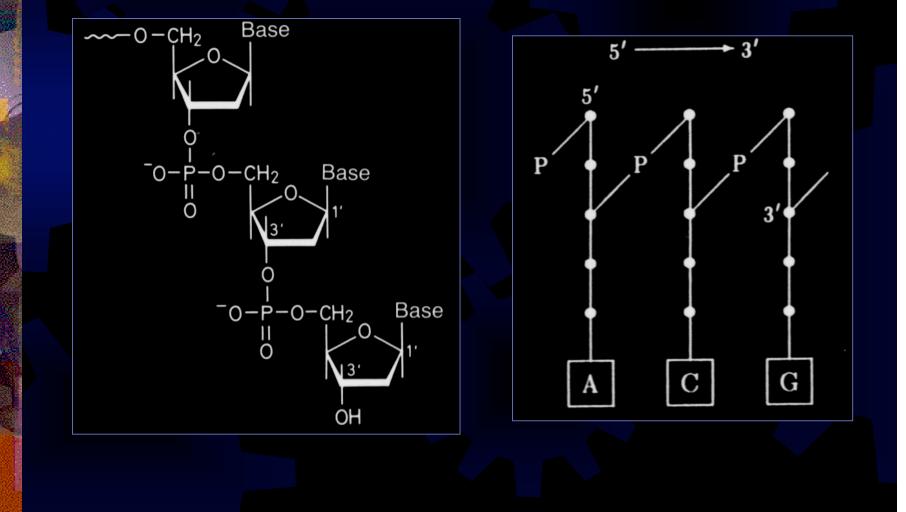



Linking of Nucleotides

The DNA monomers can link in two ways:

Phosphodiester bond
Hydrogen bond

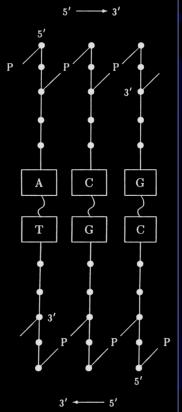




Linking of Nucleotides Phosphodiester Bond

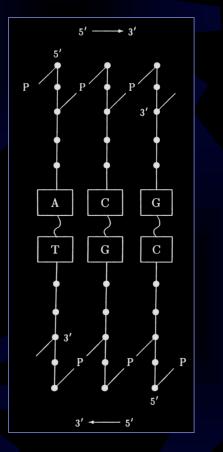
- The 5'-phosphate group of one nucleotide is joined with the 3'-hydroxyl group of the other
 - strong (covalent) bond
 - directionality:
 - 5'—3' or 3'—5'

Linking of Nucleotides Phosphodiester Bond



Linking of Nucleotides Hydrogen Bond

- The base of one nucleotide interacts with the base of another
 - base pairing (weak bond)
 - A T (2 hydrogen bonds)
 - C G (3 hydrogen bonds)


Watson-Crick complementarity

- James D. Watson
- Francis H. C. Crick
 - deduced double-helix structure of DNA in 1953
 - Nobel Prize (1962)

Linking of Nucleotides Hydrogen Bond

DNA Double Helix

 Longer streches keep the double strands together through the cumulative effect (the sum) of hydrogen bonds.

Dense packing:

- Bacteria: DNA molecule is 10,000 times longer than the host cell
- Eucaryotes: "hierarchical" packing

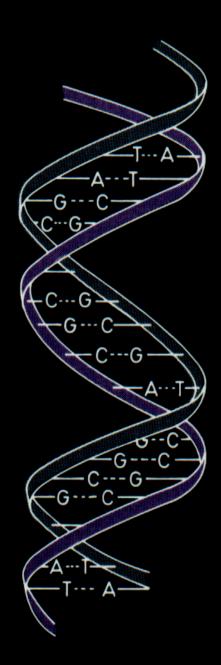


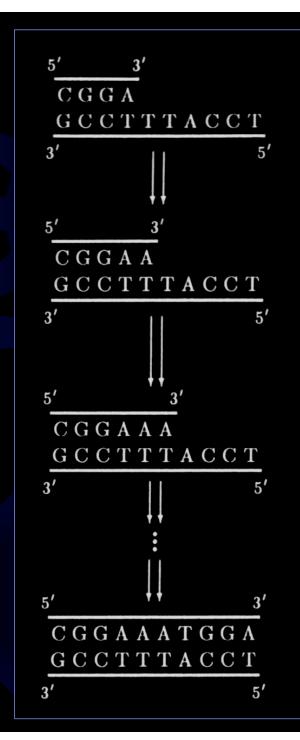
Table of Contents
Why DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer

Operations on DNA Molecules Separating and fusing DNA strands Lengthening of DNA Shortening DNA Cutting DNA Multiplying DNA

Separating and Fusing DNA Strands

- Denaturation: separating the single strands without breaking them
 - weaker hydrogen than phosphodiester bonding
 - heat DNA (85° 90° C)

Renaturation:

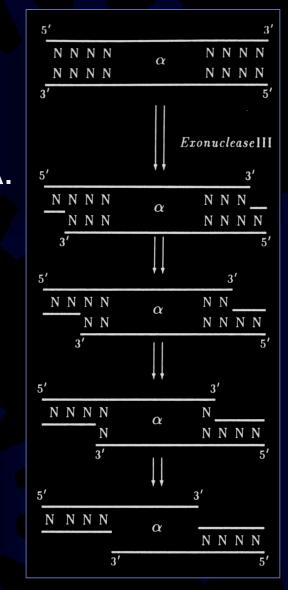

- slowly cooling down
- annealing of matching, separated strands

Enzymes Machinery for Nucleotide Manipulation

- Enzymes are proteins that catalyze chemical reactions.
- Enzymes speed up chemical reactions extremely efficiently (speedup: 10¹²)
- Enzymes are very specific.
- Nature has created a multitude of enzymes that are useful in processing DNA.

Lengthening DNA

- DNA <u>polymerase</u> enzymes add nucleotides to a DNA molecule
 Requirements:
 - single-stranded template
 - <u>primer</u>,
 - bonded to the template
 - 3´-hydroxyl end available for extension
 - Note: Terminal transferase needs no primer.

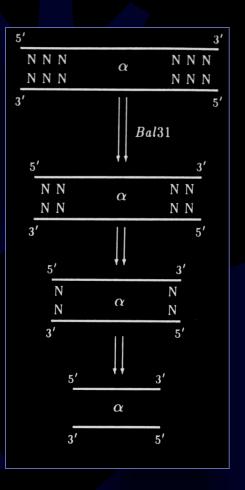


Shortening DNA

DNA nucleases are enzymes that degrade DNA.

DNA <u>exonucleases</u>

- cleave (remove) nucleotides one at a time from the ends of the strands
- Example: Exonuclease III 3'-nuclease degrading in 3'-5' direction

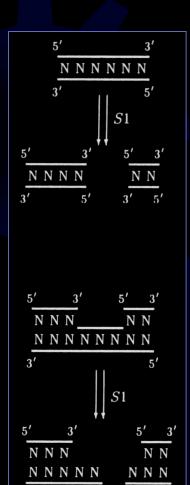


Shortening DNA

 DNA nucleases are enzymes that degrade DNA.

DNA <u>exonucleases</u>

- cleave (remove) nucleotides one at a time from the ends of the strands
- Example: Bal31 removes nucleotides from both strands



Cutting DNA

 DNA nucleases are enzymes that degrade DNA.

DNA <u>endonucleases</u>

- destroy internal phosphodiester bonds
- Example: S1 cuts only single strands or within single strand sections
- Restriction endonucleases
 - much more specific
 - cut only double strands
 - at a specific set of sites (EcoRI)

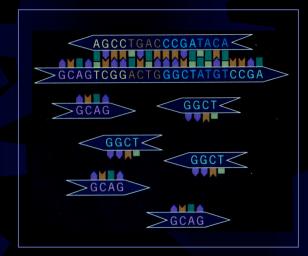
5' 3'

5'

Multiplying DNA

Amplification of a "small" amount of a specific DNA fragment, lost in a huge amount of other pieces.
 "Needle in a haystack"

Solution: <u>PCR</u> = <u>Polymerase</u> Chain <u>Reaction</u>


- devised by Karl Mullis in 1985
- Nobel Prize

a very efficient molecular Xerox machine

Step 0: Initialization

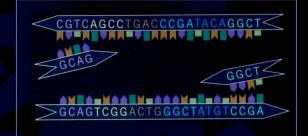
- Start with a solution containing the following ingredients:
 - the target DNA molecule
 - primers

 (synthetic oligonucleotides),
 complementary to the
 terminal sections
 - polymerase, heat resistant
 - nucleotides

Step 1: Denaturation

 Solution heated close to boiling temperature.

AGCCTGACCCGATAC


GCAGTCGGACTGGGCTATGT

 Hydrogen bonds between the double strands are separated into single strand molecules.

Step 2: Priming

 The solution is cooled down (to about 55° C).

 Primers anneal to their complementary borders.

Step 3: Extension

- The solution is heated again (to about 72° C).
- A polymerase will extend the primers, using nucleotides available in the solution.
- Two complete strands of the target DNA molecule are produced.

PCR Efficient Xeroxing: 2ⁿ copies after n steps

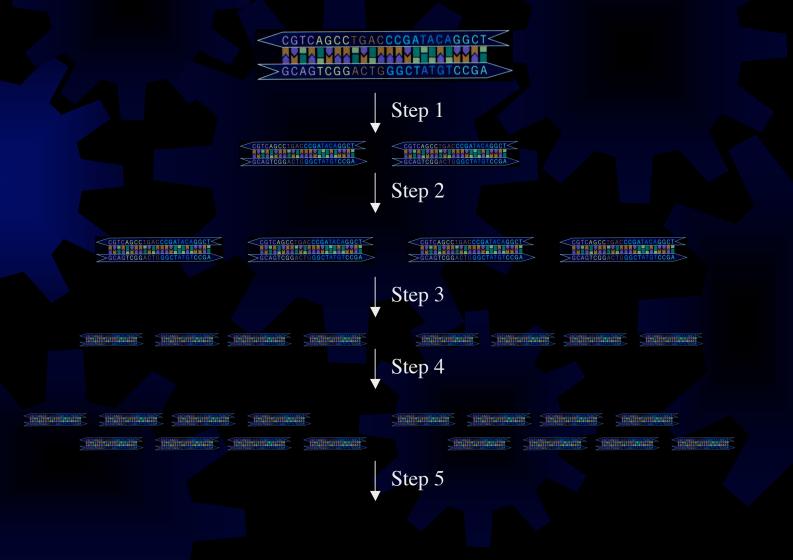
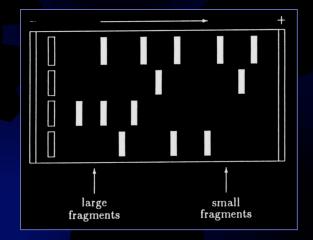
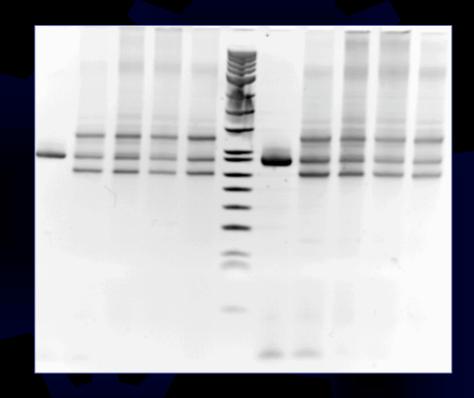



Table of Contents
Why DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer

Measuring the Length of DNA Molecules Gel Electrophoresis

- DNA molecules are negatively charged.
 Placed in an electric field, they will move towards the positive electrode.
 - The negative charge is proportional to the length of the DNA molecule.
 - The force needed to move the molecule is proportional to its length.
- A gel makes the molecules move at different speeds.
- DNA molecules are invisible, and must be marked (ethidium bromide, radioactive)


Schematic representation of gel electrophoresis

Ethidium bromide marker

Radioactive marker

Sequencing a DNA Molecule

Sequencing:

 reading the exact sequence of nucleotides comprising a given DNA molecule

based on

- the polymerase action of extending a primed single stranded template
- nucleotide analogues
 - chemically modified
 - e.g., replace 3´-hydroxyl group (3´-OH) by 3´hydrogen atom (3´-H)
 - dideoxynucleotides:
 - ddA, ddT, ddC, ddG
 - Sanger method, dideoxy enzymatic method

Sequencing — Part 1

Objective

- We want to sequence a single stranded molecule α.
- Preparation
 - We extend α at the 3´ end by a short (20 bp) sequence γ, which will act as the W-C complement for the primer compl(γ).

AGTACGGGACGC

- Usually, the primer is labelled (radioactively, or marked fluorescently)
- This results in a molecule $\beta' = 3' \gamma \alpha$.

Sequencing — Part 2

- 4 tubes are prepared:
 - Tube A, Tube T, Tube C, Tube G

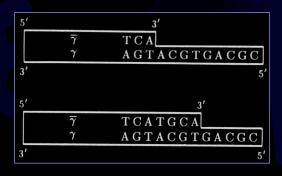
AGTACGGGACGC

- Each of them contains
 - β molecules
 - primers, compl(γ)
 - polymerase
 - nucleotides A, T, C, and G.
- Tube A contains a limited amount of ddA.
- Tube T contains a limited amount of ddT.
- Tube C contains a limited amount of ddC.
- Tube G contains a limited amount of ddG.

Reaction in Tube A

The polymerase enzyme extends the primer of β', using the nucleotides present in Tube A: ddA, A, T, C, G.

using only A, T, C, G:


• β' is extended to the full duplex.

AGTACGGGACG

using ddA rather than A:

• complementing will end at the position of the ddA nucleotide.

Resulting Sequences in Tubes

Tube A:
 TCATGCACTGCG
 TCA
 TCATGCA

Tube T:
 TCATGCACTGCG


- *
- TCAT
- TCATGCACT

Tube C:

- TCATGCACTGCG
- TC
- TCATGC
- TCATGCAC
- TCATGCACTGC
- Tube G:
 - TCATGCACTGCG
 - TCATG
 - TCATGCACTG

Final Reading of the Strands

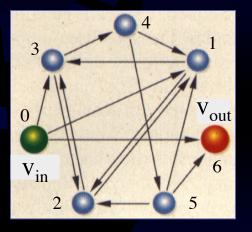
Gel electrophoresis:

- Tub<mark>e A</mark>:
 - TCATGCACTGCG
 - TCA
 - TCATGCA
- Tube T:
 - TCATGCACTGCG
 - TCAT
 - TCATGCACT

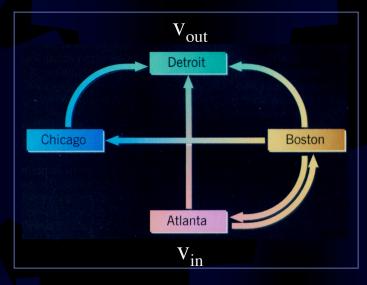
- Tube C:
 - TCATGCACTGCG
 - TC
 - TCATGC
 - TCATGCAC
 - TCATGCACTGC
- Tube G:
 - TCATGCACTGCG
 - TCATG
 - TCATGCACTG

- We read:
 - * T
 - TC
 - TCA
 - TCAT
 - TCATG
 - TCATGC
 - TCATGCA
 - TCATGCAC
 - TCATGCACT
 - TCATGCACTG
 - TCATGCACTGC
 - TCATGCACTGCG

Table of Contents
Why DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer


Adleman's Experiment

 In 1994 Leonard M. Adleman showed how to solve the Hamilton Path Problem, using DNA computation.


Hamiltonian Path Problem:

- Let G be a directed graph with designated input and output vertices, v_{in} and v_{out}.
- Find a (Hamiltonian) path from v_{in} to v_{out} that involves every vertex in G exactly once.

Hamiltonian Path Example

- Adleman's graph
 The only Hamiltonian path for this graph is:
 - 0—1—2—3—4—5—6

- Simplified graph
- Hamiltonian path:
 - Atlanta
 - Boston
 - Chicago
 - Detroit

Adleman's Algorithm

- Input: A directed graph G with n vertices, and designated vertices v_{in} and v_{out}.
- <u>Step 1</u>: Generate paths in G randomly in large quantities.
- Step 2: Reject all paths that
 - do not begin with v_{in} and
 - do not end in v_{out}.
- <u>Step 3</u>: Reject all paths that do not involve exactly *n* vertices.
- Step 4: For each of the n vertices v:
 - reject all paths that do not involve v.
- Output: YES, if any path remains; NO, otherwise.

Vertex and Edge Encodings

Each city v_i is encoded by two sub-sequences:
 v_i = v_i v_i ''
 Each flight e_{ik} from v_i to v_k is encoded by:
 e_{ik} = v_i '' v_k '

Town	DNA Name	Complement
Atlanta	ACTTGCAG	TGAACGTC
Boston	TCGGACTG	AGCCTGAC
Chicago	GGCTATGT	CCGATACA
Detroit	CCGAGCAA	GGCTCGTT
Flight	DNA Flight Number	
Atlanta – Boston	GCAG	TCGG
Atlanta – Detroit	GCAG	CCGA
Boston – Chicago	ACTGGGCT	
Boston – Detroit	ACTGCCGA	
Boston – Atlanta	ACTGACTT	
Chicago – Detroit	ATGT	CCGA

DNA Computation

- The town complements and DNA flight numbers are used for computation.
- DNA molecules are put in a hydrous solution.
- Addition of ligase ensures catalysis of phosphodiester bonds.
- Shaking the test tube makes many DNA strands collide and interact.
- ~10¹⁴ computations are carried out in a single second.
- The solution strand has to be filtered from the test tube:
 - GCAG TCGG ACTG GGCT ATGT CCGA
 - Atlanta \rightarrow Boston \rightarrow Chicago \rightarrow Detroit

"DNA Computer" Performance Evaluation

- Information density:
 - 10¹⁵ CDs per cm³

Massively parallel information processing:

- 10⁶ ops / sec for PCs
- 10¹² ops / sec for supercomputers
- 10²⁰ ops / sec possible for DNA
- DNA computers would be > 1,000,000 times faster than any computer today.

Energy efficiency:

- 2 * 10¹⁹ operations per joule for DNA
- 10⁹ operations for silicon-based computers

Table of Contents
Why DNA Computing?
The Structure of DNA
Operations on DNA Molecules
Reading DNA
Example of a Molecular Computer

References

Paun, G., Rozenberg, G., and Salomaa, A., DNA Computing, Springer, 1998.