CPSC 601.73 — Biological Computation — Winter 2003

Christian Jacob, Dept. of Computer Science, University of Calgary

Email: jacob@cpsc.ucalgary.ca; Web: http://www.cpsc.ucalgary.ca/~jacob

	Part I. Computers Go Biological	
Jan 16	A Crash Course in Genetics	CJ
Jan 21	DNA Computing	CJ
	An Introduction	
Jan 23	Biological Mathematics: A General DNA Splicing Model	CJ
Jan 28	DNA Computers: What's the State of the Art?	Omair Quraishi
Jan 30	Immune System Computing	
	The Immune System—An Introduction	CJ
Feb 04	Applications of Immune System Computing	Ricardo Hoar
Feb 06	Evolution and Development	
	L-systems, Cellular Encoding, and Genetic Programming	CJ
Feb 11	(Co-)Evolution of Morphologies and Behavior	Seamus Carrol Jie Gao
Feb 13	VIDEO	
Feb 25	Introductory Project Presentations (1)	
Feb 27	Introductory Project Presentations (2)	
Mar 04	Evolvable Hardware: The Darwin Chip—Dream or Reality?	Deyasini Majunday

1

	Part II. Biology Goes Digital	
Mar 06	Explorations in Complexity	
	Cellular Automata and the World of Simple Programs	CJ
Mar 11	Evolution of Cellular Automata Machines	Al Fedoruk
Mar 13	Substitution Systems and Beyond	CJ
Mar 18	Small-World Phenomena in Networks	Jeroen Keijser
Mar 20	Self-Organized Criticality	Tino Duong
Mar 25	Artificial Chemistries	CJ
	An Overview	
Mar 27	Autocatalytic Sets, Catalytic Networks, and Self- Reproduction	Mark Baumback
Apr 01	Classifier Systems and Random Boolean Networks	СЈ
Apr 03	Self-Organization, Reaction and Gene Regulatory Networks	Yimin Liu Glorious Tsui
Apr 08	Project Presentations (1)	
Apr 10	Project Presentations (2)	
Apr 15	Project Presentations (3)	
Apr 17	Project Presentations (4)	

Lecture: TR, 11:00 – 12:15, MS 773

CPSC 601.73 — Biological Computation — Winter 2003

Christian Jacob, Dept. of Computer Science, University of Calgary

Email: jacob@cpsc.ucalgary.ca; Web: http://www.cpsc.ucalgary.ca/~jacob

Part I. Computers Go Biological

A Crash Course in Genetics

DNA Computing

- o An Introduction
- o Biological Mathematics: A General DNA Splicing Model
- DNA Computers: What's the State of the Art?
 - Pâun, G., G. Rozenberg, et al. (1998). <u>DNA Computing: New Computing</u> <u>Paradigms</u>. Berlin, Springer.
 - Rubin, H. and D. H. Wood, Eds. (1999). <u>DNA Based Computers III</u>. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society.
 - DNA9, Ninth International Meeting on DNA Based Computers, June 1-4, 2003, Madison, Wisconsin (http://analytical.chem.wisc.edu/DNA9/).

Immune System Computing

- The Immune System—An Introduction
- Applications of Immune System Computing
 - Corne, D. W., M. Dorigo, et al., Eds. (1999). <u>New Ideas in Optimization</u>, McGraw-Hill.
 - Dasgupta, Dipankar (2002). Artificial Immune Systems: Theory and Applications, Tutorial, CEC 2002, Congress on Evolutionary Computation, Hawaii, 2002.

Evolution and Development

- o L-systems, Cellular Encoding, and Genetic Programming
- (Co-)Evolution of Morphologies and Behaviors
 - Work of Karl Sims, GenArts Inc., <u>http://www.genarts.com/karl/</u>.

CPSC 601.73 — Winter 2003 3 C. Jacob

- Hod Lipson and Jordan B. Pollack. Automatic Design and Manufacture of Robotic Life Forms, GOLEM (http://demo.cs.brandeis.edu/golem/).
- Evolvable Hardware: The Darwin Chip—Dream or Reality?
 - M. Sipper and D. Mange, Eds., *IEEE Transactions on Evolutionary Computation: Special Issue -- From Biology to Hardware and Back*, vol. 3, no. 3, September 1999.
 - M. Sipper and E. M. A. Ronald, A New Species of Hardware, *IEEE* Spectrum, March 2000, pp. 59-71.

Part II. Biology Goes Digital

Explorations in Complexity

- o Cellular Automata and the World of Simple Programs
- o Evolution of Parallel Cellular Machines
 - Sipper, M. (1997). <u>Evolution of Parallel Cellular Machines: The Cellular</u> <u>Programming Approach</u>. Berlin, Springer.
- o Substitution Systems and Beyond
- o Small-World Phenomena in Networks
 - Watts, D. J. (1999). <u>Small Worlds: The Dynamics of Networks between</u> Order and Randomness. Princeton, NJ, Princeton University Press.
- Self-Organized Criticality
 - Jensen, H. J. (1998). <u>Self-Organized Criticality: Emergent Complex</u> <u>Behavior in Physical and Biological Systems</u>. Cambridge, Cambridge University Press.

Artificial Chemistries

• An Overview

- o Autocatalytic Sets, Random Catalytic Networks, and Self-reproduction
 - Dittrich, P., J. Ziegler, et al. (2001). "Artificial Chemistries—A Review." <u>Artificial Life</u> 7(3): 225-275.
- Classifier Systems and Random Boolean Networks
- o Self-organization, Reaction and Gene Regulatory Networks

Kauffman, S. (1995). <u>At Home in the Universe: The Search for Laws of Self-Organization and Complexity</u>. Oxford, Oxford University Press.