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14.1 Structures

14.1.1 Basic Definitions

In C++, a structure is a collection of variables tha
under one name. This provides a convenient mea
related information together.

Structures are referred to as compound data typ

 

several different variables, which are yet logically
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The general form of a structure declaration is:

struct struct_type_name {
type member_name_1

 

;

 

type member_name_2;

 

...

 

type member_name_N

 

;

 

}

 

 

 

structure_variables;

 

The variables that comprise the structure are call

   

elements

 

, or 

 

fields

 

.
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14.1.2 Examples of Structures

• Address:

struct canadaAddress {
char firstName[80];    // fi
char lastName[80];     // la
char street[40];       // st
int  houseNumber;      // ho
char city[40];         // ci
char province[3];      // pr
char postalCode[7];    // po

} addressEntry;

canadaAddress addressVariable;
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• Vector:

struct vector {
float x;          // x coordi
float y;          // y coordi
float z;          // z coordi

} referencePoint, leftUpper, lo

•

 

Employee

 

:

 

struct employee {
char name[80];
char phone[20];
float hours;
float wage;

};
employee databaseEntry;
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14.1.3 Accessing Structure Members

Elements of a structure are accessed through the
operator, the general form of which is:

structure_variable . element_name

Example:

 

struct vector {
float x;          // x coord
float y;          // y coord
float z;          // z coord

} referencePoint, leftUpper, l

leftUpper.x = 0.5;
leftUpper.y = 1.3;
leftUpper.z = 7.9;
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14.1.4 Arrays of Structures

It is common to use arrays of structures. However, t
to be defined first, before any array declarations th
particular structure.

Example:

struct employee {
char name[80];
float hours;
float wage;

};
employee staff[100];

Any entry in the database can be referred to by usi
operator:

 

cout << staff[81].name;
staff[3].hours = 38.5;
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14.2 Structures and Pointers

14.2.1 Assigning Structures

The contents of one structure can be assigned to
both structures are of the same type.

struct mystruct { int a, b; };

int main()
{

mystruct x, y;
x.a = y.b = 10;  

 

// svar1: 1

 

x.a = y.b = 20;  

 

// svar2: 2

 

y = x; 

 

// assign structures

 
return 0; }
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14.2.2 References to Structures

A function can have a reference to a structure as
return type.

struct mystruct { int a; int b

mystruct &f(mystruct &var)
{

var.a = var.a * var.a;
var.b = var.b / var.b;
return var;

}
void main()
{

mystruct x, y;
x.a = 10; x.b = 20;
y = f(x); }
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Any structures that have different type names ar
different by the compiler, even if the structure d
same:

struct stypeA {
int a, b;

};

struct stypeB {
int a, b;

}

stypeA x;
stypeB y;

y = x; // Error: type mismatch
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14.2.3 Pointers to Structures and the Arrow

Structure pointers are declared as any other poin
by putting an * in front of a structure´s variable 

 

struct int_vector { int x, y, 
int_vector *int_vector_pointer

 

To find the 

 

address

 

 of a structure variable, the &
placed before the structure variable´s name:

 

struct bal{
float balance;
char name[80];

} balance_record;

bal *rec; 

 

// a structure pointer 

 rec = &balance_record;



Page 13  Chapter 14: Structures © Christian Jacob

Prev Next Last

  

h a pointer to the 

    

r example:

 

ion parameters1.

nction arguments 
    

First  Back TOC Structures and Pointers

Accessing the Members of a Structure by Pointers

The members of a structure can be accessed throug
structure.

However, one cannot use the dot operator!

Instead, the arrow operator ( -> ) has to be used. Fo

rec->balance

 

or

 

rec->name

 

Structure pointers are especially important as funct

  

Pointers enable the passing of large structures as fu
in an efficient and fast way.

 

1. See Chapters 14 and 15 for details.
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14.3 More Complex Structures

14.3.1 Arrays Within Structures

A structure member that is an array is treated like 
type.

struct stype {
int numbers[10][10]; 

 

// 10 x 10

 

float b;
} var;

 

To reference integer 3,7 in 

 

numbers

 

 of 

 

var

 

 of struc

  

would write:

 

var.numbers[3][7]

 
Note that the 

 
array name

 
 is indexed, not the struct
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14.3.2 Structures Within Structures

A nested structure occurs when a structure is a mem
structure.

In the following example the structure addr

 

 is nest

   

struct 

 

addr

 

 {
char name[40];
char street[40];
char city[40];
char zip[7];

};
struct emp {

 

addr

 

 address;
float wage;

} worker;

worker.address.zip = "T2N3F4";
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14.3.3 Recursive Structures

A structure may also contain a pointer to a structur

The structure pointer can even point to the same s
which results in a recursive structure definition.

struct mystruct {
int a;
char str[80];
mystruct *sptr; 

 

// pointer to my

 

};
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Recursive structures are particularly useful for im
lists for sorting and searching problems (see late
data structures like the following are used:

struct int_list_entry {
int value;
int_list_entry *next_list_elem

};
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14.3.4 Unions

In C++, a union is a memory location that is share
different variables. The union definition is simila
structure, as the following example shows:

union utype {
short int i;
char ch;

} uvar;

This data type utype

 

 can hold either a short inte
character.

In uvar, both the short integer 

 

i

 

 and the characte

  

memory location. 

The compiler automatically allocates enough me
largest variable type in the union.
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14.3.5 Enumerations

C++ allows to define a list of named integer cons

Such a list is called an enumeration, which has th

enum 

 

enum_type_name

 

 { 

 

enumeration_list

 

 

 

} 

 

v

 

The enumeration list represents the values a vari
enumeration type can have.

 

enum apple {Jonathan, Golden_D
            Cortland, McIntosh}

apple fruit;
fruit = Cortland;
if(fruit == Red_Del) 

cout “Red Delicious\n”;
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The key point about an enumeration is that each
stands for an integer value:

The value of the first enumeration symbol is
second symbol is 1, etc.

Hence, enumeration symbols can be used in any 

cout << Jonathan << ‘ ‘ << Cor

Output: 

 

0 4

 

However, integers are not automatically converte
constants:

 

fruit = 1; 

 

// Error

 

It works only with a type cast:

 
fruit = (apple) 1; // OK, but 
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14.3.6 New Names for Data Types

C++ allows you to define a new name for an exis

typedef type name;

Here 

 

type

 

 is any valid data type, and 

 

name

 

 is the
type.

This allows to use descriptive names for standard
rename user-defined data types.

 

typedef float balance;

balance over_due = 123.56;
typedef apple pear;

 

Here 

 

balance

 

 and 

 

pear

 

 are just new names for 

 
float
 

 and 
 

apple
 

, respectively.
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