

©

Christian Jacob

tor
 Chapter Overview

Chapter 14

Structures

14.1 Structures

14.1.1 Basic Definitions

14.1.2 Examples of Structures

14.1.3 Accessing Structure Members

14.1.4 Arrays of Structures

14.2 Structures and Pointers

14.2.1 Assigning Structures

14.2.2 References to Structures

14.2.3 Pointers to Structures and the Arrow Opera

©

Christian Jacob

 Chapter Overview

14.3 More Complex Structures

14.3.1 Arrays Within Structures

14.3.2 Structures Within Structures

14.3.3 Recursive Structures

14.3.4 Unions

14.3.5 Enumerations

14.3.6 New Names for Data Types

14.4 References

Page 3

 Chapter 14: Structures

©

Christian Jacob

Prev Next Last

t are referenced
ns of keeping

es; they consist of
 connected.
First Back TOC

14.1 Structures

14.1.1 Basic Definitions

In C++, a structure is a collection of variables tha
under one name. This provides a convenient mea
related information together.

Structures are referred to as compound data typ

several different variables, which are yet logically

Page 4 Chapter 14: Structures © Christian Jacob

Prev Next Last

ed members,

First Back TOC

The general form of a structure declaration is:

struct struct_type_name {
type member_name_1

;

type member_name_2;

...

type member_name_N

;

}

structure_variables;

The variables that comprise the structure are call

elements

, or

fields

.

Page 5 Chapter 14: Structures © Christian Jacob

Prev Next Last

rst name
st name
reet name
use number
ty
ovince code
stal code

First Back TOC

14.1.2 Examples of Structures

• Address:

struct canadaAddress {
char firstName[80]; // fi
char lastName[80]; // la
char street[40]; // st
int houseNumber; // ho
char city[40]; // ci
char province[3]; // pr
char postalCode[7]; // po

} addressEntry;

canadaAddress addressVariable;

Page 6 Chapter 14: Structures © Christian Jacob

Prev Next Last

nate
nate
nate
werRight;

First Back TOC

• Vector:

struct vector {
float x; // x coordi
float y; // y coordi
float z; // z coordi

} referencePoint, leftUpper, lo

•

Employee

:

struct employee {
char name[80];
char phone[20];
float hours;
float wage;

};
employee databaseEntry;

Page 7 Chapter 14: Structures © Christian Jacob

Prev Next Last

 use of the

dot

inate
inate
inate
owerRight;

First Back TOC

14.1.3 Accessing Structure Members

Elements of a structure are accessed through the
operator, the general form of which is:

structure_variable . element_name

Example:

struct vector {
float x; // x coord
float y; // y coord
float z; // z coord

} referencePoint, leftUpper, l

leftUpper.x = 0.5;
leftUpper.y = 1.3;
leftUpper.z = 7.9;

Page 8 Chapter 14: Structures © Christian Jacob

Prev Next Last

he structure has
at refer to this

ng the dot

First Back TOC

14.1.4 Arrays of Structures

It is common to use arrays of structures. However, t
to be defined first, before any array declarations th
particular structure.

Example:

struct employee {
char name[80];
float hours;
float wage;

};
employee staff[100];

Any entry in the database can be referred to by usi
operator:

cout << staff[81].name;
staff[3].hours = 38.5;

Page 9 Chapter 14: Structures © Christian Jacob

Prev Next Last

 another as long as

0 10
0 20

First Back TOC Structures and Pointers

14.2 Structures and Pointers

14.2.1 Assigning Structures

The contents of one structure can be assigned to
both structures are of the same type.

struct mystruct { int a, b; };

int main()
{

mystruct x, y;
x.a = y.b = 10;

// svar1: 1

x.a = y.b = 20;

// svar2: 2

y = x;

// assign structures

return 0; }

Page 10 Chapter 14: Structures © Christian Jacob

Prev Next Last

 a parameter or as a

; };

First Back TOC Structures and Pointers

14.2.2 References to Structures

A function can have a reference to a structure as
return type.

struct mystruct { int a; int b

mystruct &f(mystruct &var)
{

var.a = var.a * var.a;
var.b = var.b / var.b;
return var;

}
void main()
{

mystruct x, y;
x.a = 10; x.b = 20;
y = f(x); }

Page 11

 Chapter 14: Structures © Christian Jacob

Prev Next Last

e considered
efinitions look the

First Back TOC Structures and Pointers

Any structures that have different type names ar
different by the compiler, even if the structure d
same:

struct stypeA {
int a, b;

};

struct stypeB {
int a, b;

}

stypeA x;
stypeB y;

y = x; // Error: type mismatch

Page 12

 Chapter 14: Structures

©

Christian Jacob

Prev Next Last

 Operator

ter variable, namely
name:

z; };
;

 operator has to be

to type bal
First Back TOC Structures and Pointers

14.2.3 Pointers to Structures and the Arrow

Structure pointers are declared as any other poin
by putting an * in front of a structure´s variable

struct int_vector { int x, y,
int_vector *int_vector_pointer

To find the

address

 of a structure variable, the &
placed before the structure variable´s name:

struct bal{
float balance;
char name[80];

} balance_record;

bal *rec;

// a structure pointer

 rec = &balance_record;

Page 13 Chapter 14: Structures © Christian Jacob

Prev Next Last

h a pointer to the

r example:

ion parameters1.

nction arguments

First Back TOC Structures and Pointers

Accessing the Members of a Structure by Pointers

The members of a structure can be accessed throug
structure.

However, one cannot use the dot operator!

Instead, the arrow operator (->) has to be used. Fo

rec->balance

or

rec->name

Structure pointers are especially important as funct

Pointers enable the passing of large structures as fu
in an efficient and fast way.

1. See Chapters 14 and 15 for details.

Page 14 Chapter 14: Structures © Christian Jacob

Prev Next Last

any other data

 array of ints

ture stype, one

ure name.

First Back TOC More Complex Structures

14.3 More Complex Structures

14.3.1 Arrays Within Structures

A structure member that is an array is treated like
type.

struct stype {
int numbers[10][10];

// 10 x 10

float b;
} var;

To reference integer 3,7 in

numbers

 of

var

 of struc

would write:

var.numbers[3][7]

Note that the

array name

 is indexed, not the struct

Page 15 Chapter 14: Structures © Christian Jacob

Prev Next Last

ber of a

ed inside emp:

First Back TOC More Complex Structures

14.3.2 Structures Within Structures

A nested structure occurs when a structure is a mem
structure.

In the following example the structure addr

 is nest

struct

addr

 {
char name[40];
char street[40];
char city[40];
char zip[7];

};
struct emp {

addr

 address;
float wage;

} worker;

worker.address.zip = "T2N3F4";

Page 16 Chapter 14: Structures © Christian Jacob

Prev Next Last

e as a member.

tructure type,

struct object

First Back TOC More Complex Structures

14.3.3 Recursive Structures

A structure may also contain a pointer to a structur

The structure pointer can even point to the same s
which results in a recursive structure definition.

struct mystruct {
int a;
char str[80];
mystruct *sptr;

// pointer to my

};

Page 17 Chapter 14: Structures © Christian Jacob

Prev Next Last

plementing

linked

r for details), where

ent;

First Back TOC More Complex Structures

Recursive structures are particularly useful for im
lists for sorting and searching problems (see late
data structures like the following are used:

struct int_list_entry {
int value;
int_list_entry *next_list_elem

};

Page 18

 Chapter 14: Structures © Christian Jacob

Prev Next Last

d by two or more
r to that of a

ger or a single

r ch share the same

mory to hold the

First Back TOC More Complex Structures

14.3.4 Unions

In C++, a union is a memory location that is share
different variables. The union definition is simila
structure, as the following example shows:

union utype {
short int i;
char ch;

} uvar;

This data type utype

 can hold either a short inte
character.

In uvar, both the short integer

i

 and the characte

memory location.

The compiler automatically allocates enough me
largest variable type in the union.

Page 19 Chapter 14: Structures © Christian Jacob

Prev Next Last

tants

.

e general format:

ariable_list;

able of the

el, Red_Del,
 red, yellow;

First Back TOC More Complex Structures

14.3.5 Enumerations

C++ allows to define a list of named integer cons

Such a list is called an enumeration, which has th

enum

enum_type_name

 {

enumeration_list

}

v

The enumeration list represents the values a vari
enumeration type can have.

enum apple {Jonathan, Golden_D
 Cortland, McIntosh}

apple fruit;
fruit = Cortland;
if(fruit == Red_Del)

cout “Red Delicious\n”;

Page 20 Chapter 14: Structures © Christian Jacob

Prev Next Last

 of the symbols

 0, the value of the

integer expression.

tland;

d to enumerated

poor style!!!

First Back TOC More Complex Structures

The key point about an enumeration is that each
stands for an integer value:

The value of the first enumeration symbol is
second symbol is 1, etc.

Hence, enumeration symbols can be used in any

cout << Jonathan << ‘ ‘ << Cor

Output:

0 4

However, integers are not automatically converte
constants:

fruit = 1;

// Error

It works only with a type cast:

fruit = (apple) 1; // OK, but

Page 21 Chapter 14: Structures © Christian Jacob

Prev Next Last

ting data type.

 new name for this

 C++ data types or

the data types

First Back TOC More Complex Structures

14.3.6 New Names for Data Types

C++ allows you to define a new name for an exis

typedef type name;

Here

type

 is any valid data type, and

name

 is the
type.

This allows to use descriptive names for standard
rename user-defined data types.

typedef float balance;

balance over_due = 123.56;
typedef apple pear;

Here

balance

 and

pear

 are just new names for

float

 and

apple

, respectively.

Page 22 Chapter 14: Structures © Christian Jacob

Prev Next Last

ill, Berkeley, CA,

First Back TOC References

14.4 References

• H. Schildt, C++ from the Ground Up, McGraw-H
1998. Chapter 10.

	14.1.1 Basic Definitions
	14.1.2 Examples of Structures
	14.1.3 Accessing Structure Members
	14.1.4 Arrays of Structures
	14.2 Structures and Pointers
	14.2.1 Assigning Structures
	14.2.2 References to Structures
	14.2.3 Pointers to Structures and the Arrow Operator

	14.3 More Complex Structures
	14.3.1 Arrays Within Structures
	14.3.2 Structures Within Structures
	14.3.3 Recursive Structures
	14.3.4 Unions
	14.3.5 Enumerations
	14.3.6 New Names for Data Types

	14.4 References

