ol

© Christian Jacob

14.1

14.2

Chapter 14

Structures

Structures

14.1.1 Basic Definitions

14.1.2 Examples of Structures

14.1.3 Accessing Structure Members
14.1.4 Arrays of Structures

Structures and Pointers

14.2.1 Assigning Structures
14.2.2 References to Structures
14.2.3 Pointers to Structures and the Arrow Operator

Chapter Overview

ol

© Christian Jacob

14.3 More Complex Structures

14.3.1 Arrays Within Structures
14.3.2 Structures Within Structures
14.3.3 Recursive Structures

14.3.4 Unions

14.3.5 Enumerations

14.3.6 New Names for Data Types

14.4 References

Chapter Overview

Page 3 Chapter 14: Structures © Christian Jacob

ol

14.1 Structures

14.1.1 Basic Definitions

In C++, a structure is a collection of variables that are referenced
under one name. This provides a convenient means of keeping
related information together.

Structures are referred to as compound data types; they consist of
several different variables, which are yet logically connected.

First Back TOC Prev Next Last

ol

Page 4 Chapter 14: Structures

© Christian Jacob

The general form of a structure declaration is:

struct struct_type_name {
type member_name_1,;
type member_name_2;

type member_name_N;,
} structure _variables;

The variables that comprise the structure are called members,

elements, or fields.

In—m—ah
in HED = First Back TOC

Prev Next Last

Page 5 Chapter 14: Structures © Christian Jacob

14.1.2 Examples of Structures

o Address:

struct canadaAddress {

char firstName[80]; [/ first nane
char | ast Nanme[80] ; [l last nane
char street[40]; [/ street nane

I nt houseNunber /'l house nunber
char city[40]; [l city

char province[3]; /| province code
char post al Code[7] ; /| postal code

} addressEntry;

canadaAddr ess addressVari abl e;

ol

n—n
ma

First Back TOC Prev Next Last

Page 6 Chapter 14: Structures © Christian Jacob

ol

e Vector:
struct vector {
fl oat x: [/ X coordi nat e
float vy; /'l y coordinate
fl oat z: [/ z coordi nate

} referencePoint, |eftUpper, |owerR ght;

e Employee:

struct enpl oyee {
char nane[80];
char phone[20] ;
fl oat hours;
fl oat wage,;
};
enpl oyee dat abaseEntry;

n—n i
ma

First Back TOC Prev Next Last

ol

Page 7 Chapter 14: Structures © Christian Jacob

14.1.3 Accessing Structure Members

Elements of a structure are accessed through the use of the dot
operator, the general form of which is:

structure variable . element_name

Example:

struct vector {

fl oat x: [l Xx coordi nat e
float vy; /'l y coordinate
fl oat z: [l z coordi nate

} referencePoint, |eftUpper, |owerR ght;

| ef t Upper.x = 0. 5;

| ef t Upper.y = 1. 3;

| eft Upper.z = 7. 9;
= mEm E

First Back TOC Prev Next Last

ol

Page 8 Chapter 14: Structures © Christian Jacob

14.1.4 Arrays of Structures

It is common to use arrays of structures. However, the structure has
to be defined first, before any array declarations that refer to this
particular structure.

Example:

struct enpl oyee {
char nane[80];
fl oat hours;
fl oat wage;

}

enpl oyee staff[100];

Any entry in the database can be referred to by using the dot
operator:

cout << staff[81]. nane;
staff[3]. hours = 38.5;

| o e B
L First Back TOC Prev Next Last

“ ™

Page 9 Chapter 14: Structures

© Christian Jacob

14.2 Structures and Pointers

14.2.1 Assigning Structures

The contents of one structure can be assigned to another as long as

both structures are of the same type.

struct nystruct { int a, b; };

I nt main()

{
nystruct Xx, V;
x.a =y.b =10, // svarl: 10
X.a =Yy.b =20, // svar2: 20

y = X; // assign structures
return O; }

10
20

[B
First Back TOC Structures and Pointers

Prev Next Last

ol

Page 10

Chapter 14: Structures © Christian Jacob

14.2.2 References to Structures

-
|

A function can have a reference to a structure as a parameter or as a
return type.

struct nystruct { int a; int b; };

nmystruct &f (nystruct &var)

{
var.a = var.a * var. a;
var.b = var.b / var. b;
return var:

}

voi d mai n()

{
nystruct X, V;
Xx.a = 10;: x.b = 20;
y = f(x); }

TR B

First Back TOC Structures and Pointers Prev Next Last

ol

Page 11 Chapter 14: Structures © Christian Jacob

Any structures that have different type names are considered

different by the compiler, even if the structure definitions look the

Same:

struct stypeA {
Int a, Db;

i

struct stypeB {
Int a, b;

}

st ypeA X;
stypeB y;

y = X; [/ Error: type msnatch

m-E—nat
ma

First Back TOC Structures and Pointers Prev Next Last

ol

Page 12 Chapter 14: Structures © Christian Jacob

14.2.3 Pointers to Structures and the Arrow Operator

Structure pointers are declared as any other pointer variable, namely
by putting an * in front of a structure’s variable name:

struct i1nt _vector { int x, vy, z;, },
| Nt _vector *int_vector pointer;

To find the address of a structure variable, the & operator has to be
placed before the structure variable’s name:

struct bal{
f1 oat bal ance;
char nane[80];
} bal ance_record;

bal *rec; // a structure pointer to type bal

rec = &bal ance record;

m-E—nat
ma

First Back TOC Structures and Pointers Prev Next Last

Page 13 Chapter 14: Structures © Christian Jacob
Accessing the Members of a Structure by Pointers
The members of a structure can be accessed through a pointer to the
structure.
However, one cannot use the dot operator!
Instead, the arrow operator (->) has to be used. For example:
rec- >bal ance
or
rec- >nane
Structure pointers are especially important as function parameters’.
Pointers enable the passing of large structures as function arguments
in an efficient and fast way.
-
1. See Chapters 14 and 15 for details.
1 'n—n ?l
lHE I BNl m

First Back TOC Structures and Pointers Prev Next Last

ol

Page 14 Chapter 14: Structures © Christian Jacob

14.3 More Complex Structures

14.3.1 Arrays Within Structures

A structure member that is an array is treated like any other data
type.

struct stype {
I nt nunbers[10][10]; // 10 x 10 array of ints
fl oat b;

} var;

To reference integer 3,7 in numbers of var of structure stype, one
would write:

var . nunber s[3] [7]

Note that the array name is indexed, not the structure name.

-—= | B
First Back TOC More Complex Structures Prev Next Last

Page 15 Chapter 14: Structures © Christian Jacob

ol

14.3.2 Structures Within Structures

A nested structure occurs when a structure is a member of a
structure.

In the following example the structure addr is nested inside emp:

struct addr {
char nane[40];
char street[40],;
char city[40];
char zip[7];

}

struct enp {
addr address;
fl oat wage,;

} wor ker;

wor ker . address. zip = "T2N3F4";

-—= | B
First Back TOC More Complex Structures Prev Next Last

ol

Page 16 Chapter 14: Structures © Christian Jacob

14.3.3 Recursive Structures
A structure may also contain a pointer to a structure as a member.

The structure pointer can even point to the same structure type,
which results in a recursive structure definition.

struct nystruct {

I nt a;

char str[80];

nystruct *sptr; // pointer to nystruct object

};

-—= | B
First Back TOC More Complex Structures Prev Next Last

Page 17 Chapter 14: Structures © Christian Jacob

Recursive structures are particularly useful for implementing linked
lists for sorting and searching problems (see later for details), where ——
data structures like the following are used:

struct int _list entry {
| nt val ue;
Int_list _entry *next |ist_elenent;

i

ol

-;= | B
First Back TOC More Complex Structures Prev Next Last

ol

Page 18

Chapter 14: Structures © Christian Jacob

14.3.4 Unions

In C++, a union is a memory location that is shared by two or more
different variables. The union definition is similar to that of a
structure, as the following example shows:

uni on utype {
short 1nt iI;
char ch;

} uvar;

This data type utype can hold either a short integer or a single
character.

In uvar, both the short integer i and the character ch share the same
memory location.

The compiler automatically allocates enough memory to hold the
largest variable type in the union.

First Back TOC More Complex Structures Prev Next Last

Page 19 Chapter 14: Structures © Christian Jacob

14.3.5 Enumerations
C++ allows to define a list of named integer constants.

Such a list is called an enumeration, which has the general format:

enum enum_type_name { enumeration_list } variable_list;

The enumeration list represents the values a variable of the
enumeration type can have.

enum appl e {Jonat han, Gol den Del, Red Del,
Cortl and, Ml ntosh} red, yell ow,

apple fruit;
frurt = Cortl and;
1f(fruit == Red Del)

cout “Red Delicious\n”;

ol

-;= | B
First Back TOC More Complex Structures Prev Next Last

ol

Page 20 Chapter 14: Structures © Christian Jacob
The key point about an enumeration is that each of the symbols
stands for an integer value:

The value of the first enumeration symbol is 0, the value of the
second symbol is 1, etc.
Hence, enumeration symbols can be used in any integer expression.
cout << Jonathan << * * << Cortl and,;
Output: 04
However, integers are not automatically converted to enumerated
constants:
fruit =1; // Error
It works only with a type cast:
fruit = (apple) 1; // OK, but poor style!!!
L ol el B
n um

First Back TOC More Complex Structures Prev Next Last

Page 21 Chapter 14: Structures © Christian Jacob

14.3.6 New Names for Data Types
-

C++ allows you to define a new name for an existing data type.

typedef type name;

Here type is any valid data type, and name is the new name for this
type.

This allows to use descriptive names for standard C++ data types or
rename user-defined data types.

t ypedef fl oat bal ance;

bal ance over due = 123. 56;
t ypedef appl e pear;

Here balance and pear are just new names for the data types
float and apple, respectively.

Prev Next Last

ol

L o ol B
HED = First Back TOC More Complex Structures

ol

Page 22 Chapter 14: Structures © Christian Jacob

14.4 References

e H. Schildt, C++ from the Ground Up, McGraw-Hill, Berkeley, CA,
1998. Chapter 10.

First Back TOC References Prev Next Last

	14.1.1 Basic Definitions
	14.1.2 Examples of Structures
	14.1.3 Accessing Structure Members
	14.1.4 Arrays of Structures
	14.2 Structures and Pointers
	14.2.1 Assigning Structures
	14.2.2 References to Structures
	14.2.3 Pointers to Structures and the Arrow Operator

	14.3 More Complex Structures
	14.3.1 Arrays Within Structures
	14.3.2 Structures Within Structures
	14.3.3 Recursive Structures
	14.3.4 Unions
	14.3.5 Enumerations
	14.3.6 New Names for Data Types

	14.4 References

