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14.1 Structures

14.1.1 Basic Definitions

In C++, a structure is a collection of variables that are referenced
under one name. This provides a convenient means of keeping
related information together.

Structures are referred to as compound data types; they consist of
several different variables, which are yet logically connected.
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The general form of a structure declaration is:

struct struct_type_name {
type member_name_1,;
type member_name_2;

type member_name_N;,
} structure _variables;

The variables that comprise the structure are called members,

elements, or fields.
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14.1.2 Examples of Structures

o Address:

struct canadaAddress {

char firstName[ 80]; [/ first nane
char | ast Nanme[ 80] ; [l last nane
char street[40]; [/ street nane

I nt  houseNunber /'l house nunber
char city[40]; [l city

char province[ 3]; /| province code
char post al Code[ 7] ; /| postal code

} addressEntry;

canadaAddr ess addressVari abl e;
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e Vector:
struct vector {
fl oat x: [/ X coordi nat e
float vy; /'l y coordinate
fl oat z: [/ z coordi nate

} referencePoint, |eftUpper, |owerR ght;

e Employee:

struct enpl oyee {
char nane[ 80];
char phone[ 20] ;
fl oat hours;
fl oat wage,;
};
enpl oyee dat abaseEntry;
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14.1.3 Accessing Structure Members

Elements of a structure are accessed through the use of the dot
operator, the general form of which is:

structure variable . element_name

Example:

struct vector {

fl oat x: [l Xx coordi nat e
float vy; /'l y coordinate
fl oat z: [l z coordi nate

} referencePoint, |eftUpper, |owerR ght;

| ef t Upper.x = 0. 5;

| ef t Upper.y = 1. 3;

| eft Upper.z = 7. 9;
= mEm E
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14.1.4 Arrays of Structures

It is common to use arrays of structures. However, the structure has
to be defined first, before any array declarations that refer to this
particular structure.

Example:

struct enpl oyee {
char nane[ 80];
fl oat hours;
fl oat wage;

}

enpl oyee staff[100];

Any entry in the database can be referred to by using the dot
operator:

cout << staff[81]. nane;
staff[3]. hours = 38.5;
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14.2 Structures and Pointers

14.2.1 Assigning Structures

The contents of one structure can be assigned to another as long as

both structures are of the same type.

struct nystruct { int a, b; };

I nt main()

{
nystruct Xx, V;
x.a =y.b =10, // svarl: 10
X.a =Yy.b =20, // svar2: 20

y = X; // assign structures
return O; }
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14.2.2 References to Structures

-
|

A function can have a reference to a structure as a parameter or as a
return type.

struct nystruct { int a; int b; };

nmystruct &f (nystruct &var)

{
var.a = var.a * var. a;
var.b = var.b / var. b;
return var:

}

voi d mai n()

{
nystruct X, V;
Xx.a = 10;: x.b = 20;
y = f(x); }
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Any structures that have different type names are considered

different by the compiler, even if the structure definitions look the

Same:

struct stypeA {
Int a, Db;

i

struct stypeB {
Int a, b;

}

st ypeA X;
stypeB y;

y = X; [/ Error: type msnatch
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14.2.3 Pointers to Structures and the Arrow Operator

Structure pointers are declared as any other pointer variable, namely
by putting an * in front of a structure’s variable name:

struct i1nt _vector { int x, vy, z;, },
| Nt _vector *int_vector pointer;

To find the address of a structure variable, the & operator has to be
placed before the structure variable’s name:

struct bal{
f1 oat bal ance;
char nane[ 80];
} bal ance_record;

bal *rec; // a structure pointer to type bal

rec = &bal ance record;
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Accessing the Members of a Structure by Pointers
The members of a structure can be accessed through a pointer to the
structure.
However, one cannot use the dot operator!
Instead, the arrow operator ( ->) has to be used. For example:
rec- >bal ance
or
rec- >nane
Structure pointers are especially important as function parameters’.
Pointers enable the passing of large structures as function arguments
in an efficient and fast way.
-
1. See Chapters 14 and 15 for details.
1 'n—n ?l
lHE I BNl m

First Back TOC Structures and Pointers Prev Next Last



ol

Page 14 Chapter 14: Structures © Christian Jacob

14.3 More Complex Structures

14.3.1 Arrays Within Structures

A structure member that is an array is treated like any other data
type.

struct stype {
I nt nunbers[10][10]; // 10 x 10 array of ints
fl oat b;

} var;

To reference integer 3,7 in numbers of var of structure stype, one
would write:

var . nunber s[ 3] [ 7]

Note that the array name is indexed, not the structure name.
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14.3.2 Structures Within Structures

A nested structure occurs when a structure is a member of a
structure.

In the following example the structure addr is nested inside emp:

struct addr {
char nane[ 40];
char street[40],;
char city[40];
char zip[7];

}

struct enp {
addr address;
fl oat wage,;

} wor ker;

wor ker . address. zip = "T2N3F4";
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14.3.3 Recursive Structures
A structure may also contain a pointer to a structure as a member.

The structure pointer can even point to the same structure type,
which results in a recursive structure definition.

struct nystruct {

I nt a;

char str[80];

nystruct *sptr; // pointer to nystruct object

};
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Recursive structures are particularly useful for implementing linked
lists for sorting and searching problems (see later for details), where ——
data structures like the following are used:

struct int _list entry {
| nt val ue;
Int_list _entry *next |ist_elenent;

i
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14.3.4 Unions

In C++, a union is a memory location that is shared by two or more
different variables. The union definition is similar to that of a
structure, as the following example shows:

uni on utype {
short 1nt iI;
char ch;

} uvar;

This data type utype can hold either a short integer or a single
character.

In uvar, both the short integer i and the character ch share the same
memory location.

The compiler automatically allocates enough memory to hold the
largest variable type in the union.
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14.3.5 Enumerations
C++ allows to define a list of named integer constants.

Such a list is called an enumeration, which has the general format:

enum enum_type_name { enumeration_list } variable_list;

The enumeration list represents the values a variable of the
enumeration type can have.

enum appl e {Jonat han, Gol den Del, Red Del,
Cortl and, Ml ntosh} red, yell ow,

apple fruit;
frurt = Cortl and;
1f(fruit == Red Del)

cout “Red Delicious\n”;

ol
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The key point about an enumeration is that each of the symbols
stands for an integer value:

The value of the first enumeration symbol is 0, the value of the
second symbol is 1, etc.
Hence, enumeration symbols can be used in any integer expression.
cout << Jonathan << * * << Cortl and,;
Output: 04
However, integers are not automatically converted to enumerated
constants:
fruit =1; // Error
It works only with a type cast:
fruit = (apple) 1; // OK, but poor style!!!
L ol el B
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14.3.6 New Names for Data Types
-

C++ allows you to define a new name for an existing data type.

typedef type name;

Here type is any valid data type, and name is the new name for this
type.

This allows to use descriptive names for standard C++ data types or
rename user-defined data types.

t ypedef fl oat bal ance;

bal ance over due = 123. 56;
t ypedef appl e pear;

Here balance and pear are just new names for the data types
float and apple, respectively.
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