ol

© Christian Jacob

Chapter 12

Pointers
(Part 1)

12.1 Pointer Basics
12.1.1 What Are Pointers?
12.1.2 Pointer Operators
12.2 Working with Pointers
12.2.1 Assigning Values Through Pointers
12.2.2 Pointer Expressions
12.2.3 Pointer Comparisons
12.3 Pointers and Function Parameters
12.4 References
m
N

Chapter Overview

ol

Page 2

Chapter 11: Pointers © Christian Jacob

12.1 Pointer Basics

12.1.1 What Are Pointers?

A pointer is a variable that contains a memory address.
Very often this address is the location of another variable.

The general form of a pointer variable declaration in C++ is:

type *variable-name;

e type the pointer’s base type.

It must be a valid C++ type.
e variable-name the name of the pointer variable
° * the “at address” operator

Returns the value of the variable located
at the address specified by its operand.

First Back TOC Prev Next Last

ol

Page 3 Chapter 11: Pointers © Christian Jacob

Examples of pointers:

I nt *int_pointer,;

float *float pointer;

/] pointer to integer

[/ pointer to fl oat

char *str; // pointer to a char or string

Int **ptrptr; // pointer to a pointer

L o e B
a

First Back TOC

Prev Next Last

Page 4 Chapter 11: Pointers © Christian Jacob

ol

12.1.2 Pointer Operators

There are two special operators that are used with pointers:

e & : "address of ..." operator

A unary operator which returns the memory
address of its operand.

° * :"value at address ...” operator

A unary operator which returns the value of
the variable located at the address specified by
its operand.

First Back TOC Prev Next Last

ol

Page 5 Chapter 11: Pointers

© Christian Jacob

Example:

| nt bal ance:
| nt *bal ptr;

bal ptr = &bal ance;

12

100

130

100

bal_ptr

balance

value

In—m—ah
u First Back TOC

Prev Next Last

ol

Back TOC

Page 6 Chapter 11: Pointers © Christian Jacob
Example:
| nt bal ance, val ue;
| nt *bal ptr;
bal ance = 3200; [/ Step 1
bal ptr = &bal ance; /] Step 2
val ue = *bal ptr; /] Step 3
Step 1: Step 2: Step 3:
12 - bal ptr 12 100 bal ptr 12 100 bal ptr
100 32.00 balance 100 32.00 balance 100 32.00 balance
130 — value 130 - value 130 32-00 value
= mEE

Prev Next Last

ol

Page 7

Chapter 11: Pointers © Christian Jacob

Importance of the Base Type

How does C++ know how many bytes to copy into value from the
address pointed to by balptr?

How does the compiler know the proper number of bytes for any
assignment using a pointer?

Answer: The base type of the pointer determines the type of data
that the compiler assumes the pointer is pointing to.

The following code fragment is incorrect:

Int *int _ptr; double f;
Int_ptr = & ; // ERROR

Technically correct, but not recommended (using a type cast
operator):

Int_ptr = (int *) &f;

First Back TOC Prev Next Last

“ ™

First Back TOC

Page 8 Chapter 11: Pointers © Christian Jacob
Example for why to be careful about type casts with pointers:
voi d mai n()
{
doubl e x, v;
Nt *ptr;
X = 123. 23;
potr = (int *) &x; // use cast to assign
/| double* to int*
y = *ptr; [/ What wll this do?
cout <<y, [l What wll this print?
}
B—ail
‘Il ENT &m

Prev Next Last

“ ™

Page 9 Chapter 11: Pointers © Christian Jacob

12.2 Working with Pointers

12.2.1 Assigning Values Through Pointers

e Pointers can be used on the left side of assignment statements.

The following code fragment assigns a value to the location
pointed to by the pointer.

Nt *ptr;
*ptr = 101;

“At the location pointed to by p, assign the value 101.”

e Increment and decrement operations work on pointers, too.

(*ptr) ++;

“At the location pointed to by p, increment the value by 1.”

First Back TOC Working with Pointers Prev Next Last

Page 10 Chapter 11: Pointers © Christian Jacob

ol

Example program for assigning values through pointers:

voi d main()

{ : Step 1
Int *ptr, num Il 1
ptr = &numn Il 2 12 *_int ptr
*ptr = 100; Il 3
cout << num<< ° °; 50 _int num
(*ptr)++; /] 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';

First Back TOC Working with Pointers Prev Next Last

Page 11 Chapter 11: Pointers © Christian Jacob

ol

Example program for assigning values through pointers:

voi d main()

{ : Step 2
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< ° °; 50 _int num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';

First Back TOC Working with Pointers Prev Next Last

Page 12 Chapter 11: Pointers © Christian Jacob

Example program for assigning values through pointers:

voi d nmai n()

{ : Step 3
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 1(_)0 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';

ol

First Back TOC Working with Pointers Prev Next Last

Page 13 Chapter 11: Pointers © Christian Jacob

Example program for assigning values through pointers:

voi d nmai n()

1 Step 4
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 1(_)1 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';

ol

First Back TOC Working with Pointers Prev Next Last

Page 14 Chapter 11: Pointers © Christian Jacob

Example program for assigning values through pointers:

voi d nmai n()

{ : Step 5
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 292 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, /] 5
cout << num << °

\n';

ol

First Back TOC Working with Pointers Prev Next Last

Page 15 Chapter 11: Pointers © Christian Jacob

ol

12.2.2 Pointer Expressions
Pointers can be used in most C++ expressions.

Keep in mind to use parentheses around pointer expressions.

Pointer Arithmetic

Only four arithmetic operators can be used on pointers:

°* ++

® ==

° +

o -
- mEE B

First Back TOC Working with Pointers Prev Next Last

Chapter 11: Pointers

© Christian Jacob

ol

First Back

TOC

Page 16
Example: (assuming 32-bit integers)
Int *pl; // assune: pl == 2000
pl++; _
1996 byte 1 byte 2 byte 3 byte 4
2000 byte 1 byte 2 byte 3 byte 4
> 2004 byte 1 byte 2 byte 3 byte 4
e Integers can be added or subtracted from pointers:
e You can subtract pointers of the same type from one another.
You can not add pointers! However, you can add int numbers to pointers:
-
1 u Working with Pointers Prev Next Last

ol

First Back TOC

Page 17 Chapter 11: Pointers © Christian Jacob
voi d mai n()
int 1[10], *intPtr;
doubl e d[10], *doubl ePtr;
| Nt X;
IntPtr = i; I/ i _ptr points to first elenent of i
doubl ePtr = d; /] f _ptr points to first elenent of f
for(x=0; x < 10; x++)
cout << InthPtr + Xx;
cout << ° *‘:
cout << doublePtr + x;
cout << endl:
In—m—M|
m mm i |

Working with Pointers Prev Next Last

Page 18 Chapter 11: Pointers

© Christian Jacob

Output of the example program:

The addresses of the array elements:

4 bytes int 8 bytes double

Oxeffffd9c Oxeffffd48
OxeffffdaO Oxeffffd50
Oxeffffdad4 Oxeffffd58
Oxeffffda8 Oxeffffd6O
Oxeffffdac Oxeffffd68
OxeffffdbO Oxeffffd70
Oxeffffdb4 Oxeffffd78
Oxef fffdb8 Oxeffffd80
Oxeffffdbc Oxeffffd88
OxeffffdcO Oxeffffd9oO

ol

n—n
ma

First Back TOC Working with Pointers

Prev Next Last

Page 19 Chapter 11: Pointers © Christian Jacob

ol

If we want to see the values at these addresses, we have to use the
"value at ..." operator (*): ——

voi d main()
{
int 1[3]={1,2,3}, *IinthPtr,
double d[3]={1.1, 2. 2,3. 3}, *doubl ePtr;

| Nt X;
INtPtr = 1: // i ptr points to first elenment of |
doubl ePtr = d; /| f _ptr points to first elenent of f

for(x=0; x < 3; Xx++)
cout << *(intPtr + X);
cout << ' 7;
cout << *(doublePtr + x);
cout << endl;

First Back TOC Working with Pointers Prev Next Last

Page 20 Chapter 11: Pointers

© Christian Jacob

ol

12.2.3 Pointer Comparisons

Pointers may be compared using relational operators, such as:

I=, ==, <, and >.

voi d main()

{
I nt nunf 10] ;
Int *start, *end:

start = num
end = &nuni 9] ;

while(start !'= end) {

cout << “Enter a nunber:

cln >> *start:
start ++;

bl

m—a—nai
u First Back TOC Working with Pointers

Prev Next Last

First Back TOC Working with Pointers

Page 21 Chapter 11: Pointers © Christian Jacob
Pointer Comparisons (2): using pointer arithmetic
Pointers may be compared using relational operators, such as !=, ==,
<, and >.
voi d mai n()
{ .
| nt nunf 10] ;
Int *start, *end;
start = num
end = &nunf 9] ;
while((end - start) > 0) {
cout << “Enter a nunber: “;
cin >> *start;
start ++;
L ;o)
[B
b | EI—-—I [B
ma . [| B

Prev Next Last

“ ™

Page 22 Chapter 11: Pointers

© Christian Jacob

12.3 Pointers and Function Parameters

Back to Mine Sweeper:

void GetCoordinates(int &, int &);

voi d mai n()

{

Int 1, J; // local variables

Get Coordi nates(i, j);

[/ Mani pul ates coordi nates as a side effect

First Back TOC Pointers and Function Parameters

Prev Next Last

ol

Page 23 Chapter 11: Pointers © Christian Jacob

12.4 References

e G. Blank and R. Barnes, The Universal Machine, Boston, MA: WCB/
McGraw-Hill, 1998. Chapter 9.

e H. Schildt, C++ from the Ground Up, McGraw-Hill, Berkeley, CA,
1998. Chapter 6.

In—m—ah
u First Back TOC References Prev Next Last

	12.1.1 What Are Pointers?
	12.1.2 Pointer Operators
	12.2 Working with Pointers
	12.2.1 Assigning Values Through Pointers
	12.2.2 Pointer Expressions
	12.2.3 Pointer Comparisons

	12.3 Pointers and Function Parameters
	12.4 References

