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12.1 Pointer Basics

12.1.1 What Are Pointers?

A pointer is a variable that contains a memory address.
Very often this address is the location of another variable.

The general form of a pointer variable declaration in C++ is:

type *variable-name;

e type the pointer’s base type.

It must be a valid C++ type.
e variable-name the name of the pointer variable
° * the “at address” operator

Returns the value of the variable located
at the address specified by its operand.
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Examples of pointers:

I nt *int_pointer,;

float *float pointer;

/] pointer to integer

[/ pointer to fl oat

char *str; // pointer to a char or string

Int **ptrptr; // pointer to a pointer

L o e B
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12.1.2 Pointer Operators

There are two special operators that are used with pointers:

e & : "address of ..." operator

A unary operator which returns the memory
address of its operand.

° * :"value at address ...” operator

A unary operator which returns the value of
the variable located at the address specified by
its operand.
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Example:

| nt bal ance:
| nt *bal ptr;

bal ptr = &bal ance;

12

100

130

100

bal_ptr

balance

value
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Example:
| nt bal ance, val ue;
| nt *bal ptr;
bal ance = 3200; [/ Step 1
bal ptr = &bal ance; /] Step 2
val ue = *bal ptr; /] Step 3
Step 1: Step 2: Step 3:
12 - bal ptr 12 100 bal ptr 12 100 bal ptr
100 32.00 balance 100 32.00 balance 100 32.00 balance
130 — value 130 - value 130 32-00 value
= mEE
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Importance of the Base Type

How does C++ know how many bytes to copy into value from the
address pointed to by balptr?

How does the compiler know the proper number of bytes for any
assignment using a pointer?

Answer: The base type of the pointer determines the type of data
that the compiler assumes the pointer is pointing to.

The following code fragment is incorrect:

Int *int _ptr; double f;
Int_ptr = & ; // ERROR

Technically correct, but not recommended (using a type cast
operator):

Int_ptr = (int *) &f;
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Example for why to be careful about type casts with pointers:
voi d mai n()
{
doubl e x, v;
Nt *ptr;
X = 123. 23;
potr = (int *) &x; // use cast to assign
/| double* to int*
y = *ptr; [/ What wll this do?
cout <<y, [l What wll this print?
}
B—ail
‘Il ENT &m
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12.2 Working with Pointers

12.2.1 Assigning Values Through Pointers

e Pointers can be used on the left side of assignment statements.

The following code fragment assigns a value to the location
pointed to by the pointer.

Nt *ptr;
*ptr = 101;

“At the location pointed to by p, assign the value 101.”

e Increment and decrement operations work on pointers, too.

(*ptr) ++;

“At the location pointed to by p, increment the value by 1.”
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Example program for assigning values through pointers:

voi d main()

{ : Step 1
Int *ptr, num Il 1
ptr = &numn Il 2 12 *_int ptr
*ptr = 100; Il 3
cout << num<< ° °; 50 _int num
(*ptr)++; /] 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';
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Example program for assigning values through pointers:

voi d main()

{ : Step 2
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< ° °; 50 _int num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';
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Example program for assigning values through pointers:

voi d nmai n()

{ : Step 3
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 1(_)0 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';
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Example program for assigning values through pointers:

voi d nmai n()

1 Step 4
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 1(_)1 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, Il 5
cout << num << °

\n';
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Example program for assigning values through pointers:

voi d nmai n()

{ : Step 5
Int *ptr, num Il 1
ptr = &numn Il 2 12 50 ptr
*ptr = 100; Il 3
cout << num<< * °; >0 292 num
(*ptr)++; /1 4 :

cout << num << :

(*ptr)*2, /] 5
cout << num << °

\n';
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12.2.2 Pointer Expressions
Pointers can be used in most C++ expressions.

Keep in mind to use parentheses around pointer expressions.

Pointer Arithmetic

Only four arithmetic operators can be used on pointers:

°* ++

® ==

° +

o -
- mEE B
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Example: (assuming 32-bit integers)
Int *pl; // assune: pl == 2000
pl++; _
1996 byte 1 byte 2 byte 3 byte 4
2000 byte 1 byte 2 byte 3 byte 4
> 2004 byte 1 byte 2 byte 3 byte 4
e Integers can be added or subtracted from pointers:
e You can subtract pointers of the same type from one another.
You can not add pointers! However, you can add int numbers to pointers:
-
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voi d mai n()
int 1[10], *intPtr;
doubl e d[ 10], *doubl ePtr;
| Nt X;
IntPtr = i; I/ i _ptr points to first elenent of i
doubl ePtr = d; /] f _ptr points to first elenent of f
for(x=0; x < 10; x++)
cout << InthPtr + Xx;
cout << ° *‘:
cout << doublePtr + x;
cout << endl:
In—m—M|
m mm i |
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Output of the example program:

The addresses of the array elements:

4 bytes int 8 bytes double

Oxeffffd9c Oxeffffd48
OxeffffdaO Oxeffffd50
Oxeffffdad4 Oxeffffd58
Oxeffffda8 Oxeffffd6O
Oxeffffdac Oxeffffd68
OxeffffdbO Oxeffffd70
Oxeffffdb4 Oxeffffd78
Oxef fffdb8 Oxeffffd80
Oxeffffdbc Oxeffffd88
OxeffffdcO Oxeffffd9oO

ol
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If we want to see the values at these addresses, we have to use the
"value at ..." operator (*): ——

voi d main()
{
int 1[3]={1,2,3}, *IinthPtr,
double d[3]={1.1, 2. 2,3. 3}, *doubl ePtr;

| Nt X;
INtPtr = 1: // i ptr points to first elenment of |
doubl ePtr = d; /| f _ptr points to first elenent of f

for(x=0; x < 3; Xx++)
cout << *(intPtr + X);
cout << ' 7;
cout << *(doublePtr + x);
cout << endl;
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12.2.3 Pointer Comparisons

Pointers may be compared using relational operators, such as:

I=, ==, <, and >.

voi d main()

{
I nt nunf 10] ;
Int *start, *end:

start = num
end = &nuni 9] ;

while(start !'= end) {

cout << “Enter a nunber:

cln >> *start:
start ++;

bl
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Pointer Comparisons (2): using pointer arithmetic
Pointers may be compared using relational operators, such as !=, ==,
<, and >.
voi d mai n()
{ .
| nt nunf 10] ;
Int *start, *end;
start = num
end = &nunf 9] ;
while((end - start) > 0) {
cout << “Enter a nunber: “;
cin >> *start;
start ++;
L ;o)
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12.3 Pointers and Function Parameters

Back to Mine Sweeper:

void GetCoordinates(int &, int & );

voi d mai n()

{

Int 1, J; // local variables

Get Coordi nates(i, j);

[/ Mani pul ates coordi nates as a side effect
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