

©

Christian Jacob

ds

 Chapter Overview

Chapter 9

Structured Programming
Using Control Flow Comman

9.1 Statements for Decision and Control

9.2 Conditionals — “Decisions, Decisions, ...”

9.2.1 The if and if-else Statement

9.2.2 Truth Values in C++

9.2.3 Nested

if

Statements

9.2.4 Short-Circuit Evaluation

9.2.5 The if-else-if Ladder

9.2.6 The switch Statement

9.2.7 Nested switch Statements

© Christian Jacob

n ...”

nt

Chapter Overview

9.3 Loops — “Doing Things Over and Over Agai

9.3.1 An Abstract View of Loops

9.3.2 Three General Loop Patterns

9.3.3 The for Loop — Fixed Repetition

9.3.4 Variations on the for Loop

9.3.5 The while Loop — Pretest

9.3.6 The do-while Loop — A Post-Test Loop

9.3.7 Infinite Loops

9.4 Break and Continue

9.4.1 Using break to Exit Loops

9.4.2 Using continue

9.5 Using

goto

 — “Spaghetti Programming”

9.6 Guidelines for Loops

9.6.1 How to Design Loops

9.6.2 Guidelines for Choosing a Looping Stateme

9.7 References

Page 3 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ontrol

First Back TOC

9.1 Statements for Decision and C

• Conditionals and Selection:

- if-then

- if-then-else

- switch

•

Loops

:

-

for

 loop

-

while

 loop

-

do-while

 loop

•

Continue

 and

break

•

Goto

Page 4 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

cisions, ...”

atement

atement

First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2 Conditionals — “Decisions, De

9.2.1 The if and

if-else

 Statement

• A single target statement:

if (

conditional_expression

)

st

• A single target statement:

if (

conditional_expression

)

st

else

statement

Page 5 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

nts:

nts:

First Back TOC Conditionals — “Decisions, Decisions, ...”

• Binary conditional with a sequence of stateme

if (conditional_expression)
{

statement_sequence

}

• Binary conditional with a sequence of stateme

if (

conditional_expression

)
{

statement_sequence

}
else
{

statement_sequence

}

Page 6 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ment2

First Back TOC Conditionals — “Decisions, Decisions, ...”

Behaviour diagram for conditional statements

statement1

state

conditional
expression

true false

Page 7 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

r

the second

“;

\n’;
by zero.\n”;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example (1): Division with Check for Zero Divide

// Divide the first number by

#include <iostream.h>

void main()
{

int a, b;

cout << “Enter two numbers:
cin >> a >> b;

if (b != 0) cout << a/b << ‘
else cout << “Cannot divide

}

Page 8

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

f boolean

1

 truth

s are:
First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.2 Truth Values in C++

At the heart of binary logic is the manipulation o
values:

- T or true

- F or false

.

In C++ the actual representations for truth value

- the integer/float/double

zero

 for

false

,

and

- any

nonzero

 value for

true

.

 1. George Boole, a nineteenth-centruy logician and mathematician

Page 9 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

r than ‘\0’

First Back TOC Conditionals — “Decisions, Decisions, ...”

Examples:

• All of the following is interpreted as false:

- int k = 0;

- float m = 0; double n = 0;

- char c = ‘\0’

• All of the following is interpreted as true:

- int k = 1, m = -7, n = 11;

- float p = 1.414;

- float q = 0.0001;

- char ch1 = ‘g’, ch2 = ‘4’; // any other characte

Page 10

 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ersion 2)

the second

“;

by zero.\n”;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example: Division with Check for Zero Divider (v

// Divide the first number by

#include <iostream.h>

void main()
{

int a, b;

cout << “Enter two numbers:
cin >> a >> b;

if (b) cout << a/b << ‘\n’;
else cout << “Cannot divide

}

Page 11 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

1

mber X = ";

." << endl;

" << endl;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example: Checking for numbers between 0 and

#include <iostream.h>
#include <math.h>

void main()
{

float X;

cout << "Enter a positive nu
cin >> X;

if (floor(X))

cout << "X is 1 “;
cout << “or greater than 1

else
cout << "X is less than 1.

}

Page 12

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

ion

”;
First Back TOC Conditionals — “Decisions, Decisions, ...”

Attention: The if condition accepts any express

int k = 1;

if (

k = 0

)
cout << “It´s a zero.\n”;

else
cout << “It´s “ << k << “.\n

What does this program section return?

Page 13 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

nd c2

nd c3
d not c3

1

First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.3 Nested if Statements

if (c1) {
if (c2)

statement_1

; // c1 a

if (c3)

statement_2

; // c1 a
else

statement_3

; // c1 an
}
else

statement_4

; // not c

Page 14 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

er

gative

10
< 10”;

nd 15
“ < 15”;
 // > 15

;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example: Identifying the value range of a numb

if (x >= 0) // x is non-ne
{

if (x < 10)

// ... and x <

 cout << “0 <= “ << x << “
else

// x >= 10

{
 if (x < 15)

// between 10 a

 cout << “10<= “ << x <<
 else cout << x <<“ >= 15”;

 }
}
else

// x < 0

{
 cout << x << “ is negative.”
}

Page 15 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

15

x >= 15

false

First Back TOC Conditionals — “Decisions, Decisions, ...”

Behaviour diagram of example program

0 <= x < 10x < 0

x >= 0
false

x < 10

x <

10 <= x < 15

true

true false

true

Page 16

 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

lue that will
ession, evaluation

ent

1/n)

First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.4 Short-Circuit Evaluation

As soon as a compound expression produces a va
completely determine the value of the total expr
stops.

Example:

if (n != 0)
if (0 < x && x < 1/n) statem

More efficient:

if ((n != 0) && 0 < x && x <

statement

Page 17 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

;

atted!

First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.5 The if-else-if Ladder

if(

condition

)

statement

;
else

if(

condition

)

statement

;
else

if(

condition

)

statement

;
…

else

statement

This deeply nested

if-else

 structure can be re-form

Page 18 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

 statements):

First Back TOC Conditionals — “Decisions, Decisions, ...”

Reformatted nested if-else structure (with single

if(condition

)

statement

;
else if(

condition

)

statement

;
else if(

condition

)

statement

;
…
else

statement

;

Page 19 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example:

if (x < 0)
… // x is negative

else if (x > 0)
… // x is positive

else … // x is zero

Page 20

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

ent sequences):

First Back TOC Conditionals — “Decisions, Decisions, ...”

Reformatted nested if-else structure (with statem

if (condition

){

statement_sequence

}
else {if (

condition

){

statement_sequence

}
else {if (

condition

){

statement_sequence

}
…
else {

statement_sequence

}

Page 21 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

)

}

First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.6 The switch Statement

switch
statement switch

(

selection
expression

{

case

constant

:

statement

default

:

 statement

Page 22 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

First Back TOC Conditionals — “Decisions, Decisions, ...”

A typical switch structure:

switch(

selection_expression

){
case

constant1

:

statement_sequence

break;
case

constant2

:

statement_sequence

break;
case

constant3

:

statement_sequence

break;
…

default

:

statement_sequence

}

Page 23 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ade

de;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Example: Convert final grade (0-100) to letter gr

int finalGrade; char letterGra

switch (finalGrade/10)
{

case 9: letterGrade = ‘A’;
 break;

case 8: letterGrade = ‘B’;
 break;

case 7: letterGrade = ‘C’;
 break;

case 6: letterGrade = ‘D’;
 break;

default: letterGrade = ‘F’;
}

Page 24

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

ade

de;

;
break;
break;
break;
break;
First Back TOC Conditionals — “Decisions, Decisions, ...”

Example: Convert final grade (0-100) to letter gr

int finalGrade; char letterGra

switch (finalGrade/10)
{

case 10: cout << “Wow--100!”
case 9: letterGrade = ‘A’;
case 8: letterGrade = ‘B’;
case 7: letterGrade = ‘C’;
case 6: letterGrade = ‘D’;
default: letterGrade = ‘F’;

}

Page 25

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

tch: A”;
First Back TOC Conditionals — “Decisions, Decisions, ...”

9.2.7 Nested switch Statements

switch(ch1) {

case

 ‘A’:
cout << “Outer switch: A”;
switch(ch2) {

case

 ‘A’:
cout << “Inner swi
break;

case

 ‘B’:
// …

}
break;

case

 ‘B’:
// …

default:
// …

}

Page 26 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

nd Over

f statements

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3 Loops — “Doing Things Over a
Again ...”

Loops are control structures that repeat a series o
without re-typing them.

Loops are commonly used for …

• counting

• summing

• repeated multiplication, increment, decrement

• keeping track of values (current, previous)

• repeating a sequence of commands or actions

• ...

Page 27

 Chapter 9: Structured Programming with Control Structures

©

Christian Jacob

Prev Next Last

tering a loop

peated

ted in order to
repetition
started

 the control flow
First Back TOC Loops — “Doing Things Over and Over Again ...”

Definitions around loops:

• Loop entry: statement(s) before en

• Loop body: statement(s) that are re

• Loop condition: expression to be evalua
decide whether a new
(= iteration) should be

•

Loop exit

: end of the loop, where
leaves the loop

Page 28 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

uld always be clear

 enter the loop.

nt to continue the

exit the loop.

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.1 An Abstract View of Loops

When you write a repetition instruction, you sho
about these three issues:

1. Enter: The conditions under which you want to

2. Continue: The conditions under which you wa
loop.

3.

Exit

: The conditions under which you want to

Page 29 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

First Back TOC Loops — “Doing Things Over and Over Again ...”

General Loop Structure

Test1
(pretest)

Yes? No?

Test2
(post-test)

Loop
body

No?Yes?

Page 30 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ith the loop
need to consider

op body to execute.

at is always true, a
executes at least

 its statements, the
ntinue.

ry condition):

First Back TOC Loops — “Doing Things Over and Over Again ...”

The Three Loop Conditions

To understand how to construct a correct loop, w
condition correctly related to the loop body, we
three conditions:

• Entry condition:

the condition that must hold in order for the lo

Alternatively, an entry condition may be one th
trivial condition, so that the loop body always
once.

After entering a loop and after having executed
question arises whether to continue or not to co

• Repeat or continuation

 condition (often: = ent

Stay in the loop if this condition is true.

•

Exit

 or

termination

 condition:

Exit the loop if this condition is true.

Page 31 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ples:

n=0; n<10; n++)
... }

;

 (n < 10)
... n++; ... }

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.2 Three General Loop Patterns

Pretest loop with continuation condition

Pretest
Entry/repeat?

Yes No

Loop
body

Exam

for (
{

n = 0

while
{

Page 32 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

mple:

 0;

{
... n++; ...
hile (n < 10);

First Back TOC Loops — “Doing Things Over and Over Again ...”

Post-test loop with continuation condition

Repeat?

Loop
body

NoYes

Exa

n =

do

} w

Page 33 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

:

(true)

n++; ...

n>=10) break;

First Back TOC Loops — “Doing Things Over and Over Again ...”

Post-test loop with exit condition

Exit?

Loop
body

YesNo

Example

n = 0;

while
{

...

if (
}

Page 34 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ement)

ement)

Pretest
Entry/repeat?

Yes No

Loop
body

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.3 The for Loop — Fixed Repetition

• Repeating a single statement

for(

entry

;

exit_test

;

in_de_cr

statement

;

• Repeating sequences of statements

for(

entry

;

exit_test

;

in_de_cr

{

statement

_

sequence

}

Generally,

for

 loops are count-controlled.

Page 35 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

3 = 3 + 2 = 5

4 = 5 + 3 = 8

5 = 8 + 5 = 13

First Back TOC Loops — “Doing Things Over and Over Again ...”

Example: Calculating Fibonacci numbers:

f0 = 0

f1 = 1

f

n

 = f

n-1

 + f

n-2

A few Fibonacci numbers, calculated iteratively:

f

2

 = f

1

 + f

0

 = 1 + 0 = 1 f

5

 = f

4

 + f

f

3

 = f

2

 + f

1

 = 1 + 1 = 2 f

6

 = f

5

 + f

f

4

 = f

3

 + f

2

 = 2 + 1 = 3 f

7

 = f

6

 + f

Page 36 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

cci number

 n-th

evious_fib;

-2

-1

First Back TOC Loops — “Doing Things Over and Over Again ...”

/* Calculating the n-th Fibona

 Basic idea to calculate the
 Fibonacci number:

 next_fib = current_fib + pr
*/

int prev_fib = 0; // = fn
int current_fib = 1; // = f

n

int next_fib; // = f

n

int n, i;

Page 37 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

<< endl;
ld you “;
ndl;

>= 0: “;

rev_fib;

= “;

First Back TOC Loops — “Doing Things Over and Over Again ...”

main()
{
 cout << “Fibonacci numbers”
 cout << “Which F. number wou
 cout << “to calculate?” << e

cout << “Enter an integer n
cin >> n;

for(i = 0; i < n; i++){
next_fib = current_fib + p
prev_fib = current_fib;
current_fib = next_fib;

}
cout << n << “-th Fibonacci

 cout << prev_fib;
}

Pretest

Entry/repeat?
Yes No

Loop
body

Page 38 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

s

)
’;

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.4 Variations on the for Loop

• Several initialization and increment expression

for(

x=0, y=10

; x<=10;

++x, --y

cout << x << ‘ ‘ << y << ‘\n

Page 39 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

 the

kbhit()

 is pressed
 << i << ‘ ‘;

First Back TOC Loops — “Doing Things Over and Over Again ...”

• Exiting a for loop when a key is pressed (using

function)

int main()
{

int i;

// print numbers until a key
for(i=0; !kbhit(); i++) cout

return(0);
}

kbhit()

 returns

true

 (!= 0)

- if a key has been pressed

- otherwise

false

(== 0).

Pretest

Entry/repeat?
Yes No

Loop
body

Page 40 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

Pretest
Entry/repeat?

Yes No

Loop
body

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.5 The while Loop — Pretest

• Single statement to repeat

while(

expression

)

statement

;

• Sequence of statements to repeat

while(

expression

)
{

statement_sequence

}

Generally,

while

 loops are event-controlled.

Page 41 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

-2

-1

First Back TOC Loops — “Doing Things Over and Over Again ...”

Example: The n-th Fibonacci number :

f0 = 0

f

1

 = 1

f

n

 = f

n-1

 + f

n-2

Implemented with a

WHILE

 loop:

int previous_fib = 0; // = f

n

int current_fib = 1; // = f

n

int next_fib; // = f

n

int n,

i = 0

;

Page 42 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

revious_fib;
;

 “;

First Back TOC Loops — “Doing Things Over and Over Again ...”

main()
{

cout << “Enter n >= 0: “;
 cin >> n;

while(

i < n

) {
next_fib = current_fib + p
previous_fib = current_fib
current_fib = next_fib;

i++

;
}

cout << previous_fib << “ is
cout << n << “-th fib;

return(0);
}

Pretest

Entry/repeat?
Yes No

Loop
body

Page 43 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ent code

revious_fib;
;

 “;

First Back TOC Loops — “Doing Things Over and Over Again ...”

main() // a little more effici
{

cout << “Enter n >= 0: “;
 cin >> n;

while(

i++ < n

) {
next_fib = current_fib + p
previous_fib = current_fib
current_fib = next_fib;

}

cout << previous_fib << “ is
cout << n << “-th fib;

return(0);
}

Pretest

Entry/repeat?
Yes No

Loop
body

Page 44 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

re

n >> n;

>= “ << n;

First Back TOC Loops — “Doing Things Over and Over Again ...”

Taking care of special cases (1):

// variable declarations go he

main()
{

cout << “Enter n >= 0: “; ci

if(n==0 || n==1)

 {
cout << n;
cout << “is the first fib
return(0);

}

while(...) {...}
...

 return(0);
}

Page 45 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

re

n >> n;

s: n = 0 or 1

>= “ << n;

First Back TOC Loops — “Doing Things Over and Over Again ...”

Taking care of special cases (1):

// variable declarations go he

main()
{

cout << “Enter n >= 0: “; ci

if(n <= 1) {

// Special case

cout << n;
cout << “is the first fib

}

else

 {
while(...) {...}

 ...
}
return(0);

}

Page 46 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

op

);

ation!

Repeat?

Loop
body

No

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.6 The do-while Loop — A Post-Test Lo

• Single statement to repeat

do

statement

; while(

expression

• Sequence of statements to repeat

do{

statements

} while(

expression

);

Note

: A

do-while

 loop always completes one iter

Yes

Page 47 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

HILE loop)

re

 >> n;

revious_fib;
;

 “;
r”;}

First Back TOC Loops — “Doing Things Over and Over Again ...”

Example: The n-th Fibonacci number (with DO-W

// Other initializations go he

int n,

i=0

;

void main()
{

cout << “Enter

n > 0

: “; cin

do

 {
next_fib = current_fib + p
previous_fib = current_fib
current_fib = next_fib;

}

while

(

++i

 < n);

cout << previous_fib << “ is
 cout << n << “-th fib. numbe

Repeat?

Loop
body

NoYes

Page 48 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

 >> n;

revious_fib;
;

s_fib;

r”;

First Back TOC Loops — “Doing Things Over and Over Again ...”

void main()
{

cout << “Enter n > 0: “; cin

do

 {
next_fib = current_fib + p
previous_fib = current_fib
current_fib = next_fib;

}

while

(++i < n);

cout <<

(n==0) ? 0 : previou

 cout << “ is “;
 cout << n << “-th fib. numbe
}

Repeat?

Loop
body

NoYes

Page 49 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

First Back TOC Loops — “Doing Things Over and Over Again ...”

9.3.7 Infinite Loops

• Using for

for(;;) { … }

• Using

while

while(1) { … }

Page 50 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

am? (y/n)\n”;

m continued

 end.\n”;

’ or \’n\’.”;

am

First Back TOC Loops — “Doing Things Over and Over Again ...”

Checking for keyboard input:

while (true) {
 cout << “Continue with progr
 cin >> answer;

 switch(answer) {
 case ‘y’:
 case ‘Y’: break; // progra
 case ‘n’:
 case ‘N’: cout << “Program

 return(0);
 default:

 cout << “Enter only \’y\
 }
}
// further statements of progr

Exit?

Loop
body

YesNo

Page 51 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

 long time

First Back TOC

Break

 and

Continue

9.4 Break and Continue

9.4.1 Using

break

 to Exit Loops

for(i=0; i<1000; i++) // for a
{

// do something
if(kbhit()) break;

}

Page 52 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

e loop

e loop

Exit?

Loop
body

Yes

Exit?

Loop
body

Yes

First Back TOC

Break

 and

Continue

Alternative with infinite for loop:

for(;;){ // infinit
// do something
if(kbhit()) break;

}

Alternative with infinite

while

 loop:

while(1){ // infinit
// do something
if(kbhit()) break;

}

No

No

Page 53 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

First Back TOC

Break

 and

Continue

Using break to exit loops

int main()
{

int t, count;

for(t = 0; t < 100; t++) {
count = 1;

for(;;) {
cout << count << ‘ ‘;
count++;
if(count == 10) break;

}
cout << ‘\n’;

return(0);
}

Page 54 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

ol structure

First Back TOC

Break

 and

Continue

9.4.2 Using continue

Continue is used to bypass a loop´s normal contr

int main()
{

int x;

for(x=0; x<=100; x++)
{

if(x % 2) continue;
cout << x << ‘ ‘;

}

return(0);
}

Page 55 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

amming”

s a valid C++

 as follows:

on is:

t_sequence }

First Back TOC Using

goto

 — “Spaghetti Programming”

9.5 Using goto — “Spaghetti Progr

The

goto

 requires a label for operation. A

label

 i
identifier followed by a colon.

A loop from 1 to 100 could be written using

goto

x = 1;

start

:
x++;

statement_sequence

if(x<100) goto

start

;

However, a much more comprehensive formulati

for(x=1; x<100; x++){

statemen

Page 56 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

e loop?

First Back TOC Guidelines for Loops

9.6 Guidelines for Loops

9.6.1 How to Design Loops

Process:

• What is the process being repeated?

• How should the process be

initialized

?

• How should the process be

updated

?

Condition:

• How should the condition be

initialized

?

• How should the condition be

updated

?

• What is the condition that

ends

 the loop?

After the Loop:

• What is the

state of the program

 on exiting th

Page 57 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

tatement

lled loop

, the

for

ount++)

First Back TOC Guidelines for Loops

9.6.2 Guidelines for Choosing a Looping S

• If the repeated process is a simple count-contro
loop is a “natural” choice:

for (count = 1; count <= 10; c
//

statement

;

… is equivalent to …

count = 1;
while (count <= 10)
{

//

statement

;
count++;

}

Page 58 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

tialize, test, and

e reduces the

op

, whose body

hile

 loop is

op, but nothing is
op.

es clarifies the

d loop design.

, do-while, and for.

First Back TOC Guidelines for Loops

Concentrating the three loop control actions (ini
increment/decrement) in the for loop in one plac
chances of errors.

• If the iterated process is an event-controlled lo
always has to be executed at least once, a do-w
appropriate.

• If the iterated process is an

event-controlled lo

known about the first execution, use a

while

 lo

• An infinite loop with

break

 statements sometim
code.

More often, however, it reflects an undiscipline

Use it only after careful consideration of

while

Page 59 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Prev Next Last

, Boston, MA: WCB/

First Back TOC References

9.7 References

• G. Blank and R. Barnes, The Universal Machine
McGraw-Hill, 1998. Chapter 7.

	9.2 Conditionals — “Decisions, Decisions, ...”
	9.2.1 The if and if-else Statement
	9.2.2 Truth Values in C++
	9.2.3 Nested if Statements
	9.2.4 Short-Circuit Evaluation
	9.2.5 The if-else-if Ladder
	9.2.6 The switch Statement
	9.2.7 Nested switch Statements

	9.3 Loops — “Doing Things Over and Over Again ...”
	9.3.1 An Abstract View of Loops
	9.3.2 Three General Loop Patterns
	9.3.3 The for Loop — Fixed Repetition
	9.3.4 Variations on the for Loop
	9.3.5 The while Loop — Pretest
	9.3.6 The do-while Loop — A Post-Test Loop
	9.3.7 Infinite Loops

	9.4 Break and Continue
	9.4.1 Using break to Exit Loops
	9.4.2 Using continue

	9.5 Using goto — “Spaghetti Programming”
	9.6 Guidelines for Loops
	9.6.1 How to Design Loops
	9.6.2 Guidelines for Choosing a Looping Statement

	9.7 References

