“ ™

© Christian Jacob

9.1
9.2

Chapter 9

Structured Programming
Using Control Flow Commands

Statements for Decision and Control
Conditionals — “Decisions, Decisions, ..."

9.2.1 The if and if-else Statement
9.2.2 Truth Values in C++

9.2.3 Nested if Statements

9.2.4 Short-Circuit Evaluation

9.2.5 The if-else-if Ladder

9.2.6 The switch Statement

9.2.7 Nested switch Statements

Chapter Overview

ol

© Christian Jacob

9.3 Loops — “Doing Things Over and Over Again ..."”
9.3.1 An Abstract View of Loops
9.3.2 Three General Loop Patterns
9.3.3 The for Loop — Fixed Repetition
9.3.4 Variations on the for Loop
9.3.5 The while Loop — Pretest
9.3.6 The do-while Loop — A Post-Test Loop
9.3.7 Infinite Loops
9.4 Break and Continue
9.4.1 Using break to Exit Loops
9.4.2 Using continue
9.5 Using goto — “Spaghetti Programming”
9.6 Guidelines for Loops
9.6.1 How to Design Loops
9.6.2 Guidelines for Choosing a Looping Statement
9.7 References
m
-

Chapter Overview

“ ™

Page 3 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.1 Statements for Decision and Control

Conditionals and Selection:
- if-then

- if-then-else

- switch

e Loops:

- for loop

- while loop

- do-while loop

Continue and break

® Goto

First Back TOC

Prev Next Last

“ ™

Page 4 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.2 Conditionals — “Decisions, Decisions,

9.2.1 The if and if-else Statement

e Asingle target statement:

I f (conditional expression) statenent

e Asingle target statement:

I f (conditional expression) statenent
el se statenent

1/ 4

First Back TOC Conditionals — “Decisions, Decisions, ..."

Prev Next Last

First Back TOC Conditionals — “Decisions, Decisions, ...”

Page 5 Chapter 9: Structured Programming with Control Structures © Christian Jacob
e Binary conditional with a sequence of statements:
I f (conditional expression)
{ st at enent _sequence
}
e Binary conditional with a sequence of statements:
I f (conditional expression)
{ st at enent _sequence
Llse
{ st at enent _sequence
}
-
S T

Prev Next Last

Page 6 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Behaviour diagram for conditional statements

true conditional false
expression
\ \
statement, statement,
\J

E-—-—I [|

“ ™

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

ol

Page 7

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Example (1): Division with Check for Zero Divider

[/ Divide the first nunber by the second

#1 ncl ude <i ostream h>
voi d mai n()
{

Int a, b;

cout << “Enter two nunbers: “;
cin >> a >> b;

if (b !=0) cout << alb << ‘\n’;

el se cout << “Cannot divide by zero.\n”;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

ol

Page 8 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.2.2 Truth Values in C++

At the heart of binary logic is the manipulation of boolean’ truth
values:

- T or true

- F or false.

In C++ the actual representations for truth values are:
- the integer/float/double zero for false, and

- any nonzero value for true.

1. George Boole, a nineteenth-centruy logician and mathematician

m—-n—nt

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

Page 9 Chapter 9: Structured Programming with Control Structures © Christian Jacob
Examples:
e All of the following is interpreted as false:
- intk=0;
- float m = 0; double n =0;
- charc="\0’
e All of the following is interpreted as true:
- intk=1, m=-7,n=11;
- float p = 1.414;
- float g = 0.0001;
- char ch1 ="'qg’, ch2 ='4’; // any other character than \0’
=
En am mEm @

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

ol

Page 10

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Example: Division with Check for Zero Divider (version 2)

[/ Divide the first nunber by the second

#1 ncl ude <i ostream h>
voi d mai n()
{

Int a, b;

cout << “Enter two nunbers: “;
cin >> a >> b;

I1f (b) cout << a/b << “\n’;

el se cout << “Cannot divide by zero.\n”;

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

Page 11 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Example: Checking for numbers between 0 and 1

#1 ncl ude <i ostream h>
#i ncl ude <mat h. h>

voi d mai n()

{
float X;
cout << "Enter a positive nunber X = ";
ciln >> X
1 f (floor(X))
cout << "X is 1 “;
cout << “or greater than 1." << endl;
el se
cout << "X is less than 1." << endl;
}
aEn &

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

ol

Page 12 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Attention: The if condition accepts any expression

Int k = 1;
I1f (k = 0)

cout << “It"s a zero.\n";
el se

cout << “It's “ << k << “.\n":

What does this program section return?

m—-n—nt
)|

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

“ ™

Page 13 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.2.3 Nested if Statements

1 f (cl) {
1 f (c2) statenent 1; // cl1 and c2

1f (c3) statenent 2; // c¢1 and c3
el se statenent 3; [/ ¢l and not c3

}

el se statenent 4; /[l not cl

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

Page 14 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Example: Identifying the value range of a number

1f (x >= 0) /[l X 1's non-negative
{
1f (x <10) // ... and x < 10
COUt << uO <: 1 << X << 11 < 1011;
el se [l x >= 10
{

1f (x < 15)// between 10 and 15
cout << "10<= " << x << “ < 157;
el se cout << x <<" >= 15": [/ > 15

}
}
el se Il x <0
{
cout << x << “ is negative.”;
}
= mE W

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

Page 15 Chapter 9: Structured Programming with Control Structures © Christian Jacob

“ ™

Behaviour diagram of example program

false true
true false
true false
y y y y
x<0 0<=x<10 10<=x< 15 x>=15
EI—-—I | W
i [| W

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

Page 16 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.2.4 Short-Circuit Evaluation

As soon as a compound expression produces a value that will
completely determine the value of the total expression, evaluation

stops.
Example:
if (n!= 0)

I1f (0 < X && X < 1/n) statenent
More efficient:

1f ((n!'=0) & 0 < x && x < 1/n)
st at enent

ol

m-E—nat
ma

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

“ ™

Page 17

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.2.5 The if-else-if Ladder

| f (condi tion)

st at enent ;
el se
| f (condi tion)
st at enent ;
el se
| f (condi tion)
st at enent ;
el se
st at enent ;

This deeply nested if-else structure can be re-formatted!

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

“ ™

Page 18

Chapter 9: Structured Programming with Control Structures © Christian Jacob

Reformatted nested if-else structure (with single statements):

| f (condi tion)
st at enent ;

el se if(condition)
st at ement ;

el se i f(condition)
st at enment ;

el se
st at enment ;

First Back TOC Conditionals — “Decisions, Decisions, ..." Prev Next Last

ol

Page 19 Chapter 9: Structured Programming with Control Structures © Christian Jacob
Example:
if (x < 0)

.../l X 1s negative

else if (x > 0)
.../l X 1s positive

else ...// X 1S zero

m—-n—nt
)|

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

“ ™

Page 20

Chapter 9: Structured Programming with Control Structures © Christian Jacob

Reformatted nested if-else structure (with statement sequences):

1 f (condition){
St at ement _sequence}
else {if (condition){
st at ement _sequence}
el se {if (condition){
st at enent _sequence}
el se {
st at enent _sequence}

First Back TOC Conditionals — “Decisions, Decisions, ..." Prev Next Last

Page 21 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

9.2.6 The switch Statement

switch toh
statement Switc

selection
expression

Eo

case)—' constant

/L\ A

ks

— | statement

4><defaul t>—>@

L | statement

First Back TOC Conditionals — “Decisions,

Decisions, ...”

Prev Next Last

“ ™

Page 22

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

A typical switch structure:

swtch(sel ection expression){

case constant 1:
st at enent _sequence
br eak;

case constant 2:
st at enent _sequence
br eak;

case const ant 3:
st at enent _sequence
br eak;

def aul t:
st at enent _sequence

First Back TOC Conditionals — “Decisions, Decisions, ..."

Prev Next Last

Page 23 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Example: Convert final grade (0-100) to letter grade

I nt final Gade: char |etterG ade;

swtch (final Gade/ 10)

{
case 9: letterGade = “A';
br eak;
case 8: |letterGade = ‘B ;
br eak;
case 7: letterGade = 'C;
br eak;
case 6: letterGade = ‘D ;
br eak;
default: letterGade = ‘F ;
}
-
Hn am mEm E

First Back TOC Conditionals — “Decisions, Decisions, ...”

Prev Next Last

Page 24 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Example: Convert final grade (0-100) to letter grade

I nt final Gade: char |etterG ade;

swtch (final Gade/ 10)

{
case 10: cout << “Ww -100!";
case 9: letterGade = *A ; break;
case 8: |letterGade = ‘B ; break;
case 7: letterGade = *C; break;
case 6: letterGade = ‘D ; break;
default: letterGade = 'F;

}

First Back TOC Conditionals — “Decisions, Decisions, ...” Prev Next Last

ol

Page 25 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.2.7 Nested switch Statements

swtch(chl) {
case ‘A :
cout << “Quter swtch: A’;
swtch(ch2) {

First Back TOC Conditionals — “Decisions, Decisions, ...”

case ‘A
cout << “lnner swtch: A";
br eak;
case 'B':
[/
}
br eak;
case ‘B :
[l ...
def aul t :
[/
}
= mEm E

Prev Next Last

ol

Page 26

Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.3

Loops
Again ...

“Doing Things Over and Over

1/ 4

Loops are control structures that repeat a series of statements
without re-typing them.

Loops are commonly used for ...

e counting

® summing

e repeated multiplication, increment, decrement
e keeping track of values (current, previous)

e repeating a sequence of commands or actions

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Page 27 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Definitions around loops:

e Loop entry: statement(s) before entering a loop
e Loop body: statement(s) that are repeated
e Loop condition: expression to be evaluated in order to

decide whether a new repetition
(= iteration) should be started

e Loop exit: end of the loop, where the control flow
leaves the loop

ol

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

ol

Page 28 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.1 An Abstract View of Loops

When you write a repetition instruction, you should always be clear

about these three issues:

1. Enter: The conditions under which you want to enter the loop.

2. Continue: The conditions under which you want to continue the

loop.

3. Exit: The conditions under which you want to exit the loop.

m-E—nat
ma

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 29 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

General Loop Structure

Yes? No?

Test,
(pretest)

\A |

Loop
body

Yes? No?

Test,
(post-test)

i I=I =.
First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Page 30 Chapter 9: Structured Programming with Control Structures © Christian Jacob

The Three Loop Conditions

To understand how to construct a correct loop, with the loop
condition correctly related to the loop body, we need to consider
three conditions:

e Entry condition:
the condition that must hold in order for the loop body to execute.

Alternatively, an entry condition may be one that is always true, a
trivial condition, so that the loop body always executes at least
once.

After entering a loop and after having executed its statements, the
question arises whether to continue or not to continue.

e Repeat or continuation condition (often: = entry condition):

Stay in the loop if this condition is true.
e Exit or termination condition:

Exit the loop if this condition is true.

ol

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

“ ™

Page 31

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.2 Three General Loop Patterns

Pretest loop with continuation condition

Yes

No

Pretest
Entrylrepeat?

Loop
body

Examples:

n<10; n++)

for (n=0;

while (n < 10)
{ ... n++; ... }

First Back TOC

Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 32 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Post-test loop with continuation condition

Example:
- Loop
body n =0:
do {
U 1§ S
} while (n <10);
Yes Repeat? No

i I=I =.
First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Page 33 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Post-test loop with exit condition

Example:
"I Loop
while (true)
{
n++;
No Exit? Yes i f (n>=10) br eak:

n—n
)|

1 First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

“ ™

Page 34 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.3 The for Loop — Fixed Repetition

e Repeating a single statement

for(entry; exit test; in_de crenent)

statenent;

e Repeating sequences of statements

for(entry; exit test; in_de crenent)

{

St at enent _sequence

Generally, for loops are count-controlled.

Pretest
Entrylrepeat?

Loop
body

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

ol

First Back TOC Loops — “Doing Things Over and Over Again ..."

Page 35 Chapter 9: Structured Programming with Control Structures © Christian Jacob

Example: Calculating Fibonacci numbers:
fo=0
fi=1
fo="Tn1+ oo
A few Fibonacci numbers, calculated iteratively:
fo=fi+fg=1+0="1 fo=fy+f3=3+2=5
f3=fHH+f1=1+1=2 f=fg+f,=5+3=8
fp=fz3+f,=2+1=3 fo=fg+fs=8+5=13

= mEm

Prev Next Last

Page 36 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

/[* Calculating the n-th Fi bonacci nunber

Basic 1dea to calculate the n-th
Fi bonacci nunber:

next fib = current fib + previous fib,;

*/

Int prev _fib = 0; Il =10
Int current _fib =1; [/ =f,4
I nt next_fib; Il =1,
Int n, 1I;

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

ol

Page 37

Chapter 9: Structured Programming with Control Structures © Christian Jacob

mai n()

{

cout << “Fi bonacci nunbers” << endl:;

cout << “Which F. nunber would you “;

cout << “to calculate?” << endl:

cout << “Enter an integer n >= 0: *“;
cin >> n;

for(i =0; 1 < n; 1++){
next fib = current fib + prev _fib;
prev_fib = current fib;
current _fib = next fib;
}
cout << n << “-th Fibonacci = “;
cout << prev_fib;

First Back TOC

Loops — “Doing Things Over and Over Again ..." Prev Next Last

ol

Page 38 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.4 Variations on the for Loop

e Several initialization and increment expressions

for(x=0, y=10; x<=10; ++Xx, --Y)
cout << x << ‘' ' <<y << ‘\n’;

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 39 Chapter 9: Structured Programming with Control Structures © Christian Jacob

e Exiting a for loop when a key is pressed (using the kbhit ()
function)

I nt main()

{

Int 1I;

[/ print nunbers until a key is pressed

for(i=0; 'kbhit(); i++) cout << i << ;

return(0);

kbhit () returns true (1= 0)
- if a key has been pressed

- otherwise false (== 0).

ol

| o e B
HED = Prev Next Last

1 First Back TOC Loops — “Doing Things Over and Over Again ..."

“ ™

Page 40 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.5 The while Loop — Pretest

e Single statement to repeat

whi | e(expressi on) statenent;

e Sequence of statements to repeat

whi | e(expressi on)

{

stat enent _sequence

Generally, while loops are event-controlled.

Pretest
Entrylrepeat?

Loop
body

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 41 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Example: The n-th Fibonacci number :

fo = O
fi=1
fh=Thq + Tho

Implemented with a WHILE loop:

Int previous fib =0; [/
Int current _fib 1, [/
I nt next fib; [/
Iint n, i = 0;

ol

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 42

Chapter 9: Structured Programming with Control Structures © Christian Jacob

mai n()

{

cout << “Enter
cin >> n;

n >= 0: “;

while(l < n) {
next fib = current fib + previous fib,;
previous fib = current fib;
current _fib = next fib;
| ++;

cout << previous fib << * iIs “;

cout << n << “-th fib;

return(0);

ol

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

ol

Page 43

Chapter 9: Structured Programming with Control Structures © Christian Jacob

main() // alittle nore efficient code

{

cout << “Enter n >= 0: *“;
cin >> n;

whil e(i++ < n) {

next fib = current fib + previous fib,;
previous fib = current fib;

current _fib = next fib,;

cout << previous fib << * Is “;
cout << n << “-th fib;

return(O0),;

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

ol

First Back TOC Loops — “Doing Things Over and Over Again ..."

Page 44
Taking care of special cases (1):
/'l variable declarations go here
mai n()
{
cout << “Enter n >= 0: “: cln >> n;
1f(n==0 || n==1) {
cout << n;
cout << “i1s the first fib >= " << n;
return(0);
}
while(...) {...}
return(0),;
}
--;= =. Prev Next Last

Page 45 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

ol

Taking care of special cases (1):

/'l variable declarations go here

mai n()

{

cout << “Enter n >= 0: “: cin >> n;

1f(n <=1) { // Special cases: n =0 or 1

cout << n;
cout << “1s the first fib >=*

}

el se {
while(...) {...}

}

return(O0),;

<< n:

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

ol

Page 46 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.3.6 The do-while Loop — A Post-Test Loop

e Single statement to repeat

do statenent; while(expression),;

e Sequence of statements to repeat #
T
do{ i

st at enent s
} whi |l e(expression),

Note: A do-while loop always completes one iteration!

-—= | B
First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

Page 47 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Example: The n-th Fibonacci number (with DO-WHILE loop)

[/ Other initializations go here
Int n, 1=0;

voi d mai n()

{

cout << “Enter n > 0: “: cin >> n;

do {

previous fib = current fib;
current _fib = next fib;
} owhile(++i < n);

cout << previous fib << s “;
cout << n << “-th fib. nunber”;}

next fib = current fib + previous fib;

ol

-;= | B
First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

ol

Page 48 Chapter 9: Structured Programming with Control Structures © Christian Jacob

voi d mai n()

{

cout << “Enter n > 0: “: cIln >> n;

do {

next fib = current _fib + previous fib,;
previous fib = current fib;

current _fib = next fib,;

while(++i < n);

cout << (n==0) ? 0 : previous fib;
cout << :

s “:
cout << n << “-th fib. nunber”:

-;= | B
First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Page 49 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

9.3.7 Infinite Loops

e Using for

for(;;) { ...}

e Usingwhile

while(1) { ...}

First Back TOC Loops — “Doing Things Over and Over Again ..." Prev Next Last

Page 50 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Checking for keyboard input:
while (true) {

Ciln >> answer:

sw t ch(answer) {

return(0);
def aul t:

}

/[l further statenents of program

}

cout << “Continue with progran? (y/n)\n”;

v case 'y’
— P Loop 1] I
= case ‘Y': break; // program continued
case ‘n’:

case ‘N : cout << “Programend.\n”;

cout << “Enter only \"y\" or \'"n\’.”;

ol

First Back TOC Loops — “Doing Things Over and Over Again ..."

Prev Next Last

“ ™

Page 51 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.4 Break and Continue

9.4.1 Using break to Exit Loops

for(i=0; 1<1000; 1++) // for a long tine
{

/| do sonet hi ng
| f (kbhit()) break;

}

First Back TOC Break and Continue Prev Next Last

Page 52 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Alternative with infinite for 1oop:

for(;;){ [l infinite | oop
/] do sonething y
| f (kbhit()) break; ——

}

Alternative with infinite while loop:

whi | e(1){ /1 infinite |oop
/| do sonething
i f (kbhit()) break; !

Loop
} body

First Back TOC Break and Continue Prev Next Last

ol

Page 53

Chapter 9: Structured Programming with Control Structures

© Christian Jacob

Using break to exit loops

I nt main()

{

Int t, count;

for(t = 0; t < 100; t++) {
count = 1;

for(;;) {
cout << count << ‘ ‘;
count ++;
| f (count == 10) break;
}

cout << ‘\n’:

return(0),;

First Back TOC Break and Continue

Prev Next Last

ol

Page 54 Chapter 9: Structured Programming with Control Structures

© Christian Jacob

9.4.2 Using continue
Continue is used to bypass a loop’s normal control structure

I nt main()

{

| Nt X;

for(x=0; x<=100; x++)
{
1f(x % 2) conti nue;
cout << x << ' %

return(0);

First Back TOC Break and Continue

Prev Next Last

Page 55 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

9.5 Using goto — “Spaghetti Programming”

The goto requires a label for operation. A label is a valid C++
identifier followed by a colon.

A loop from 1 to 100 could be written using goto as follows:

X = 1;
start:
X++:

st at enent _sequence
| f (x<100) goto start;

However, a much more comprehensive formulation is:

for(x=1; x<100; x++){ statenent sequence }

-—= | B
First Back TOC Using goto — “Spaghetti Programming” Prev Next Last

Page 56 Chapter 9: Structured Programming with Control Structures © Christian Jacob

“ ™

9.6 Guidelines for Loops

9.6.1 How to Design Loops

Process:

e \What is the process being repeated?

e How should the process be initialized?
e How should the process be updated?

Condition:

e How should the condition be initialized?
e How should the condition be updated?

e \What is the condition that ends the loop?

After the Loop:
e What is the state of the program on exiting the loop?

First Back TOC Guidelines for Loops Prev Next Last

ol

Page 57 Chapter 9: Structured Programming with Control Structures © Christian Jacob

9.6.2 Guidelines for Choosing a Looping Statement

e |f the repeated process is a simple count-controlled loop, the for
loop is a “natural” choice:

for (count = 1; count <= 10; count++)
/] statenent;

... iIs equivalent to ...

count = 1;
whil e (count <= 10)
{
[] statenent:
count ++;

- an
1 First Back TOC Guidelines for Loops Prev Next Last

Page 58 Chapter 9: Structured Programming with Control Structures © Christian Jacob

ol

Concentrating the three loop control actions (initialize, test, and
increment/decrement) in the for loop in one place reduces the ——
chances of errors.

e |f the iterated process is an event-controlled loop, whose body
always has to be executed at least once, a do-while loop is
appropriate.

e |f the iterated process is an event-controlled loop, but nothing is
known about the first execution, use a while loop.

e An infinite loop with break statements sometimes clarifies the
code.

More often, however, it reflects an undisciplined loop design.

Use it only after careful consideration of while, do-while, and for.

First Back TOC Guidelines for Loops Prev Next Last

ol

Page 59 Chapter 9: Structured Programming with Control Structures © Christian Jacob
9.7 References
- u
e G. Blank and R. Barnes, The Universal Machine, Boston, MA: WCB/
McGraw-Hill, 1998. Chapter 7.
I—a—ah
N EEl B

First Back TOC References Prev Next Last

	9.2 Conditionals — “Decisions, Decisions, ...”
	9.2.1 The if and if-else Statement
	9.2.2 Truth Values in C++
	9.2.3 Nested if Statements
	9.2.4 Short-Circuit Evaluation
	9.2.5 The if-else-if Ladder
	9.2.6 The switch Statement
	9.2.7 Nested switch Statements

	9.3 Loops — “Doing Things Over and Over Again ...”
	9.3.1 An Abstract View of Loops
	9.3.2 Three General Loop Patterns
	9.3.3 The for Loop — Fixed Repetition
	9.3.4 Variations on the for Loop
	9.3.5 The while Loop — Pretest
	9.3.6 The do-while Loop — A Post-Test Loop
	9.3.7 Infinite Loops

	9.4 Break and Continue
	9.4.1 Using break to Exit Loops
	9.4.2 Using continue

	9.5 Using goto — “Spaghetti Programming”
	9.6 Guidelines for Loops
	9.6.1 How to Design Loops
	9.6.2 Guidelines for Choosing a Looping Statement

	9.7 References

