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6.1

Interpreters versus Compilers

There are two general kinds of programming language translators:
¢ Interpreters:

transform programs directly into command (“behaviour”)
sequences that run on a virtual machine

+ good for rapid prototyping of experimental software
+ performs error checking at runtime
e Compilers:

translate programs into low-level machine code, which can then
run on an actual machine

+ compiled machine code is generally faster (vs. interpreted)
- compilation itself takes time

- to enable error checking before runtime, programmers have
to provide more information (e.g., type information)
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6.2 How Compilers Produce Machine Code

An example C++ program, ready to be compiled:

#1 ncl ude <i ostream h>
voi d mai n()

{
Il Nt a;
float b, c:

2: b = 3.1415;
a * b;

a
C

cout << ¢ << endl;
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6.2.1 Stages of Translating a C++ Program
myProgram.cc ( Source code )
- Preprocessor
Expanded source code
- Compiler
y
myProgram.o ( Object code )
- Linker
Relocatable executable code
\/ - Loader
myProgram
a.out ( Executing program )
=
Py
lHE I BNl m

First Back TOC How Compilers Produce Machine Code

Prev Next Last



“ ™

Page 5

Chapter 6: Programming Languages and their Translators

© Christian Jacob

Stages of Translating a C++ Program (Part 1)

( Source code

) Correct error(s) r
-

\

Library header files B

Preprocessor

\

Prep. error(s)?
*no

Expanded source code

yes

Compiler

Y

Compiler error(s)?

§ no

yes

( Object code

)

\
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Library object code B Linker

Stages of Translating a C++ Program (Part 2)

( Object code )

\

\

yes

Linker error(s)?
* no

Relocatable executable code

* Free up memory

-

Loader

Y

Loader error(s)?

§ no

( Executing program )
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An Alternative View of the Translation Stages

Program Input

Texteditor

g++ Program.cc

Y

@rogram. cC ) ——P

Input Data

Preprocessor | <«——— Library head

Y

C++ Compiler ——»( Program. o)

L .

Runtime system -

er files

Linker

'

Execution of

Loader -

a.out -

"

Results / Output

Y
(aout )
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* Preprocessor:
- Looks for compiler directives (e.g., #include <streamio.h>). -
- Inserts predefined code and macros from the include files.

[0 Produces expanded source code.

e Compiler:

Checks the expanded code for syntax errors (syntax analysis).

Checks for missing variable declarations (semantic analysis).

Checks for missing type information (semantic analysis).

... and much more (see for details later!)

[0 Produces object code.

ol
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e Linker:

- Links the object code with other code required for the program -
to run (library object code; e.qg., specific code for input/output,
mathematical functions, etc.)

[1 Produces relocatable executable code with relative
addressing.

e Loader:
- Loads executable code into memory.

- The actual starting address of the program code is called base
address.

- All addresses within the program are relative addresses with
respect to the base address.

[0 Runs the program.

ol
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6.2.2 Components of a Compiler

A simple view of a compiler

(" samira )
:

Tokens

'
( Parsing )
'

Syntactic structures

'

@enerating executable code)

Identify the “words”
and punctuation marks.

|dentify the “sentences”
and their structures

[0 meaning (semantics)
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A more detailed view of a compiler

Source Object
program program

source code / language dependent  machine-oriented

ANALYSIS SYNTHESIS

y

Scanning Parsing
Lexical Syntactic Semantic Code Code
analyzer |—®| analyzer |[-—%| analyzer generator optimizer

A

Y Y

Shared Data / Tables
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6.3 Describing Syntactic Structures

6.3.1 The Backus-Naur Form (BNF)

The BNF' was invented in the late 1950s to describe syntactic
structures of programming languages (ALGOL 60) and syntactic
structures in general.

The BNF works like a word replacement system:
a - blclaa

Applying this rule (once per line) produces a sequence of words:
a
aa

aaa (This is just one possibility!)
bcb

1. John Backus and Peter Naur were members of an international committee to devel op a precise notation for describing syntax.

HED = First Back TOC Describing Syntactic Structures Prev Next Last



Page 13 Chapter 6: Programming Languages and their Translators © Christian Jacob

ol

Example (1): Description of English sentence structures

sentence_sequence - sentence . sentence_sequence
sentence .

sentence - subject_part predicate_part

subject_part - extended_noun

noun_with _attribute

noun_with_attribute o extended noun
second _case attribute

predicate_part S predicate object
predicate - verb
object - article noun

article adjective noun

i I=I =.
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extended noun

The students

First Back TOC

The teaching assistants
second_case_attribute of CPSC 231
of CPSC 233
verb like
enjoy
article the
adjective weekly
daily
noun lecture
chat
learning
labs
Il—E—ahn
N EEl =
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The students of CPSC 231 enjoy the weekly labs . =
extended_noun||second_case_attribute|| verb || article || adjective || noun
noun_with_attribute predicate object
subject_part predicate_part

v

sentence

'

sentence_sequence
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Example (2): Description of basic C++ program structures

program

includes
lib

declarations

. includes
declarations
main
. #include </ib>
. iostream.h | math.h | ...
o single_declaration; |

single_declaration; declarations

single_declaration - type identifiers
type - float | int | ...
identifiers - single_identifier |
single_identifier, identifiers
Il-E—an
Il NNl m
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main - main() {
declarations
instructions
return(0)
instructions N single_instruction; |

single_instruction; instructions

single_instruction - assignment |
cin_instruction |
cout_instruction |
conditional |
loop | ...

assignment - identifier = expression |
identifier = ...

(etc., this example grammar is not complete)

ol
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6.3.2 Semantics (“Meaning”) Derived from Syntactic

Structures

Example: analysing the arithmetic expression 12 * (9 + 8/ 2)

BNF for arithmetic expressions:

Expression: E
Term: T
Factor: F
Number: N

D

Digit:

T+E I T-E I T
F*T I F/T | F

(E) I N

DN | D
0111213141516171819
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A derivation for the arithmetic expression 12 * (9 + 8/ 2) looks as
follows: —

EoToF*ToN*ToDN*ToIN*T 1D*T - 12*T
12*F o 12* (E) - 12* (T+E) - 12* (F+E) - 12* (N+E) -
12* (D+E) — 12* (9+E)  12* (9+T) - 12* (9+F/T) -

12* (9+N/T) - 12* (9+D/T) - 12* (9+8/T) - 12* (9 +8/F) -
12* (9+8/N) - 12* (9+8/D) — 12 * (9 + 8/2)

This is only one of many possible derivations!

Here we used a left derivation, i.e., the left-most (non-terminal)
symbol is always expanded first.
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A Parse Treefor12 *(9+8/2)

E
|

F/-"I‘-\T
| |
PN /|\

D N
1 |:3 /l\
2

>4

The syntax tree provides
semantic information:

o—0O—2Z2-—7—4

e priority of '*" and /'
before '+’ and '

®—g—z—m

e same priority: compute
from left to right

N—O—z T —-

-—= | B
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6.4 An Overview of Programming Languages

1945 —
1950 +—

1955 b=
L}
1960 — v -
[
1965 |

1970 —
1975 —

e
-

1950 —
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6.5 References
e G. Blank and R. Barnes, The Universal Machine, Boston, MA: WCB/
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