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6.1 Interpreters versus Compilers

There are two general kinds of programming lan

• Interpreters: 

transform programs directly into command (“b
sequences that run on a virtual machine

+ good for 

 

rapid prototyping

 

 of experimental 

+ performs error checking at runtime

•

 

Compilers

 

:

translate programs into low-level machine cod
run on an 

 

actual machine

 

+ compiled machine code is generally faster

- compilation itself takes time

- to enable error checking 

 

before

 

 runtime, p
to provide more information (e.g., type in
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6.2 How Compilers Produce Machi

An example C++ program, ready to be compiled:

#include <iostream.h>

void main()
{

int a;
float b, c;

a = 2; b = 3.1415;
c = a * b;

cout << c << endl;
}
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6.2.1 Stages of Translating a C++ Program

Source code

Expanded source code

Object code

Relocatable executable code

Executing program

myProgram.cc

myProgram.o

a.out
myProgram
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Correct error(s)

yes
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Stages of Translating a C++ Program (Part 1)

Source code

Expanded source code

Preprocessor

Compiler

Prep. error(s)?

Compiler error(s)?

Object code

Library header files

 

no

no
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Stages of Translating a C++ Program (Part 2)

Object code

Relocatable executable cod

Linker

Loader

Linker error(s)?

Loader error(s)?

Executing program

Library object code

 

no

no
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An Alternative View of the Translation Stages

Program Input

Texteditor

Program.cc

Program.oC++ Compiler

 

Execution of

 

a.out

 

Loader

  

Input Data

Results / Output

Runtime system

 

Preprocessor

 

Library he
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• Preprocessor: 

- Looks for compiler directives (e.g., #include

- Inserts predefined code and macros from the

 

⇒ 

 

Produces 

 

expanded source code

 

.

•

 

Compiler:

 

 

- Checks the expanded code for syntax errors 

  

- Checks for missing variable declarations (

 

sem

 

- Checks for missing type information (

 

semant

 

- … and much more (see for details later!)

 

⇒ 

 

Produces 

 

object code

 

.
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• Linker: 

- Links the object code with other code requir
to run (library object code; e.g., specific code
mathematical functions, etc.)

⇒ Produces relocatable executable code wit
addressing.

•

 

Loader

 

:

- Loads executable code into memory.

- The actual starting address of the program c

 

address.

 

- All addresses within the program are 

 

relative

 

respect to the base address.

 

⇒

 

 Runs the program. 
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6.2.2 Components of a Compiler

A simple view of a compiler

Scanning

Parsing

Generating executable code

Tokens

Syntactic structures

Identi

Identify

and t

⇒  mea

and pun



Page 11  Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

 

or
Code

optimizer

 Y N T H E S I S

Object
program

ented
    

First  Back TOC How Compilers Produce Machine Code

A more detailed view of a compiler

Shared Data / Tables

Lexical
analyzer

Syntactic
analyzer

Semantic
analyzer

Code
generat

A N A L Y S I S S

Source
program

source code / language dependent machine-ori

Scanning Parsing
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6.3 Describing Syntactic Structure

6.3.1 The Backus-Naur Form (BNF)

The BNF1 was invented in the late 1950s to descr
structures of programming languages (ALGOL 60
structures in general.

The BNF works like a word replacement system

 

:

a  

 

→ 

 

b | c | a a

Applying this rule (once per line) produces a sequ

a
a a
a a a (This is just one possibility!)
b c b

 1. John Backus and Peter Naur were members of an international committee to develop a precise notation for descr
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Example (1): Description of English sentence stru

sentence_sequence → sentence . 

 

sen

 

   |

 

sentence

 

 

 

.

 

sentence

 

→

 

subject_part

 

 

 

p

subject_part

 

→

 

extended_nou

 

   |

 

noun_with_at

noun_with_attribute

 

→

 

extended_nou

 

   |

 

second_case_a

predicate_part

 

→

 

predicate

 

 

 

obje

predicate

 

→

 

verb

object

 

→

 

article

 

 

 

noun

 

   |

 

article

 

 

 

adjectiv
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extended_noun → The students
   | The teaching a

second_case_attribute →

 

of CPSC 231

 

   |

 

of CPSC 233

 

verb

 

→

 

like

 

   |

 

enjoy

 

article

 

→

 

the

 

adjective

 

→

 

weekly

 

   |

 

daily

 

noun

 

→

 

lecture

 

   |

 

chat

 

   |

 

learning

 

   |

 

labs
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..
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The students of CPSC 231 enjoy

extended_noun

noun_with_attribute

predicate_

article

sentence_sequence

subject_part

predicate

sentence

the

second_case_attribute verb
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Example (2): Description of basic C++ program st

program → includes
declarations
main

includes → #include <lib

 

>

 

lib

 

→

 

iostream.h

 

 | 

 

m

  

declarations

 

→

 

single_declara

  

single_declara

  

single_declaration

 

→

 

type

 

 

 

identifier

type

 

→

 

float

 

 | 

 

int

 

 | …

 

identifiers

 

→

 

single_identifi

  

single_identifi
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main → main() { 
    declarations
    instructions

 

 
    

 

return(0)
};

 

instructions

 

→

 

single_instruct

  

single_instruct

  

single_instruction

 

→

 

assignment

 

 |

 

cin_instruction

  

cout_instructio

  

conditional

 

 |

 

loop

 

 | …

 

assignment

 

→

 

identifier

 

 

 

=

 

 

 

ex

  

identifier

 

 

 

=

 

 …

 

(etc., this example grammar is not complete)
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 Syntactic 

  

* (9 + 8 / 2)

   

    |    |    |  6 7 8 9
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6.3.2 Semantics (“Meaning”) Derived from
Structures

Example: analysing the arithmetic expression 12 

BNF for arithmetic expressions:

Expression:

 

→

 

  |    |  

Term:

 

→

 

  |    |  

Factor:

 

→

 

  |  

Number:

 

→

 

  |  

Digit:

 

→

 

  |    |    |    |    |    |

E T E+ T E– T

T F  * T F  / T F

F E( ) N

N DN D

D 0 1 2 3 4 5
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 (9 + 8 / 2) looks as 

  

st (non-terminal) 

D * T 12 * T  → →

12 * N E+( )  → →

 9 F /T+( )  →

12 * 9 8/F+( )  → →
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A derivation for the arithmetic expression 12 *
follows:

This is only one of many possible derivations!

Here we used a left derivation, i.e., the left-mo
symbol is always expanded first. 

E T F  * T N  * T DN  * T 1N  * T 1→ → → → → →

12 * F 12 * E( ) 12 * T E+( ) 12 * F E+( )→ → →

12 * D E+( ) 12 * 9 E+( ) 12 * 9 T+( ) 12 *→ → →

12 * 9 N /T+( ) 12 * 9 D/T+( ) 12 * 9 8/T+( )→ →

12 * 9 8/N+( ) 12 * 9 8/D+( ) 12 * 9 8/2+( )→ →
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A Parse Tree for 12 * ( 9 + 8 / 2 ) 

E

T

F * T

N

N

F

( E )

+T E

T

F / T

N

D

8

F

N

D

2

F

N

D

9

1 D

2

D

The syntax tree provides 
semantic information:

• priority of ‘*’ and ‘/’ 
before ‘+’ and ‘-’.

• same priority: compute 
from left to right
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6.4 An Overview of Programming 
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