“ ™

© Christian Jacob

6.1
6.2

6.3

6.4
6.5

Chapter 6

Programming Languages
and their Translators

Interpreters versus Compilers
How Compilers Produce Machine Code

6.2.1 Stages of Translating a C++ Program
6.2.2 Components of a Compiler

Describing Syntactic Structures

6.3.1 The Backus-Naur Form (BNF)
6.3.2 Semantics (“Meaning”) Derived from Syntactic Structures

An Overview of Programming Languages

References

Chapter Overview

ol

Page 2

Chapter 6: Programming Languages and their Translators © Christian Jacob

6.1

Interpreters versus Compilers

There are two general kinds of programming language translators:
¢ Interpreters:

transform programs directly into command (“behaviour”)
sequences that run on a virtual machine

+ good for rapid prototyping of experimental software
+ performs error checking at runtime
e Compilers:

translate programs into low-level machine code, which can then
run on an actual machine

+ compiled machine code is generally faster (vs. interpreted)
- compilation itself takes time

- to enable error checking before runtime, programmers have
to provide more information (e.g., type information)

First Back TOC Prev Next Last

“ ™

Page 3 Chapter 6: Programming Languages and their Translators © Christian Jacob

6.2 How Compilers Produce Machine Code

An example C++ program, ready to be compiled:

#1 ncl ude <i ostream h>
voi d mai n()

{
Il Nt a;
float b, c:

2: b = 3.1415;
a * b;

a
C

cout << ¢ << endl;

First Back TOC How Compilers Produce Machine Code Prev Next Last

Page 4 Chapter 6: Programming Languages and their Translators © Christian Jacob
6.2.1 Stages of Translating a C++ Program
myProgram.cc (Source code)
- Preprocessor
Expanded source code
- Compiler
y
myProgram.o (Object code)
- Linker
Relocatable executable code
\/ - Loader
myProgram
a.out (Executing program)
=
Py
lHE I BNl m

First Back TOC How Compilers Produce Machine Code

Prev Next Last

“ ™

Page 5

Chapter 6: Programming Languages and their Translators

© Christian Jacob

Stages of Translating a C++ Program (Part 1)

(Source code

) Correct error(s) r
-

\

Library header files B

Preprocessor

\

Prep. error(s)?
*no

Expanded source code

yes

Compiler

Y

Compiler error(s)?

§ no

yes

(Object code

)

\

First Back TOC How Compilers Produce Machine Code

Prev Next Last

“ ™

Page 6

Chapter 6: Programming Languages and their Translators

© Christian Jacob

Library object code B Linker

Stages of Translating a C++ Program (Part 2)

(Object code)

\

\

yes

Linker error(s)?
* no

Relocatable executable code

* Free up memory

-

Loader

Y

Loader error(s)?

§ no

(Executing program)

First Back TOC How Compilers Produce Machine Code

Prev Next Last

ol

Page 7 Chapter 6: Programming Languages and their Translators © Christian Jacob

An Alternative View of the Translation Stages

Program Input

Texteditor

g++ Program.cc

Y

@rogram. cC) ——P

Input Data

Preprocessor | <«——— Library head

Y

C++ Compiler ——»(Program. o)

L .

Runtime system -

er files

Linker

'

Execution of

Loader -

a.out -

"

Results / Output

Y
(aout)

" First Back TOC

How Compilers Produce Machine Code

Prev Next Last

Page 8 Chapter 6: Programming Languages and their Translators © Christian Jacob

* Preprocessor:
- Looks for compiler directives (e.g., #include <streamio.h>). -
- Inserts predefined code and macros from the include files.

[0 Produces expanded source code.

e Compiler:

Checks the expanded code for syntax errors (syntax analysis).

Checks for missing variable declarations (semantic analysis).

Checks for missing type information (semantic analysis).

... and much more (see for details later!)

[0 Produces object code.

ol

m-E—nat
I EEl m

First Back TOC How Compilers Produce Machine Code Prev Next Last

Page 9 Chapter 6: Programming Languages and their Translators © Christian Jacob

e Linker:

- Links the object code with other code required for the program -
to run (library object code; e.qg., specific code for input/output,
mathematical functions, etc.)

[1 Produces relocatable executable code with relative
addressing.

e Loader:
- Loads executable code into memory.

- The actual starting address of the program code is called base
address.

- All addresses within the program are relative addresses with
respect to the base address.

[0 Runs the program.

ol

First Back TOC How Compilers Produce Machine Code Prev Next Last

ol

Page 10 Chapter 6: Programming Languages and their Translators © Christian Jacob

6.2.2 Components of a Compiler

A simple view of a compiler

(" samira)
:

Tokens

'
(Parsing)
'

Syntactic structures

'

@enerating executable code)

Identify the “words”
and punctuation marks.

|dentify the “sentences”
and their structures

[0 meaning (semantics)

First Back TOC How Compilers Produce Machine Code Prev Next Last

Page 11 Chapter 6: Programming Languages and their Translators © Christian Jacob

“ ™

A more detailed view of a compiler

Source Object
program program

source code / language dependent machine-oriented

ANALYSIS SYNTHESIS

y

Scanning Parsing
Lexical Syntactic Semantic Code Code
analyzer |—®| analyzer |[-—%| analyzer generator optimizer

A

Y Y

Shared Data / Tables

First Back TOC How Compilers Produce Machine Code Prev Next Last

ol

P

age 12 Chapter 6: Programming Languages and their Translators © Christian Jacob

6.3 Describing Syntactic Structures

6.3.1 The Backus-Naur Form (BNF)

The BNF' was invented in the late 1950s to describe syntactic
structures of programming languages (ALGOL 60) and syntactic
structures in general.

The BNF works like a word replacement system:
a - blclaa

Applying this rule (once per line) produces a sequence of words:
a
aa

aaa (This is just one possibility!)
bcb

1. John Backus and Peter Naur were members of an international committee to devel op a precise notation for describing syntax.

HED = First Back TOC Describing Syntactic Structures Prev Next Last

Page 13 Chapter 6: Programming Languages and their Translators © Christian Jacob

ol

Example (1): Description of English sentence structures

sentence_sequence - sentence . sentence_sequence
sentence .

sentence - subject_part predicate_part

subject_part - extended_noun

noun_with _attribute

noun_with_attribute o extended noun
second _case attribute

predicate_part S predicate object
predicate - verb
object - article noun

article adjective noun

i I=I =.
First Back TOC Describing Syntactic Structures Prev Next Last

ol

Page 14 Chapter 6: Programming Languages and their Translators

© Christian Jacob

extended noun

The students

First Back TOC

The teaching assistants
second_case_attribute of CPSC 231
of CPSC 233
verb like
enjoy
article the
adjective weekly
daily
noun lecture
chat
learning
labs
Il—E—ahn
N EEl =

Describing Syntactic Structures

Prev Next Last

ol

Page 15 Chapter 6: Programming Languages and their Translators

© Christian Jacob

The students of CPSC 231 enjoy the weekly labs . =
extended_noun||second_case_attribute|| verb || article || adjective || noun
noun_with_attribute predicate object
subject_part predicate_part

v

sentence

'

sentence_sequence

First Back

TOC Describing Syntactic Structures

Prev Next Last

ol

Page 16 Chapter 6: Programming Languages and their Translators

© Christian Jacob

Example (2): Description of basic C++ program structures

program

includes
lib

declarations

. includes
declarations
main
. #include </ib>
. iostream.h | math.h | ...
o single_declaration; |

single_declaration; declarations

single_declaration - type identifiers
type - float | int | ...
identifiers - single_identifier |
single_identifier, identifiers
Il-E—an
Il NNl m

First Back TOC

Describing Syntactic Structures

Prev Next Last

Page 17 Chapter 6: Programming Languages and their Translators © Christian Jacob
main - main() {
declarations
instructions
return(0)
instructions N single_instruction; |

single_instruction; instructions

single_instruction - assignment |
cin_instruction |
cout_instruction |
conditional |
loop | ...

assignment - identifier = expression |
identifier = ...

(etc., this example grammar is not complete)

ol

m-E—nat
I EEl m

First Back TOC Describing Syntactic Structures Prev Next Last

“ ™

Page 18

Chapter 6: Programming Languages and their Translators © Christian Jacob

6.3.2 Semantics (“Meaning”) Derived from Syntactic

Structures

Example: analysing the arithmetic expression 12 * (9 + 8/ 2)

BNF for arithmetic expressions:

Expression: E
Term: T
Factor: F
Number: N

D

Digit:

T+E I T-E I T
F*T I F/T | F

(E) I N

DN | D
0111213141516171819

First Back TOC

Describing Syntactic Structures Prev Next Last

Page 19 Chapter 6: Programming Languages and their Translators © Christian Jacob

ol

A derivation for the arithmetic expression 12 * (9 + 8/ 2) looks as
follows: —

EoToF*ToN*ToDN*ToIN*T 1D*T - 12*T
12*F o 12* (E) - 12* (T+E) - 12* (F+E) - 12* (N+E) -
12* (D+E) — 12* (9+E) 12* (9+T) - 12* (9+F/T) -

12* (9+N/T) - 12* (9+D/T) - 12* (9+8/T) - 12* (9 +8/F) -
12* (9+8/N) - 12* (9+8/D) — 12 * (9 + 8/2)

This is only one of many possible derivations!

Here we used a left derivation, i.e., the left-most (non-terminal)
symbol is always expanded first.

First Back TOC Describing Syntactic Structures Prev Next Last

ol

Page 20 Chapter 6: Programming Languages and their Translators

© Christian Jacob

A Parse Treefor12 *(9+8/2)

E
|

F/-"I‘-\T
| |
PN /|\

D N
1 |:3 /l\
2

>4

The syntax tree provides
semantic information:

o—0O—2Z2-—7—4

e priority of '*" and /'
before '+’ and '

®—g—z—m

e same priority: compute
from left to right

N—O—z T —-

-—= | B
First Back TOC Describing Syntactic Structures

Prev Next Last

“ ™

Page 21

Chapter 6: Programming Languages and their Translators © Christian Jacob

6.4 An Overview of Programming Languages

1945 —
1950 +—

1955 b=
L}
1960 — v -
[
1965 |

1970 —
1975 —

e
-

1950 —

Back TOC An Overview of Programming Languages Prev Next Last

ol

Page 22 Chapter 6: Programming Languages and their Translators © Christian Jacob
6.5 References
e G. Blank and R. Barnes, The Universal Machine, Boston, MA: WCB/
McGraw-Hill, 1998. Chapters 4.1, 4.2, 4.4.2, and 4.5.
I—m—an
i mm i |

First Back TOC References Prev Next Last

	6.1 Interpreters versus Compilers
	6.2 How Compilers Produce Machine Code
	6.2.1 Stages of Translating a C++ Program

	Stages of Translating a C++ Program (Part 1)
	Stages of Translating a C++ Program (Part 2)
	An Alternative View of the Translation Stages
	6.2.2 Components of a Compiler

	A simple view of a compiler
	A more detailed view of a compiler
	6.3 Describing Syntactic Structures
	6.3.1 The Backus-Naur Form (BNF)

	Example (1): Description of English sentence structures
	Example (2): Description of basic C++ program structures
	6.3.2 Semantics (“Meaning”) Derived from Syntactic Structures

	A Parse Tree for 12 * (9 + 8 / 2)
	6.4 An Overview of Programming Languages
	6.5 References

