

©

Christian Jacob

Chapter Overview

Chapter 6

Programming Languages
and their Translators

6.1 Interpreters versus Compilers

6.2 How Compilers Produce Machine Code

6.2.1 Stages of Translating a C++ Program

6.2.2 Components of a Compiler

6.3 Describing Syntactic Structures

6.3.1 The Backus-Naur Form (BNF)

6.3.2 Semantics (“Meaning”) Derived from Syntactic Structures

6.4 An Overview of Programming Languages

6.5 References

Page 2 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

guage translators:

ehaviour”)

software

e, which can then

 (vs. interpreted)

rogrammers have
formation)

First Back TOC

6.1 Interpreters versus Compilers

There are two general kinds of programming lan

• Interpreters:

transform programs directly into command (“b
sequences that run on a virtual machine

+ good for

rapid prototyping

 of experimental

+ performs error checking at runtime

•

Compilers

:

translate programs into low-level machine cod
run on an

actual machine

+ compiled machine code is generally faster

- compilation itself takes time

- to enable error checking

before

 runtime, p
to provide more information (e.g., type in

Page 3 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ne Code

First Back TOC How Compilers Produce Machine Code

6.2 How Compilers Produce Machi

An example C++ program, ready to be compiled:

#include <iostream.h>

void main()
{

int a;
float b, c;

a = 2; b = 3.1415;
c = a * b;

cout << c << endl;
}

Page 4

 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

Preprocessor

Compiler

Linker

Loader

First Back TOC How Compilers Produce Machine Code

6.2.1 Stages of Translating a C++ Program

Source code

Expanded source code

Object code

Relocatable executable code

Executing program

myProgram.cc

myProgram.o

a.out
myProgram

Page 5

 Chapter 6: Programming Languages and their Translators

© Christian Jacob

Prev Next Last

Correct error(s)

yes

yes

First Back TOC How Compilers Produce Machine Code

Stages of Translating a C++ Program (Part 1)

Source code

Expanded source code

Preprocessor

Compiler

Prep. error(s)?

Compiler error(s)?

Object code

Library header files

no

no

Page 6 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

e

yes

Free up memory

First Back TOC How Compilers Produce Machine Code

Stages of Translating a C++ Program (Part 2)

Object code

Relocatable executable cod

Linker

Loader

Linker error(s)?

Loader error(s)?

Executing program

Library object code

no

no

Page 7 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

Linker

a.out

g++ Program.cc

ader files

First Back TOC How Compilers Produce Machine Code

An Alternative View of the Translation Stages

Program Input

Texteditor

Program.cc

Program.oC++ Compiler

Execution of

a.out

Loader

Input Data

Results / Output

Runtime system

Preprocessor

Library he

Page 8 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

 <streamio.h>

).

 include files.

(syntax analysis).

antic analysis).

ic analysis).

First Back TOC How Compilers Produce Machine Code

• Preprocessor:

- Looks for compiler directives (e.g., #include

- Inserts predefined code and macros from the

⇒

Produces

expanded source code

.

•

Compiler:

- Checks the expanded code for syntax errors

- Checks for missing variable declarations (

sem

- Checks for missing type information (

semant

- … and much more (see for details later!)

⇒

Produces

object code

.

Page 9 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ed for the program
 for input/output,

h relative

ode is called base

 addresses with

First Back TOC How Compilers Produce Machine Code

• Linker:

- Links the object code with other code requir
to run (library object code; e.g., specific code
mathematical functions, etc.)

⇒ Produces relocatable executable code wit
addressing.

•

Loader

:

- Loads executable code into memory.

- The actual starting address of the program c

address.

- All addresses within the program are

relative

respect to the base address.

⇒

 Runs the program.

Page 10 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

fy the “words”

 the “sentences”

heir structures

ning (semantics)

ctuation marks.

First Back TOC How Compilers Produce Machine Code

6.2.2 Components of a Compiler

A simple view of a compiler

Scanning

Parsing

Generating executable code

Tokens

Syntactic structures

Identi

Identify

and t

⇒ mea

and pun

Page 11 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

or
Code

optimizer

 Y N T H E S I S

Object
program

ented

First Back TOC How Compilers Produce Machine Code

A more detailed view of a compiler

Shared Data / Tables

Lexical
analyzer

Syntactic
analyzer

Semantic
analyzer

Code
generat

A N A L Y S I S S

Source
program

source code / language dependent machine-ori

Scanning Parsing

Page 12

 Chapter 6: Programming Languages and their Translators

©

Christian Jacob

Prev Next Last

s

ibe syntactic
) and syntactic

ence of words:

ibing syntax.
First Back TOC Describing Syntactic Structures

6.3 Describing Syntactic Structure

6.3.1 The Backus-Naur Form (BNF)

The BNF1 was invented in the late 1950s to descr
structures of programming languages (ALGOL 60
structures in general.

The BNF works like a word replacement system

:

a

→

b | c | a a

Applying this rule (once per line) produces a sequ

a
a a
a a a (This is just one possibility!)
b c b

 1. John Backus and Peter Naur were members of an international committee to develop a precise notation for descr

Page 13 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ctures

tence_sequence

redicate_part

n
tribute

n
ttribute

ct

e noun

First Back TOC Describing Syntactic Structures

Example (1): Description of English sentence stru

sentence_sequence → sentence .

sen

 |

sentence

.

sentence

→

subject_part

p

subject_part

→

extended_nou

 |

noun_with_at

noun_with_attribute

→

extended_nou

 |

second_case_a

predicate_part

→

predicate

obje

predicate

→

verb

object

→

article

noun

 |

article

adjectiv

Page 14 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ssistants

First Back TOC Describing Syntactic Structures

extended_noun → The students
 | The teaching a

second_case_attribute →

of CPSC 231

 |

of CPSC 233

verb

→

like

 |

enjoy

article

→

the

adjective

→

weekly

 |

daily

noun

→

lecture

 |

chat

 |

learning

 |

labs

Page 15 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

weekly labs

part

object

adjective noun

..

First Back TOC Describing Syntactic Structures

The students of CPSC 231 enjoy

extended_noun

noun_with_attribute

predicate_

article

sentence_sequence

subject_part

predicate

sentence

the

second_case_attribute verb

Page 16

 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ructures

ath.h | …

tion; |
tion; declarations

s

er |
er, identifiers

First Back TOC Describing Syntactic Structures

Example (2): Description of basic C++ program st

program → includes
declarations
main

includes → #include <lib

>

lib

→

iostream.h

 |

m

declarations

→

single_declara

single_declara

single_declaration

→

type

identifier

type

→

float

 |

int

 | …

identifiers

→

single_identifi

single_identifi

Page 17 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

ion; |
ion; instructions

 |
n |

pression |

First Back TOC Describing Syntactic Structures

main → main() {
 declarations
 instructions

return(0)
};

instructions

→

single_instruct

single_instruct

single_instruction

→

assignment

 |

cin_instruction

cout_instructio

conditional

 |

loop

 | …

assignment

→

identifier

=

ex

identifier

=

 …

(etc., this example grammar is not complete)

Page 18 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

 Syntactic

* (9 + 8 / 2)

 | | | 6 7 8 9

First Back TOC Describing Syntactic Structures

6.3.2 Semantics (“Meaning”) Derived from
Structures

Example: analysing the arithmetic expression 12

BNF for arithmetic expressions:

Expression:

→

 | |

Term:

→

 | |

Factor:

→

 |

Number:

→

 |

Digit:

→

 | | | | | |

E T E+ T E– T

T F * T F / T F

F E() N

N DN D

D 0 1 2 3 4 5

Page 19 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

 (9 + 8 / 2) looks as

st (non-terminal)

D * T 12 * T → →

12 * N E+() → →

 9 F /T+() →

12 * 9 8/F+() → →

First Back TOC Describing Syntactic Structures

A derivation for the arithmetic expression 12 *
follows:

This is only one of many possible derivations!

Here we used a left derivation, i.e., the left-mo
symbol is always expanded first.

E T F * T N * T DN * T 1N * T 1→ → → → → →

12 * F 12 * E() 12 * T E+() 12 * F E+()→ → →

12 * D E+() 12 * 9 E+() 12 * 9 T+() 12 *→ → →

12 * 9 N /T+() 12 * 9 D/T+() 12 * 9 8/T+()→ →

12 * 9 8/N+() 12 * 9 8/D+() 12 * 9 8/2+()→ →

Page 20 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

First Back TOC Describing Syntactic Structures

A Parse Tree for 12 * (9 + 8 / 2)

E

T

F * T

N

N

F

(E)

+T E

T

F / T

N

D

8

F

N

D

2

F

N

D

9

1 D

2

D

The syntax tree provides
semantic information:

• priority of ‘*’ and ‘/’
before ‘+’ and ‘-’.

• same priority: compute
from left to right

Page 21

 Chapter 6: Programming Languages and their Translators © Christian Jacob

Prev Next Last

Languages

First Back TOC An Overview of Programming Languages

6.4 An Overview of Programming

Page 22

 Chapter 6: Programming Languages and their Translators

©

Christian Jacob

Prev Next Last

, Boston, MA: WCB/
 4.5.
First Back TOC References

6.5 References

• G. Blank and R. Barnes, The Universal Machine
McGraw-Hill, 1998. Chapters 4.1, 4.2, 4.4.2, and

	6.1 Interpreters versus Compilers
	6.2 How Compilers Produce Machine Code
	6.2.1 Stages of Translating a C++ Program

	Stages of Translating a C++ Program (Part 1)
	Stages of Translating a C++ Program (Part 2)
	An Alternative View of the Translation Stages
	6.2.2 Components of a Compiler

	A simple view of a compiler
	A more detailed view of a compiler
	6.3 Describing Syntactic Structures
	6.3.1 The Backus-Naur Form (BNF)

	Example (1): Description of English sentence structures
	Example (2): Description of basic C++ program structures
	6.3.2 Semantics (“Meaning”) Derived from Syntactic Structures

	A Parse Tree for 12 * (9 + 8 / 2)
	6.4 An Overview of Programming Languages
	6.5 References

