Chapter 5

Problem Solving before Programming

- 5.1 Problem-Solving Strategies
- 5.2 Algorithms as Paths Through "Problem Spaces"
- 5.3 Givens, Goals, and Resources
- 5.4 Analysing and Exploring Problem Spaces
- 5.5 From Blind Search to Informed Search
- 5.6 Analytical Reasoning
- 5.7 The Analogical Approach
- 5.8 References

5.1 **Problem-Solving Strategies**

Finding algorithmic solutions to programming problems is like solving mysteries in detective stories.

- Analytical problem-solving:
 - the "Hercule Poirot" approach
 - careful laying out of the evidence
 - logically putting together little clues
- Analogical approach:
 - the "Jane Marple" approach
 - finding solutions by analogy or comparison to already solved problems

• Trial and error, hacking:

This approach is, of course, less recommended — at least for beginners.

5.2 Algorithms as Paths Through "Problem Spaces"

Page 4

Page 5

5.3 Givens, Goals, and Resources

- Givens: initial conditions of the problem (the way things are)
- Goals: desired state(s) (the way things should be)

Any problem can be formulated at least as givens and goals.

• **Resources**: the means or methods that can transform a problem state into another, in order to move the solver from givens to goals in a step-by-step manner

Differences in givens, goals, and resources make different problems (example: different levels of programming environments).

Examples:

- Game playing
 - Given: initial game setup
 - Goal: win!
 - Resources: possible moves
- Preparing a meal
 - Givens: available ingredients and cookin facilities
 - Goal: end up with something to eat
 - Resources: recipe, the cook's experience, ...

Note: Many of our daily problems are ill-defined: the givens, goals, resources, or combinations of the three, is **unclear**.

Example: client — application programmer — programming language — computer

5.4 Analysing and Exploring Problem Spaces

Problem space: a complete set of possible states, generated by exploring all the possible steps, or moves, which may or may not lead from a given state to a goal state.

What should we know for a preliminary analysis of a problem?

- What are the givens? Do we really have all of them?
 - Are the givens **specific** to a particular situation?
 - Can we generalize?
 - Is there a **notation** that represents the givens and other states succinctly?
- What is the **goal**?
 - Is there are single goal, or are there several?
 - If there is a single goal, can it be split into pieces?
 - If there are several goals or subgoals, are they independent or are they connected?
 - Are there obstacles to overcome to reach a goal? How can they be overcome?
 - Are there any constraints on developing a solution?

- What are the **resources** (moves, operators, procedures, rules, transformations)?
 - For each resource, are there constraints, or preconditions, to be addressed before applying it?
 - If so, are there other, possibly simpler, resources that meet the preconditions?
 - What are the variants? When you apply a resource, what changes?
 - What are the invariants? When you apply a resource, what stays the same?
 - Are there more powerful resources for this problem?
 - Would someone else know these resources?

© Christian Jacob

5.6	Analytical Reasoning							
	Exa	Example: Planning a menu for a meal						
	١.	Preceding Courses: (1)						
		A.Soup course:(4)1.Cream of lettice(8)2.Light sherry(8)						
		B.Fish course:(4)1.Filet of sole Veronique(5)						
	Π.	Main Course: (1)						
		A.Main dish:(2)1.Cornish game hen à l'orange(3)2.Red wine(12)						
		B.Accompanying dishes:(2)1.Creamed spinach(3)2.Wild rice(3)3.Beverage: dry white wine(3) / (7)						

III.	Fol	(1)	
	Α.	Salad course:	(5)
		1. Assorted green	(9)
		2. Vinaigrette dressing	(10)
	Β.	Dessert:	(5)
		1. Mandarin orange tart	(10)
		2. Sweet, heavier white whine	(11)

Laying out an algorithm or a problem solution is like planning a menu.

The different parts of the problem solution are developed in a **topdown** fashion.

An alternative approach would be to develop **bottom-up** (e.g., starting from the ingredients).

5.7 The Analogical Approach

Patient	Vomiting	Abdominal pain	Fever	Pulse	Drug successful
А	yes	yes	high	elevated	yes
В	yes	yes	no	normal	yes
С	yes	no	high	normal	no
D	no	yes	high	elevated	no
E	no	no	high	elevated	no
F	yes	yes	no	elevated	yes
New patient	yes	yes	low	normal	?

5.8 References

• G. Blank and R. Barnes, *The Universal Machine*, Boston, MA: WCB/ McGraw-Hill, 1998. Chapters 2.1 through 2.5.