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Abstract
Various systems have explored the idea of inferring 3D models from sketched 2D outlines. In all of these sys-
tems the underlying modeling methodology limits the complexity of models that can be created interactively. The
ShapeShop sketch-based modeling system utilizes Hierarchical Implicit Volume Models (BlobTrees) as an underly-
ing shape representation. The BlobTree framework supports interactivecreation of complex, detailed solid models
with arbitrary topology. A new technique is described for inflating 2D contours into rounded three-dimensional
implicit volumes. Sketch-based modeling operations are defined that combine these basic shapes using standard
blending and CSG operators. Since the underlying volume hierarchy is bydefinition a construction history, in-
dividual sketched components can be non-linearly edited and removed.For example, holes can be interactively
dragged through a shape. ShapeShop also provides 2D drawing assistance using a new curve-sketching system
based on variational contours. A wide range of models can be sketchedwith ShapeShop, from cartoon-like charac-
ters to detailed mechanical parts. Examples are shown which demonstratesignificantly higher model complexity
than existing systems.

1. Introduction

A variety of underlying shape representations have been
used in sketch-based free-form modeling systems, including
triangle meshes [IMT99], subdivision surfaces [IH03], vari-
ational implicit surfaces [KHR02][AJ03], convolution sur-
faces [TZF04], spherical implicit functions [AGB04], and
discrete volume data sets [ONNI03]. A common attribute
of these systems is that the underlying shape representation
heavily influences the sketch-based modeling operations that
are implemented. For example, supporting automatic blend-
ing with triangle meshes is relatively complex, compared to
implicit representations. These issues tend to limit prototype
sketch-based modeling systems to operations that are practi-
cal to implement, which in turn restricts the types of models
that can be sketched by the intended users.

None of the existing systems have been shown to support
creation of complex models while retaining interactive per-
formance. Again, the underlying shape representation can
fundamentally restrict scalability. For example, variational
implicit surfaces [KHR02][AJ03] are generated by solving
a large matrix, which is not feasible in real-time except for
relatively simple models.

In an attempt to mitigate these issues, we propose Hier-

archical Implicit Volume Models (BlobTrees) [WGG99] as
an underlying shape representation for sketch-based free-
form modeling. A BlobTree procedurally defines an im-
plicit volume using a tree of basic volumes (primitives) and
composition operators, such as CSG and blending. Inside
this framework, shape-modeling operations such as hole-
cutting are easy to implement. The underlying model tree
is also a construction history which supports non-linear
editing of the model. Using a hierarchical spatial caching
scheme [SWG05], complex models can be constructed and
manipulated interactively.

We describeShapeShop, a sketch-based 3D BlobTree
modeling system in the style of Teddy [IMT99]. ShapeShop
includes several sketch-based operations for hole cutting,
oversketched blending, and adding surface detail (Section3).
We also introduce a technique for assisting the user with
sketching smooth 2D curves, and describe some other ges-
tural interface tools (Section4).

Traditionally, BlobTree systems have usedskeletal prim-
itives, essentially offset surfaces from geometric entities. It
is non-trivial to define a skeletal primitive such that the off-
set surface fits a sketched 2D contour [AGB04]. To support
sketch-based modeling, we introduce a free-form BlobTree
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primitive that closely approximates a closed 2D contour us-
ing variational interpolation (Section5). The surface of the
primitive can be defined such that it mimics the “inflation”
algorithms of existing sketch-based systems [IMT99].

Finally, we provide several examples of models sketched
with ShapeShop that display significantly higher surface
complexity than previous systems (Section7).

2. Related Work

Sketch-based 3D modeling systems can be categorized
based on how the system creates 3D shapes in response
to user input (sketches).Suggestivesketch-based mod-
eling systems attempt to map rough sketches to linear
geometry such as lines, planes, and polyhedra. These sys-
tems frequently useexpectation listswhich allow the user
to resolve ambiguous situations. Examples of these sys-
tems include SKETCH [ZHH96], Chateau [IH01], and
GiDES++ [JSC03].

In contrast,Literal sketch-based modeling systems cre-
ate 3D surfaces directly from user strokes. Examples include
Teddy [IMT99], BlobMaker [AJ03], and ConvMo [TZF04].
A fundamental operation in these systems isinflation, where
user-sketched closed 2D contours become the 3D silhouettes
of rounded shapes. Various systems support different sketch-
based editing operations on inflated surfaces, including ex-
trusion, cutting, and blending. These systems are frequently
classified asfree-formmodeling tools. Our system falls into
the Literal sketch-based modeling category.

The Teddy system [IMT99] pioneered the free-form
sketch-based modeling concept. Closed triangle meshes
were created by inflating user-sketched 2D contours using
the chordal axisof the 2D polygon. Sketch-based extru-
sion, cutting, and smoothing operations were supported. Fur-
ther work produced smoother results by re-meshing the sur-
face based on local quadratic implicit surface approxima-
tion [IH03] [MCCH99]. The system was limited to models
with spherical topology (genus 0) and low surface complex-
ity.

A recent work by Cherlin et al. [CSSJ05] implements
sketch-based modeling using interpolating parametric sur-
faces. A wide variety of shapes are created using a novel
generalized surface-of-revolution scheme. No composition
or grouping operations are supported, each surface is inde-
pendent. The system can scale to a large number of indi-
vidual surfaces, however each must be manually positioned
to give the impression of a solid 3D model. While complex
models can be created, the authors note that the requisite
manual positioning is very time consuming.

Several attempts have been made to improve on Teddy
using implicit surfaces. Variational implicit surfaces were
used by Karpenko et al. [KHR02] and the BlobMaker sys-
tem [AJ03]. Shape-editing was limited to blending and over-
sketching. In both cases blending was not procedural, the

existing surfaces were replaced with a single combined sur-
face. Karpenko’s system did maintain a hierarchy of individ-
ual components, but this hierarchy was only used for main-
taining spatial relationships. AnO(N3) matrix inversion is
necessary to solve for the variational function, limiting the
number of constraint points (and hence the surface complex-
ity).

Other implicit-based sketching systems have used con-
volution surfaces [TZF04] and spherical implicit func-
tions [AGB04]. Neither system supports sharp edges, and
in both cases only low-complexity models are shown.

A binary volume data set is used by Owada et
al. [ONNI03] in a sketching system based on Teddy. The
topological restrictions of Teddy are mitigated by the use
of a volumetric representation. Novel methods for sketching
internal cavities are presented which allow for more detailed
models. This system is fundamentally limited by the resolu-
tion of the underlying volume data set.

We note that none of the literal sketch-based modeling
systems published to date have been shown to scale to
even moderately complex models. The stated goal of these
tools is generally to support 3D modeling in the conceptual-
design phase, and not replace existing shape modeling
tools [IMT99][AJ03][TZF04]. However, it is unclear that
low-complexity models can adequately represent the often
highly-detailed sketches produced in conceptual design.

Tai et al. [TZF04] classify free-form sketch-based
modeling systems as eitherboundary-basedor volume-
based. Of the above systems, only two are boundary-
based [IMT99][CSSJ05]. However, only Owada et al.’s sys-
tem [ONNI03] takes advantage of the benefits provided
by a volumetric representation. The implicit-based systems
largely ignore the extensive framework provided by hierar-
chical implicit volume modeling [WGG99], and instead fo-
cus on surface-smoothness properties. We address the bene-
fits provided by integration of these concepts into a sketch-
based modeling system in the following sections.

3. Sketch-Based Modeling Operations

We support construction of three types of surfaces based
on sketches - “blobby” inflation in the style of Teddy, lin-
ear sweeps, and surfaces of revolution. Based on these three
shapes, sketch-based cutting and blending operations are im-
plemented using BlobTree composition operators.

A key benefit of BlobTrees is that the current volume
is procedurally defined by the underlying model tree (Sec-
tion 5.1). This tree represents both a scene graph and a full
construction history. Single primitives, as well as entire por-
tions of the tree, can be modified or removed at any time.
This flexibility is exposed in ShapeShop mainly via gestural
commands and 3D widgets (Section4.4). However, we also
implement a sketch-based resize operation that takes advan-
tage of the BlobTree hierarchy.
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3.1. Blobby inflation

A closed 2D contour can be inflated into a “blobby” shape
using the technique described in Section5.2. The 2D sketch
(Figure1a) is projected onto a plane through the origin paral-
lel to the current view plane, and then inflated in both direc-
tions (Figure1b). After creation, the width of the primitive
can be manipulated interactively with a slider (Figure1c).
The inflation width is functionally defined and could be ma-
nipulated to provide a larger difference between thick and
thin sections. One advantage of an implicit representation is
that holes and disjoint pieces can be handled transparently.

Figure 1: Blobby inflation converts the 2D sketch shown in
(a) into the 3D surface (b) such that the 2D sketch lies on
the 3D silhouette. The width of the inflated surface can be
manipulated interactively, shown in (c).

3.2. Sweep surfaces

Our blobby inflation scheme is based on an underlying
sweep surface representation which also supports linear
sweeps (Figure2a) and surfaces of revolution (Figure2b).
Linear sweeps are created in the same way as blobby shapes,
with the sweep axis perpendicular to the view-parallel plane.
The initial length of the sweep is proportional to the screen
area covered by the bounding box of the 2D curve, but can be
interactively manipulated with a slider. Surfaces of revolu-
tion are created by revolving the sketch around an axis lying
in the view-parallel plane. Revolutions with both spherical
and toroidal topology can be created.

Existing sketch-based systems have generally not
included these types of shapes, with the exception
of [CSSJ05]. However, we have found them invaluable. Sur-
faces of revolution are a class of shape that cannot be repro-
duced with blobby inflation.

Figure 2: Sketched 2D curves can also be used to create (a)
linear sweeps and (b) surfaces of revolution.

3.3. Cutting

Since our underlying shape representation is a true volume
model, cutting operations can be easily implemented using
CSG operators. Users can either cut a hole through the object
or remove volume by cutting across the object silhouette.
Once a hole is created the user may transform the hole inter-
actively. We provide a slider control to modify the depth of
cutting operations. Cut regions are represented internally as
linear sweeps, no additional implementation is necessary to
support cutting in the BlobTree. As example is shown in Fig-
ure3. This CSG-based cutting operation is both more precise
and less restrictive than in existing systems.

Figure 3: Cutting can be performed (b) across the object sil-
houtte or (c) through the object interior. Holes can be inter-
actively translated and rotated. Intersection with other holes
is automatically handled, as shown in (d).

3.4. Blending

We allow the user to blend new blobby primitives to the cur-
rent volume via oversketching. To position the new blobby
primitive, we intersect rays through the sketch vertices with
the current implicit volume. The new primitive is centered at
the average z-depth of the intersection points. The width of
the new blobby primitive can be manipulated with a slider,
as can the amount of blending. Blended volumes can be
transformed interactively, an example is shown in Figure4.
Karpenko et al [KHR02] supported sketching of the blend
profile but also noted that this technique was not robust and
is very slow to compute. The level of interactive control
over the blend surface in our system has not been previously
available.

Figure 4: The sketch-based blending operation (a) creates a
new blobby inflation primitive (b) and blends it to the current
volume. The blending strength is parameterized and can be
interactively manipulated, the extreme settings are shown in
(c) and (d). The blend region is recomputed automatically
when the blended primitives move, as shown in (e).
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3.5. Surface drawing

Any BlobTree primitive can be used to add surface detail
based on sketches. As an initial experiment, ShapeShop sup-
ports “surface-drawing”. Rays through the 2D sketch are in-
tersected with the current implicit volume. Point primitives,
which produce spherical volumes, are placed at intersection
points and blended together. Slider controls are provided to
manipulate the radius of the point primitives. Results are
shown in Figure5. We are developing a more robust tech-
nique involving 3D sweep primitives passing through the in-
tersection points.

Figure 5: Surface-drawing is specified by a 2D sketch, as
shown in (a). Blended skeletal implicit point primitives are
placed along the line at intersection points with the model,
shown in (b). In (c) the radius of the points is increased and
then tapered along the length of the 2D curve.

Surface drawing with implicit volumes is a very flexible
technique. Any pair of implicit primitive and composition
operator can be used as a type of “brush” to add detail to
the current surface. For example, creases could be created by
subtracting swept cone primitives using CSG operations. Im-
plementing these alternative tools is trivial. In addition, since
each surface-drawing stroke is represented independently in
the model hierarchy, individual surface details can be mod-
ifed or removed using our existing modeling interface.

3.6. Sketch-Based Sweep Manipulation

We provide a sketch-based mechanism for resizing and repo-
sitioning linear sweeps and blobby shapes, similar to the
method used in the SKETCH system [ZHH96]. The user se-
lects a sweep primitive and rotates the view such that the
sweep axis is perpendicular to the view direction. The user
then draws a straight line which determines the new extents
of the shape. Holes can be manipulated with this technique
as well, since they are created using linear sweeps (Figure6).
This operation largely eliminates the need for slider widgets
to control sweep length and blobby inflation width, except
when very fine-grained manipulation is desired.

4. Modeling Interface

Our sketch-based modeling interface has been designed pri-
marily to support use on large interactive displays, such
as the touch-sensitive SmartBoard (Figure7). These input
systems lack any sort of modal switch (buttons). In some

Figure 6: The linear sweep volume subtracted from (a) is
hilighted in (b). By drawing a straight-line stroke parallel to
the sweep axis (c), the sweep can be repositioned and resized
(d). The new surface is shown in (e).

sense this is desirable, as pencils also lack buttons. How-
ever, tasks commonly initiated with mode-switching (such
as keypresses or right mouse buttons) must be converted to
alternate schemes, such as gestures or 2D widgets.

Since many 2D widgets can be difficult to use with large-
display input devices (which frequently exhibit low accuracy
and high latency), we borrow the stroke-based widget inter-
action techniques of CrossY [AG04]. For example, a button
is “pressed” by drawing a stroke that crosses the buttton.

Figure 7: Our sketch-modeling interface is designed to sup-
port non-modal input devices, like this touch-sensitive hori-
zontal tabletop display.

4.1. 2D Sketch Editing

Two-dimensional sketches form the basis for 3D shape cre-
ation in ShapeShop. We have implemented a 2D sketching
system that assists with the creation of smooth 2D contours.
This system is related to theinteractive beautificationtech-
niques used in the Pegasus system [IMKT97]. Due to space
constraints, we will only provide a high-level overview of
these techniques.

A fundamental limitation of most standard input devices
is that they provide only point samples to the operating
system. This discrete data can be converted to a poly-line
by connecting temporally-adjacent point samples. However,
in the case of curves the poly-line is only an approxima-
tion to the smooth curve the user desires. In our system
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Figure 8: The gap-filling and smoothing properties of variational curves simplify 2D curve sketching. In (a), multiple disjoint
strokes are automatically connected by fitting a variational curve to the inputsamples. In (b), smoothing parameters are used to
handle intersections between multiple strokes. Rough sketches with many self-intersections can also be automatically smoothed,
as shown in (c).

we do not create an approximate poly-line, but instead fit
a smooth 2D variational implicit curve [TO02] to the dis-
crete samples. Curve normals derived from the discrete poly-
line are used to generate the necessary off-curve constraint
points [CBC∗01]. Variational curves provide many benefits,
such as automatic smoothing and gap-closing with minimal
curvature (Figure8).

ShapeShop supports sketch-based editing of the set of
point samples, but not the final variational curve. To simulta-
neously visualize these two different components, we render
the current variational curve in black and the point sample
poly-line in transparent blue (Figure9).

We have implemented three gestural commands to assist
users when drawing 2D sketches. The first,eraser, is initi-
ated with a “scribble”, as shown in Figure9a. An oriented
bounding-box is fit to the scribble vertices and used to re-
move point samples from the current 2D sketch. The varia-
tional curve is re-computed using the remaining samples.

Figure 9: Examples of theerasergesture (a) andsmooth
gesture (b). These gestures manipulate the parameters used
to compute the final variational curve (dashed line).

The second gestural command issmooth, initiated by cir-
cling the desired smoothing region a minimum of 2 times.
Each point sample has a smoothing parameter associated
with it which is incremented if the point is contained in
the circled region. The variational curve is then re-computed
with the new smoothing parameters (Figure9b). This ges-
ture can be applied multiple times to the same point samples
to further smooth the 2D sketch.

Finally, thepop gesture is used to manipulate entire 2D

sketches. Using theerasecommand to repair large sketch-
ing errors is tedious. Hence, we store individual sketches in
a stack. Thepop gesture, which is input as a quick stroke
straight to the left, pops the topmost sketch and discards it.

We have found this system to be very effective for creating
smooth 2D sketches. This in turn improves the efficiency of
3D modeling, since fewer corrections need to be made to the
3D shape. One current limitation is that sharp creases in the
input sketch are lost, since the underlying variational curve is
alwaysC2 continuous. We are developing additional gesture
operations to allow specification of creases.

4.2. Expectation Lists

In ShapeShop the user specifies only 2D silhouettes of the
desired 3D shapes. Under this constraint there is an un-
avoidable ambiguity regarding what shape-modeling oper-
ation the user intends. For instance, a given 2D contour can
always be interpreted as a blobby shape and a linear sweep.
One option is to require additional sketches or gestures to
resolve this ambiguity. It is unclear that this extra complex-
ity is more efficient than a visual representation. Hence, we
have borrowed theexpectation listsused in various sketch-
based modeling systems [IH01][AJ03][FFJ04].

Figure 10: An example of an expectation list in ShapeShop.
The icons denote (from left to right) blend, cut, surface-
drawing, blobby inflation, linear sweep, and surface of rev-
olution. The icons are color-coded - green icons create new
volumes while magenta icons modify the current volume.

Existing systems have generally rendered small images of
what the updated surface would look like for each expecta-
tion list icon. For complex models the user may be required
to carefully inspect each image to find the desired action. In-
stead, We use color-coded iconic representations (Figure10)
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which can be easily distinguished. Mistakes can be quickly
corrected by erasing nodes from the BlobTree.

The set of icons displayed in the expectation list is
context-dependent. For example, if the user draws a stroke
which produces a variational curve that is not closed, no
shape-creation icons are displayed. However, in many con-
texts a single stroke can be interpreted as any sketch action.
As the set of operations increases, additional strokes may be
necessary to prevent the expectation list from becoming too
large.

4.3. Dynamic 3D Clipping

Most of the sketch-based shape editing operations described
in Section 3 are based on view-parallel planes and ray-
surface intersections. It is frequently the case that the desired
editing region is obscured by some other part of the current
volume. To deal with this situation we use a dynamic cut-
ting plane. Owada [ONNI03] used a dynamic cutting plane
to support sketching of internal volumes. While this is pos-
sible in ShapeShop, we have found that the primary use for
our dynamic cutting plane is in resolving viewing issues and
depth-determination ambiguities.

The cutting plane is initiated by theL -shapedclip gesture.
The user draws a straight line across the surface followed by
a small perpendicular “tick” (Figure11). The initial straight
line determines the cutting plane orientation, the tick direc-
tion determines which side of the plane to clip. Owada’s sys-
tem kept the “right” side of the line, which we found unintu-
itive when drawing horizontal lines.

Figure 11: A temporary cutting plane can assist with sketch-
based editing. In (a), the user draws an L-shaped gesture to
mark the cutting plane and orientation. Two different views
are shown after cutting in (b) and (c).

4.4. 3D Selection and Transformation

Procedurally-defined BlobTree volumes inherently support
non-linear editing of internal tree nodes. However, before a
primitive can be manipulated it must be selected. One option
is to cast a ray into the set of primitives and select the first-hit
primitive. This technique is problematic when dealing with
blending surfaces, since the user may click on the visible
surface but no primitive is hit.

Instead we implement picking by intersecting a ray with

the current volume, then select the primitive which con-
tributes most to the total field value at the intersection point.
This algorithm selects the largest contributor in blending sit-
uations, and selects the ’hole’ primitive when the user clicks
on the inside of a hole surface. Since the shape of the se-
lected primitive may not be obvious (if it is part of a blend),
we have experimented with several rendering modes (Fig-
ure12) that display the selected internal volume.

Figure 12: Internal volumes can be displayed using (a)
transparency, (b) silhouette lines, or (c) transparency and
silhouttes.

This selection system only allows for selection of prim-
itives. To select composition nodes we implement aparent
gesture, which selects the parent of the current node. The
parent gesture is entered as a straight line towards the top
of the screen. Other tree editing operations, such as cut-and-
paste, currently require the use of a standard tree widget. An
integrated tree visualization tool with gesture-based editing
is a feature that we plan on exploring.

A selected primitive or composition node can be removed
using theerasergesture described in Section4.1. Removing
a compostion node is equivalent to cutting a branch from the
model tree - all children are also removed.

To support 3D manipulation we have implemented stan-
dard 3D translation and rotation widgets. These widgets pro-
vide both free-translation/rotation in the view-parallel plane
as well as constrained manipulation with respect to the unit
axes. Compared to the fluid gestural commands used else-
where in ShapeShop, these 3D widgets are rather crude.

5. Implementation Details

5.1. Hierarchical Implicit Volume Modeling

Given a continuous scalar functionf : R
3 → R, we can de-

fine a volumeV:

V =
{

p ∈ R
3 : f (p) ≥ viso

}

(1)

whereviso is called theiso-value. We callV an implicit vol-
ume. The surfaceS of this volume is defined by replacing
the inequality in (1) with an equality. We call this surface
theimplicit surface[Blo97]. This definition also holds in 2D,
whereS is a contour.

Two implicit volumes, defined by scalar functionsf1 and
f2, can be combined functionally using a composition oper-
atorG( f1, f2) ∈ R+. SinceG is also scalar function, com-
position operators can be applied recursively. A variety of
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operators are available for performing Computational Solid
Geometry (CSG), blending, and space deformation [Blo97].

Recursive application of composition operators results in
a tree-like data structure with implicit volumes (primitives)
at the leaves and composition operators at tree nodes. The
final scalar field is evaluated at the root composition opera-
tor, which recursively evaluates its children, and so on. This
type of procedurally-defined implicit volume model is often
called a BlobTree [WGG99].

We restrict the set of primitives we use to those with
bounded† scalar fields. A scalar fieldf is bounded iff = 0
outside some sphere with finite radius. Bounded fields guar-
antee local influence, preventing changes made to a small
part of a complex model from affecting distant portions of
the surface. Local influence preserves a “principle of least
surprise” that is critical for interactive modeling.

One type of implicit volume primitive with a bounded
scalar field is theskeletal primitive, defined by a geometric
skeletonE (such as a point or line) and a one-dimensional
functiong : R+ → R+. The scalar functionf is then:

fE,g(p) = g◦dE(p) (2)

wheredE is a function that computes the minimum Euclid-
ean distance fromp to E. The shape of a skeletal primitive
is primarily determined byE. We use the following function
for g [Wyv05]:

gwyvill(x) = (1−x2)3 (3)

where x is clamped to the range[0,1]. This polynomial
smoothly decreases from 1 to 0 over the valid range, with
zero tangents at each end. We choose 0.5 as the iso-value.

The basic tree data structure can be augmented by attach-
ing an affine transformation to each node, producing a scene
graph suitable for animation. To avoid useless field value
queries, a bounding volume containing the non-zero portion
of the scalar field can be attached to each node.

To improve interactivity, we use Hierarchical Spatial
Caching [SWG05]. Cache nodescontaining lazily-evaluated
discrete volume datasets are inserted into the BlobTree to
approximate portions of the model tree. This technique pro-
vides interactive performance for complex models.

5.2. A Sketch-Based BlobTree Primitive

Our algorithm for inflating a 2D curveC consists of two
steps. First, we create a bounded 2D scalar fieldfM , such
that the iso-contourfM = viso closely approximatesC. Then,
we sweep this 2D field along an infinite 3D axis and bound it

† We use the termbounded, rather thancompact support, in an at-
tempt to draw an analogy to the concept of bounding boxes that is
ubiquitous in computer graphics.

usinggwyvill (Equation3). The following description is nec-
essarily brief, see our technical report [SW05] for a detailed
discussion of our blobby inflation technique, linear sweeps,
and surfaces of revolution.

Computing the 2D scalar fieldfM also consists of two
steps, first creating an unbounded field and then bounding
it with gwyvill . We create an unbounded scalar fieldfM̂ such

that the iso-contourfM̂ = g−1
wyvill(0.5) approximatesC by fit-

ting a variational curve to a set of sample points lying onC.
To adequately constrain the result, we must also consider
off-curve points when fitting the variational solution. We
automatically generate inside and outside off-curve points
along vectors normal toC, similar to the normal constraints
used in 3D variational surface fitting [CBC∗01] [TO02]. Ad-
ditional constraint points are created at a constant radiusrc

from c, the center of the bounding box ofC. The purpose of
these additional constraint points is to attempt to forcefM̂ to
more closely approximate the distance field ofC. Distance
fields are not used because they containsC1 discontinuities
which create the appearance of creases in the inflated sur-
face.

Once we have computed the 2D variational scalar field
fM̂ , we definefM at 2D pointsu:

fM(u) = gwyvill
(

fM̂(u)
)

(4)

which is bounded inside a circle of radius 2 ifC is scaled to
fit inside a unit box before computingfM̂ and a value of 2 is
used forrc. The resulting scalar field isC2 smooth and the
iso-contourfM = viso closely approximatesC (Figure13).

Figure 13: 2D scalar field created using Equation4. Iso-
contours hilighted usingsin function before mapping to
grayscale. Iso-surface is marked in red.

Creating a 3D bounded scalar field based onfM is rela-
tively straightforward. Given an origino, normaln, and two
mutually perpendicular vectorsk1 andk2 in the plane de-
fined byn, we can define an infinite linear sweep of the field
fM . To evaluatefM at some 3D pointp, we require a function
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F that mapsp to a 2D pointu:

F(p) = Rot
[

k1 k2 n
]

·Tr
[

−(o+sn)
]

·p (5)

wheres= (p−o) ·n, Rot [e1 e2 e3] is a homogeneous trans-
formation matrix with upper left 3x3 submatrix [e1 e2 e3]>

andTr [et ] is a homogeneous translation matrix with trans-
lation componentet . The z coordinate ofF(p) is dropped,
resulting in a 2D pointu.

The linear sweep scalar fieldflinear is then defined as

flinear(p) = fM ( F(p) )

This function flinear defines an scalar field of infinite extent
alongn. To bound the field, we multiplyflinear by gwyvill :

fin f late(p) = gwyvill

(

|s|
dendcap

)

· flinear(p) (6)

wheredendcapdetermines the width of the falloff region. The
width of the implicit surface varies (Figure1) becausefM
has increasing values inside the 2D contour, as can be seen
in Figure13. Larger values offlinear extend further alongn,
producing a variable-width surface that mimics the inflation
techniques of Teddy [IMT99] and other systems.

Equation6 is computationally expensive because evaluat-
ing fM̂ is is O(N) in the number of constraint points. The
non-zero region offM can be discretely approximated using
afield image. An example is shown in the inset of Figure13.
The field image is sampled in constant time using aC1 con-
tinuous biquadratic reconstruction filter [BMDS02]

The chordal axis techniques used in previous sketch mod-
eling systems [IMT99] can be adapted to create implicit sur-
faces based on the skeletal primitive approach (Equation2).
However, the resulting scalar field containsC1 discontinu-
ities which produce unintuitive blending behavior. In addi-
tion, this skeletal approach is much slower than the field
image-based technique we have described.

Figure 14: A Mock-up of a mechanical part sketched with
ShapeShop. This model was sketched in under 10 minutes.

5.3. Sketch Modeling Implementation

Sketch-modeling operations are implemented by replacing
the root node of the current BlobTree with a new com-
position operator. The existing root node is added as the
first child, and the new primitive as the second. To imple-
ment cutting (Section3.3), we create a new CSG differ-
ence node which subtracts a linear sweep from the current
volume. We use aC1 CSG difference function [BWdG04]
which prevents unsightly gradient discontinuities. Blending
(Section3.4) is implemented with the parameterized Hyper-
blend [Ric73] [WGG99], which affords some control over
the blend surface.

To visualize the implicit surface we use an optimized
version of Bloomenthal’s polygonizer [Blo94]. We pro-
vide control over the polygonizer resolution, allowing the
user to determine the trade-off between accuracy and in-
teractivity. The images in this paper were all rendered us-
ing high-resolution polygonizations which take approxi-
mately 5-10 seconds to compute. The Extended Marching
Cubes [KBSS01] polygonization algorithm is used to re-
cover sharp features (Figure14).

Figure 15: Heart model sketched in approximately 30
minutes. Complex branching structures can be created
quickly by blending simple parts. Our surface-drawing tech-
nique is useful for creating anatomical details such as veins.

6. Results

The benefit of an underlying analytic representation is par-
ticularly apparent in CAD-style models (Figure14). Sharp
edges created with CSG are mathematically precise. Since
the BlobTree is also a scene graph, the separate parts in this
model can be animated. This could, for example, allow an
engineer to easily create an interactive assembly manual.

c© The Eurographics Association 2005.
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The flexible blending capabilities of implicit modeling
are useful when constructing biological models (Figure15).
Since smooth surface transitions are automatic, complex
topologies can be assembled quickly from simple parts. The
volumetric BlobTree representation supports sketching of
internal volumes (Figure16), which can be applied to bio-
logical models to aid in visualization and communication.

Many of the free-form sketch-based systems described
in Section2 have explored character modeling. However,
the hierarchical nature of the BlobTree allows our character
models to be fully articulated, even when the internal com-
ponents are blended to form smooth surfaces (Figure17).
These articulated models can be animated directly.

7. Discussion

Hierarchical implicit volume modeling is a useful tool for
a wide range of modeling tasks. Employing BlobTrees as
an underlying shape representation has allowed us to design
an interactive system that supports sketch-based creation of
complex 3D models. The models displayed in Figures14-
17 exhibit significantly higher surface complexity than the
models demonstrated in existing systems. Further, these
models do not indicate the complexity limit of ShapeShop,
but rather the point at which these models were considered
“finished” by the creator (the primary author).

Only informal observations of graduate students using
ShapeShop have been performed. The area that caused the
most confusion was selection of non-primitive nodes. Users
must understand the hierarchical BlobTree concept, however
currently we do not visualize the tree and inferring it’s struc-
ture by inspection is difficult. This must be improved in fu-
ture systems. The 3D transformation widgets were also prob-
lematic, we plan on exploring techniques based on those de-
scribed in the SKETCH system [ZHH96]. Many aspects of
the sketch-based interface should be analyzed with formal
usability studies.

Figure 16: The body of this car model was initially sketched,
and then the internal structure was carved out. Right image
shows cut-away view.

The 2D curve-sketching technique described in Sec-
tion 4.1 is limited to smooth contours. Integration of meth-
ods for adding sharp creases would be beneficial, par-
ticularly in the case of CAD models. Techniques such

as those described in suggestive sketch-based systems
[ZHH96] [JSC03] would also be useful to assist with sketch-
ing CAD-style models.

A key property of implicit volume modeling is that com-
position operators do not depend on the shape of underlying
volumes. We have demonstrated that with BlobTrees, CAD-
style solid modeling and free-form modeling can be inte-
grated into a single interface. While generality has practi-
cal advantages, a more fundamental benefit may come from
giving designers a modeling tool which does not prescribe a
particular modeling “style”.

Figure 17: Character models created with ShapeShop. The
skeleton model (left) is composed of 36 primitives in a hier-
archical arrangement that is suitable for direct animation.
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