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Abstract

Implicit surfacemodelingsystemshavebeenusedsince
the mid-1980’s for the generation of cartoon like charac-
ters. Recentlyimplicit modelscombinedwith constructive
solid geometry(CSG)havebeenusedto build engineering
modelswith automaticblending. This work is built on a
structured implicit modelingsystemwhich includesCSG,
warping, 2D texture mappingandoperationsbasedon the
BlobTree, and its application to the generation of a com-
plex andvisuallyaccuratebiological modelof theseashell
Murex cabritii. Sincethe modelis purely procedurally de-
finedand doesnot rely on polygonmeshoperations, it is
resolutionindependentand can be rendered directlyusing
ray tracing. An interfacehas beenbuilt to the BlobTree
usingan interpretedprogramminglanguage (Python).The
languageinterfacereadilyallowsa userto procedurally de-
scribetheshellbasedonnumericdatatakenfromtheactual
object.

1. Introduction

Theseeminglysimplemathematicalcharacterof shells,
whichyield agreatvarietyof beautifulshapes,hasattracted
muchattentionfrom computermodelers.Two motivations
for suchwork areto synthesizerealisticimagesthatcanbe
incorporatedinto computer-generatedscenes,andto gaina
betterunderstandingof the mechanismof shell formation
[2, 5]. This paperis concernedwith the first of thesetwo
goalsandis baseduponimplicit modelingtechniquesusing
theBlobTree[12].

The BlobTree has made possible the constructionof
muchmorecomplex modelsthanthecartoonlikecharacters
asdepictedin moviessuchas[11]. In theBlobTreesystem
modelsaredefinedby expressionswhich combineimplicit
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primitivesusingblending,warping,andbooleansetopera-
tionsin anhomogeneousfashion.As well asthesefeatures
theBlobTreealsoincorporatescontrolledblending[3], and
2D texturemapping[9, 10], without which it is difficult to
capturenaturallyoccurringshapesandpatterns.

The first shell model intendedspecifically for use in
computergraphicswasdevelopedby Kawaguchi[4]. He
createdshell modelsusingpolygonmeshes.Othermeth-
ods of modeling shells have included the use of inter-
penetratingspheres,and generalizedcylinders. A review
of previouswork in modelingshellscanbefoundin Fowler
et al. [2], which alsoextendedthefield by introducingfree
form parametriccurvesto capturethe shapeof shell aper-
ture,andthe useof reactiondiffusionmethodsto incorpo-
ratepigmentationpatternsinto themodels.

Fowler et al. [2] describeseveral openproblemsin the
modelingof shells.Two of theseare:

� Modeling of spines. Previous methodsof modeling
have beenable to capturesmall perturbationsof the
surfaceof theshell. Largemodificationsof the shape
suchasthe spinesin Murex cabritii (Figure13) have
not beencapturedby existingmethods.

� Capturingthethicknessof shellwalls. Theparametric
representationsusedthusfar typically modeltheshell
walls as single surfaceswhich have no actual thick-
ness.Renderingtheinsideandoutsidedifferentlycan
producetheillusion of asubstantivewall, but theopen-
ing of theshellis notproperlyvisualized.

In this work both of the above problemsareaddressed
usingtheBlobTree. A modelof Murex cabritii is described
which includesthe large spines,shell walls of non-zero
thickness,andallowsdifferenttexturesto beappliedto dif-
ferent partsof the shell while automaticallyblendingthe
textureswherethesepartsjoin. Our modelis resolutionin-
dependentandcanbepolygonizedatanarbitraryresolution,
aswell asray traceddirectly, for higherquality images.

This paperis organizedasfollows: Section2 discusses
existing methodsthat have been combinedto build the
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Figure 1. One half of a longitudinal cross-
section of a turbinate shell, illustrating Equa-
tions 2 and 3

model. Section3 presentsthe methodof modelconstruc-
tion. The obtainedresultsarepresentedanddiscussedin
Section4.

2. Background

Backgroundwork will beconsideredin two parts. For-
mulasthatdescribethegeometryof shellswill bediscussed
in Section2.1.TheBlobTree, which is usedto constructthe
model,is introducedin Section2.2.

2.1. Modeling Shell geometry

As reviewedin [2, 5], thesurfaceof a shellwithout pro-
trusionsmay be definedby sweepinga closedgenerating
curve � in theshapeof theapertureof theshellalonga log-
arithmichelico-spiral� . Thescaleof thegeneratingcurve
increasesin geometricprogressionastheangleof rotation
aroundtheshell’saxisincreasesarithmetically.

Thehelico-spiralis convenientlydescribedin acylindri-
cal coordinatesystem. The radius 	 (distanceof a point


on th helico-spiralfrom theshellaxis) is anexponential
functionof theangleof revolution � aroundtheaxis:
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where 	�� is the initial radiusand � is the ratio of the radii
correspondingto a rotationof 2�3.&54 . Theverticaldisplace-
ment 6 of point



increasesin proportionto theradius:
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where? is theanglebetweentheaxisof thespiralandalineD
passingthroughsuccessive whorls of the helico-spiral

(Figure1). A whorl is definedasa singleturn or volution
of aspiralshell.

Thesizeof thegeneratingcurve � at point



caneasily
bedeterminedassumingthat � is acircleof radius E lying
in the planeincluding the shell axis andthe point



, and

that thecirclesin consecutivewhorlsaretangentialto each
other. FromFigure1 we thenobtain:
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In the caseof non-circulargeneratingcurves,Equation
3 remainsusefulasan approximateindicatorof the curve
size.

2.2. The BlobTree

The major advantageof implicit surfacemodelingsys-
temshasbeentheuseof automaticblendingbetweenskele-
tal elements.Recentdevelopmentsin suchsystemsinclude
the addition of spacewarping which provides a method
of implementingdeformations[1], andBooleanoperations
usedin CSGsystems[6, 14]. CSGsystemstypically usea
treestructureto describetherelationshipof Booleansetop-
erationssuchasunionandintersectionbetweenhalf-space
primitives.

The BlobTree [12] hasbeenintroducedasa methodof
organizingall of theseoperationsin a mannerthatenables
globalandlocal operationsto beexploitedin a generaland
intuitivefashion.In theBlobTree, animplicit surfacemodel
is definedusinga treedatastructurewhich combinesim-
plicit surfaceprimitivesasleaf nodes,with arbitraryopera-
tionssuchasblending,warping,andBooleanoperationsas
interiornodes.We referto thestructureastheBlobTree.

One advantageof the BlobTree is that it is easily ex-
tendedto incorporatenew functionality. Several problems
have beenassociatedwith the useof implicit surfacesasa
generalmodelingmethod.Of greatimportanceis theabil-
ity to make objectsblend selectively (locally) ratherthan
globally, andalsothelackof a naturalcoordinatesystemto
allow 2D texturing. Theseproblemshaverecentlybeenad-
dressed,andtheir solutionshavebeenincorporatedinto the
BlobTree: see[3] and[9, 10]. The natureof the BlobTree
cleanlyallowsusbothlocalandglobaltexturingof implicit
models.

Modelsaredefinedby expressionswhich combineim-
plicit primitivesand the operators\ (union), ] (intersec-
tion), ^ (difference),_ (blend), `ba (super-elliptic blend),c (controlledblend), d (warp), e (translate),f (scale),g (ro-
tate), and h (2D texturemap). At the lowest level these
operatorsacton oneor moreprimitives.Theresultof each
operationis a BlobTree, andmaybe passedto anotherop-
erator. Theoperatorslistedabovearen-arywith theexcep-



Figure 2. A sample BlobTree

tion of warp, affine transformationsand 2D texture map-
ping, which areunaryoperators.An exampleof a simple
BlobTreemodelis givenin Figure2.

Theaffine transformationsarethestandardonesandare
definedas: e=��iZ(kjl(nmb�=�poq� - translateBlobTreeo by �8ir(njs(Nm5� ;
f��8ir(njs(Nm5�t�8ou� - scaleBlobTree o by �8ir(kjl(Nm5� ; gb�pv5i)wxf�(k���t�8oq�
- rotateBlobTree o by � aboutthegivenaxisusingtheright-
handrule.

Blending operatorsare of particular importanceto the
modelconstructiondescribedin Section3 andareexamined
in detail.

Super elliptic blending allows the modelerto control
the amountof blending using the methodintroducedby
Ricci [8], andachievesa large rangeof blends. Standard
blendingis referredto as ozy{_|oz} (i.e. thesumof thefunc-
tions ~���� and ~���� ). Superelliptic blendingwill bedenoted
as ozy9`5a�oz} andis definedas:

~����Y�����������!~���� a _'~���� a �s�� [ (4)

The standardblendingoperator _ is a specialcaseof
Equation4 with ����, . Moreover:

�L�L�a.� Xr� ��~ � �
a _�~ � � a ���� � ����� �p~ � �5(Y~ � � [ (5)

Thus,when � variesfrom , to infinity, it createsa setof
modelsinterpolatingbetweenblending ��_-o andunion
��\�o , Figure3 showsa seriesof blendswhere� is varied
between�F��, and ����,�& , which illustratethis effect.
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Figure 3. Super -elliptic blending

This generalized blending is associative, i.e.
~ I � � � � � � M � � ��� ��~ � � � � I � � � � ��� M . Figure 2 shows the
nodesto bebinaryor unary, but thebinarynodescaneasily
beextendedusingtheaboveformulationto n-arynodes.

Controlled blending allows us to blend one BlobTree
o y with anotherBlobTree o } , andto blend o } with a third
BlobTree oT� , withoutblendingo y with oT� , asdescribedin
[3]. It is definedhereas:

c �p� V (N�=��( [L[L[ (Y� a �=�8o V (noz��( [L[L[ (No��T� ,
���r���¡ ¢�k(Y£.�!��(¤ ��n(N£��{¥§¦�,�( [L[¡[ (kh§¨=©lwJ¥ª¦5,.( [L[L[ (n�«¨ [

(6)

where h BlobTreesare being included in the controlled
blend, andeach � � definesa blend betweenBlobTree o�¬®­
and BlobTree oT¯°­ . In the current implementationblends
within acontrolledblendarelimited to pairwiseblends,and
super-elliptic blendingis not available,however thesecan
easilybeaddedto theBlobTree.

3. Modeling Murex cabritii

To model Murex cabritii requiresa descriptionof the
partsof the shell. The modelis derivedfrom observations
madefrom Figure13, andfrom a textual descriptionof the
shell foundin [7](page507)which describesthefollowing
features:

� A smallish,oval aperturein a strongly convex body
whorl.

� A long slendercanalbelow themainbodywhorl, nar-
rowly open,with threeaxialrowsof four to fivespines.



Figure 4. Six point primitives placed on a
helico-spiral. As the size of the field produced
by each primitive increases, the resulting sur -
face forms par t of the main bod y whorl of a
shell.

� Eachwhorl hasthreevarices(ridges)which bearsev-
eralsharpcurvingspines.

� Beadedaxial riblets (or small bumps)arepresentbe-
tweenvarices.

For theremainderof this papera whorl is definedasa part
of themainbodyformedby a rotationabouttheaxisof the
shell,beginningimmediatelyaftera varix, andendingafter
threevariceshave beenformed. From Figure13 we have
estimatedthat a whorl correspondsto a rotation of 2�±5² 4
aboutthe axis of the shell, thusthe anglebetweensucces-
sivevaricesis equalto ,.,¢3�4 .

The shell wasmodeledwith seven whorls. Five to six
spinesweremodeledin the axial rows ratherthan four to
fiveasdescribedabove. Thebumpsoccurperiodicallyboth
parallelandperpendicularto thehelico-spiral.Five setsof
bumpswereaddedalongthehelico-spiralbetweeneachpair
of varices.They-axis in thestandardcoordinatesystemis
definedastheaxisof rotationof theshell for theremainder
of thispaper. Thefollowing parameterswereusedto define
thehelico-spiralfor themodel:

?§�´³�³ [
µ 4 (

�u��, [ 2C(	��z��& [ ³C(EF�8���9� GJILKNMO�P Q)R StU�VSNXJV �¶& [ 2�±�,{·¸	
���5� [
(7)

Constructionof the implicit modelof Murex cabritii will
bediscussednext. Section3.1 describesbuilding themain
body whorl of the shell. Adding the spinesandbumpsto
theshellis discussedin Section3.2.Creatinganopeningin
the shell is describedin Section3.3 andthe applicationof
2D texturesis discussedin Section3.4.

Figure 5. Each whorl of a shell is composed of
three sections (sho wn in Figure 4). On the left
all sections blend with all other sections, on
the right contr olled blending constrains each
section to blend onl y with its two neighbour s
along the helico-spiral.

3.1. Main Body Whorl

Theformulasin Section2.1canbeusedto calculatepo-
sition (Equations1 and2) andsize(Equation3) of a gener-
atingcurve alonga helico-spiral,so that successive curves
placedalong the helico-spiraland connectedin a polyg-
onal meshapproximatethe surfaceof a shell. Fowler et
al. [2] usedpiecewise Beziercurvesto constructgenerat-
ing curves,which wereappliedto modela greatvarietyof
shells.

We useda similar methodto createthe implicit model.
A generatingimplicit surfacewasdescribedusingaskeletal
implicit pointprimitive.Theplacementof aninstanceof the
generatingsurfaceon the helico-spiralat any angle � was
performedin threesteps:

1. Scaleby EF���5� - Equation3.

2. Translateby ( 	u�8��� , 67����� ,0) - Equations1 and2.

3. Rotateby � aboutthey-axis.

Equation8 definesthefunction o K �

 �po+(n��� which takes

an arbitrary BlobTree o and returnsa new BlobTree o K
which tranformso asdescribedabove.

o K �

 �po+(n����(
 �po+(k�5�9�Bg;�8¹�(k�5�=��ºq�8o+(n���k�=(

º»�po+(n���@�Be=�p	u�8����(N67���5��(n&5�=���¼�8o½(k���n��(
�¼�po+(n���@�¶f5�pEF�����=(nEF�8����(NEF���5�k�=�poq� [

(8)

Equation9 describestheBlobTreefor a whorl o�¾ }y , where
��¿ is theinterval betweenadjacentinstancesof thegenerat-
ing surfacedefinedby theBlobTree oÁÀ , v and � definethe



Figure 6. On the left is the generating surface
used for the model of Murex cabritii , on the
right is the whorl this surface defines.

startandendof thewhorl, and ��^1v»_Â, is thenumberof
generatingsurfacesusedin thewhorl:

oz¾ }y �
}Ã
�¡Ä y o À � (o�À � � 
 �poÁÀ5(k��¿{·�wx� [

(9)

The symbol Å is usedto representthe blendof multiple
BlobTrees. Consecutive surfacesalongthewhorl areauto-
maticallyblendedtogether. Figure4 showsaseriesof point
primitivesplacedalonga helico-spiral:asthefield defined
by eachprimitive is increased,the resultingsurfacetends
towarda shellwhorl with a circularaperture.

To avoid unwanted blending between consecutive
whorls,controlledblendingwasused.A whorl consistsof
threesectionseachof which is containedbetweentwo suc-
cessive varices,and correspondsto a ,.,¢3 4 rotation about
the axisof the shell. A sectionwascreatedby placingsix
instancesof the generatingsurfaceon thehelico-spiralus-
ing oz¾ y X�Æy from Equation9 with � ¿ � VnVkÇÇ 4 . To create
the whole body o � with seven completewhorls, 21 sec-
tionsarecombinedusingcontrolledblending(Equation6)
asshown in Equation10.

o � � c � D }pÈ¡É°a.ÊkË�y �LÌN¿ �=� D �rÈLÍn}pÎ Ì ÉxÉ ¿ �=(D }pÈ¡É°a.ÊkË�y �LÌN¿ ��¦5�8wN(nws_´,¢��(nw@¥ª¦�,�(N³;( [¡[L[ (N³�&C¨.¨5(D �rÈLÍn}pÎ Ì ÉxÉ ¿ �Ï¦Ðo�¾ � X�Æ� (nw@¥ª¦¢&)(n3C(�,¢³C( [L[¡[ (t,Ð³�&;¨�¨ [
(10)

Thus,eachsectionis blendedwith its two immediateneigh-
bours,but notwith any othersections.Theresultingsurface
is smoothalong the helico-spiral,but adjacentwhorls do
not blendtogether. Figure5 shows theeffect of controlled
blending,usinga pointprimitiveasthegeneratingsurface.

To incorporatethe long slendercanalbelow the main
body whorl, a coneprimitive, bent with a warp operator,
wasplacedbelow the point primitive. The generatingsur-
faceandtheresultingwhorl it definesareshown in Figure

Figure 7. Creation of a varix. Top left: bent
cones are placed as cur ved spines. Top right:
two concentric tori blend spines tog ether .
Bottom left: smaller spines are modeled with
wider tips. Bottom right: All spines scaled byÑ�Ò
Ó�Ô

along helico-spiral (Equation 12).

6. To reducethe complexity of the model, the canalwas
only modeledin thelast , VÕ whorlswhereit couldbeseen.

3.2. Adding Varices, Bumps and Spines

Varices arethespiny ridgesextendingout from themain
bodywhorl at evenintervalsof ,.,�3 4 aroundtheaxisof the
shell. The varix ozÖ was modeledas a seriesof curving
spinesof varying size, with the relative sizeand location
of eachspinewithin a varix determinedseparatelyfor each
whorl (Table1). Individualspinesweremodeledusingcone
primitivesbentby 2.& 4 usinga warp operator. The place-
mentof eachspineis givenby Equation11 for a seriesof
spineso ¿ , where � definesthe numberof spines,oz× de-
finesa spinelying on the x-axis with its baseat the origin
andthetip bentin thedirectionof thepositivey-axis, il× is
thedistanceto theedgeof theshell,and Ø � and Ù � aregiven
by Table1:

oT¿��
aÃ
�LÄ V

gb�!Ú¼(NØZ�°�t��º × �8o × �n��(
º × �8o × �@�´e=��i × (n&)(n&��t�p� × �po × �k�=(
� × �po × �@�¶f5�8Ù��k(NÙt�k(nÙt�!�=�po × � [

(11)

Most of the spinesin the varix of Murex cabritii are not



freestanding,but areblendedtogetherin a ridge.Two con-
centrictorusprimitiveswereaddedto connectthespinesto
eachotherneartheshellsurface.To maketheshorterspines
standout from theridge,they weremodeledwith a thicker
top, andwhenscalingthe spinesby the Ù � (from Table1),
Ù � y�Û ( Ù � y=Û is the maximumvalueof all Ù � from Table1)
wasusedto scaleeachspinealongthez-axisto increasethe
width of spinesacrossthe varix. Equation12 shows these
operationswhere o × � is a bentspinewith a variablewidth
of tip and definesthe BlobTree for a varix ozÖ , o�Ì is the
BlobTreefor thetwo tori. Theeffect of eachof theseoper-
ationscanbeseenin Figure7.

o ¿ �
aÃ
�LÄ V

g;��ÚÜ(nØ � �t��º�×;�poz× � �k�=(
º × �po × � �9�Be=�8i × (n&C(N&��t�p� × �po × � �k�=(� × �8o × � �@�Âf5�8Ù��k(NÙt�x(NÙt� y�Û �=�8o × � ��(o Ö �´o ¿ _�o Ì [

(12)

To includea varix at anarbitrarypositionalongthehelico-
spiral, o Ö is placedusingEquation8:

ozÖ K �

 �po�Ö5(k�5� [ (13)

Table 1. Relative size ( Ùt� in Equation 11) of
cur ving spines at each of 3 varices per whorl
in the model of Murex cabritii . Angle indicates
rotation in the plane of the generating cur ve
from a horizontal orientation.

Whorl
Angle � 4 � 1 2 3 4 5 6 7

-90 0.55
-80 0.64
-70 0.55
-60 1.14
-50 0.55
-40 1.92
-30 0.55
-20 0.82
-10 0.55 0.55
0 0.8 1.44
10 1.55 0.64
20 0.9 0.64 0.64
30 0.7 0.7 0.55
40 0.8 1.5 0.55 1.62
50 0.8 0.9 1.5 0.64 0.96 0.72
60 0.7 1.06 0.6 0.64
70 0.55
80 0.5

Bumps were modeled using single point primitives
which were scaled by ��Ý Û (YÝ�Þb(NÝ�ß|_¤& [ ²5� , where Ý Ê �

Figure 8. Creation of bumps. Left: similar
bumps blended to shell using à operator .
Right: randoml y scaled bumps blended to
shell with ásâÐã¢ã operator . The value älåså was
required due the great disparity in strength
and extend of field between the large whorl
and small bumps.

�@�pf�( ¿V � ��(næç¥è¦�iZ(kjl(nm)¨ , f is the default size of a bump
and �@��é{(nê�� returnsa pseudorandomnumberwith a nor-
mal distribution where é is themeanand ê is thestandard
deviation. The numberof bumpsin eachsetof bumpsis
determinedby thenumberof spinesdefinedfor thecurrent
whorl. Onebumpwasplacedfor everysecondcurvedspine
usingthesamemethodemployedto placethecurvedspines
(Equation11).

Super-elliptic blending was employed to blend the
bumps with the surface of the shell. This was required
to avoid the tendency of the whorl surface to blend too
smoothlywith the bumps,ascanbe seenin Figure8. To
createa muchmoreabruptblend,a valueof �'�ë±�&�& was
usedin Equation4. Suchahighvalueof � wasrequireddue
to thefactthattheimplicit primitivesdefiningthewhorl de-
fined a much larger andstrongerfield than that produced
by thebumpprimitives.Figure8 shows two whorl sections
with five setsof bumpson them,onewith regular blend-
ing andno randomscaling,andthe otheremploying both
super-elliptic blendingandrandomscaling.

The axial rows of spines protruding from the lower
canalweremodeledusingconeprimitives.Thereis onerow
of spinesbelow eachof the threevariceson the lastwhorl
of theshell. Thespineswereplacedat evenintervalsfrom
eachother along the canal. Threeinstancesof the spines
werethentransformedusingEquation8 usingthesamean-
gle at which the last threevaricesareformedon the main
bodyof the shell. The relative sizesandnumberof spines
weredeterminedseparatelyfor eachrow, asspecifiedin Ta-
ble2.

The spinesarenot perfectlystraightin nature,so each
spinewasrandomlybentby 2 4 to ì 4 oneto threetimesus-



Figure 9. Axial rows of 5-6 spines. Left:
spines are straight. Right: each spine ran-
doml y bent ísî to ïsî 1-3 times.

ing awarpoperator. Thespinescanbeseenin Figure9 with
andwithout therandombendingwarps.

Table 2. Relative size of axial spines belo w
last 3 varices in the model of Murex cabri-
tii . Varix number corresponds to the order
in whic h they were formed (eg. varix 3 is the
last varix formed and is at the opening of the
shell).

Varix
Spine 1 2 3

1 0.96 0.95 1.00
2 0.92 0.99 0.90
3 0.84 0.76 0.92
4 0.68 0.51 0.70
5 0.45 0.35 0.60
6 0.25 0.28

3.3. Creating an Opening

Combining the elementsdescribedthus far provides a
goodapproximationof theexteriorof aMurex cabritii shell.
To constructan openingin the shell, a model was con-
structedof the hollow portion of the shell oTÍ!Ë�É°a � a À , then
a CSG differenceoperationremoved oTÍ°ËtÉxa � a À from the
modelof theshell.

The openingwas createdusing the samemethodde-
scribedfor themainbodywhorl. A similar generatingsur-
facewascreatedwhich wasslightly smallerin eachdimen-
sion orthogonalto the helico-spiral. The basisof the gen-
eratingsurfacewas formed from a single point primitive,

Figure 10. On the left is the generating surface
used for the inside of Murex cabritii , in the
center is the whorl this surface defines, and
on the right is the final surface whic h will be
cut out of the main shell to create the opening.

slightly smallerthan that of the main whorl’s. The inner
canalwas modeledby four slendercones,bent as in the
mainbodywhorl’sgeneratingsurface.Four coneswerere-
quiredasingleconewastoo slenderto describea sufficient
arc of the whorl. Four additionalcones,wereusedto ex-
tendtheinneredgeof thesurfaceto theedgeof theprevious
whorl. Equation14 showshow theopeningwascarvedout
of the shellwhere oT¿xð É!ÈñÈ is the completeshellwithout the
opening, oz� a ¿x� Ê�É definesa whorl generatedwith the gen-
eratingsurfacefor the insideof the shell and o ¾ }y is from
Equation9:

o���òÐÌ É°Û ��oT¿xð É!ÈñÈ ^óo Í°Ë�É°a � a À;(
o Í°Ë�É°a � a ÀT�¶oz� a ¿x� Ê�É ^óo ¾ V �Nôõnö [

(14)

Thepreviouswhorl is subtractedfrom theinsidewhorl to
createo Í!Ë�É°a � a À , which in turn is subtractedfrom themain
bodywhorl. Thiskeepsthepreviouswhorl intact.Thegen-
eratingsurfaceusedto createthehollow portionof theshell,
thewhorl it defines,andthesurfacewhich is usedto cutout
theopeningfrom themainshellareshown in Figure10.

Observation of sea shells similar to Murex cabritii
(Murex troschel) revealthattheopeningis roughlycircular.
Theopeningwhichis carvedoutin Equation14is notcircu-
lar. An insidewall wasmodeledseparatelythenaddedinto
themodelaftercarvingout theopening.Equation15shows
the final combinationwhich was usedto define o �¸òÐÌ É°Û ,
whereo � a ¿x� Ê�ÉZ¾�yYÈñÈ is theBlobTreefor theinteriorwall. The
openingwith andwithout theinsidewall is shown in figure
11.



Figure 11. On the left is the opening whic h
is carved out by Equation 14, on the right is
the final shape of the opening after adding in÷+ø8ùlúYøpû�ü¸ý Ó�þ¡þ

as in Equation 15.

o ��òÐÌ É°Û»���po ¿kð É°ÈñÈW^ªoTÍ°ËtÉxa � a À �W\ÿo � a ¿°� Ê�Ér¾�yYÈ È [ (15)

3.4. Texturing the Shell

Themodelcapturesmostof theform of Murex cabritii,
but to geta morerealisticimagefour 2D texturesandtwo
separatetexturing methodswereappliedto themodel.The
texturesareshown in Figure12,andwereall createdusing
standardpaintprograms.

The main body whorl is textured in parts using the
methodintroducedin [9]. This methodworksby first map-
ping the texture to a boundingparametricsurface � with a
known 2D parameterization.The ��� coordinatesfor textur-
ing onany point �s� on theimplicit surface� aredetermined
by following a combinationof thegradientof thefield, and
avectornormalto � , towards� . When � is reachedatpoint
�s¿ , the ��� coordinatesfor point �s¿ areusedfor texturing �s� .

Figure12(a)shows thetextureappliedto eachsectioninD �ZÈ¡Ín}pÎ Ì ÉxÉ ¿ (definedin Equation10). Thepartsof themain
body whorl wheretwo textured sectionsare blendingare
positionedsothatthey arecoveredby avarix. Thisconceals
discontinuitiesin thepatternresultingfrom by theblending
of two sectionsseparatelytexturedwith the sametexture-
map.

The texturing methoddescribedabove is computation-
ally expensive, but wasrequiredto achieve the desiredef-

(a) Main
body
whorl

(b)
Spinesin
varices

(c) Axial
rows of
spines

(d)
Bumps
on main
whorl

Figure 12. Textures and their corresponding
uses in the model of Murex cabritii .

fect on the main whorl. A fastermethodof texturing was
usedfor all of theothertexturedpartsof themodel. These
includethespinesin thevarices,thespinesbelow themain
body whorl and the bumpson the main body whorl. In
this methodtexturesare mappedto a known 2D parame-
terizationof eachof theprimitives. Whenblendingtwo or
moretexturedBlobTrees, theresultingcolouratapoint



in

spaceis determinedusingalinearcombinationof thecolour
of eachBlobTreescaledby its field valueat point



. This

methodis fully describedin [10].
An inherent feature of the texturing methodsimple-

mentedin the BlobTree is that all of the texturesare au-
tomaticallyblendedwith eachother. This givesour model
a naturallook whereseparatelytexturedpartsof themodel
arejoined. The useof all of thesetexturescanbe seenin
Figure14.

4. Results and Conclusion

We have presentedan applicationof a structuredmod-
eling techniquethat combinesimplicit surfaces,CSG,and
2D texturemapping.This combinationof techniquesis in-
corporatedin animplementationof theBlobTreedeveloped
at theUniversityof Calgary[13]. A proceduralinterfaceis
availablefor thedescriptionof models,allowing exactand
concisedefinitionof modelswhich areeasilymanipulated.
Specificallytheequationsfor BlobTreesshown in thispaper
were implementedin the Pythonprogramminglanguage,
which allowed us to createfunctionsthat definedeachin-
dividual partof theshellandthencombinethesefunctions
in otherfunctionsuntil wehadafunctionwhichdefinedthe
entireseashell.

Using the BlobTree, a realisticmodelof Murex cabritii
wasbuilt (Figure 14). This model not only demonstrates



Figure 13. Murex cabritii , from [7].

thatimplicit surfacesareavalid choicefor modelingnatural
forms, but that they arecapableof creatingmodelswhere
traditionalmethodsfail. Specifically, largeprotrusionsona
seashellssurfacehave beencapturedby switchingfrom a
parametricto animplicit definitionof theshell form.

Our modeldoesnot rely on polygonmeshoperations,it
is resolutionindependent,andcanberendereddirectly us-
ing ray tracing.Figure14 took approximatelytwo hoursto
raytraceonaclusterof 14500MHz DECAlphas.Thisrep-
resentsa significantamountof computation.Work is under
way to improvetheefficiency of our renderingmethods.

The following areasof the model remainopento im-
provement: the openingwas modeledby observingthe
openingonsimilarshells(Murex troschel); thepositionand
numberof spinesandbumpswerebasedonasingleview of
the shell, the numberandplacementof thesefeatureswas
arbitraryandsuddenlychangefrom onewhorl to another;
thetextureswerecreatedin a paintprogramandpastedon
togiveagoodapproximationonly; thevaricesdonotextend
to thelowercanal.

Thecontrolledblendingusedin the currentmodeldoes
notallow muchflexibility . Theblendscanonly bespecified
betweentwo objectsat once,andsuperelliptic blendsare
not allowed. An explorationof this areamight prove quite
fruitful. A major extensionof the modelwould be to use
reactiondiffusiontechniquesto placespinesandbumpson
theshell.
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