
Evolution of a Neural Network for Gait Animation

Anonymous

Anonymous

Abstract
In this paper we describe efforts to create a physically

based system that automatically produces realistic real-
time animations of walking figures, controlled by a neu-
ral network, the weights and functionality of which is
evolved by genetic algorithm techniques.

In traditional computer graphics, the animator is forced
to use intuition about the physical world in specifying the
motions of objects in a scene. The scenes must then be
manually inspected for collisions. Since humans are sen-
sitive to detecting anomalies in everyday physics, and real
motions tend to be complex, manual control techniques
have generally proven to be unsatisfactory.

The use of dynamics greatly improves motion realism,
and shifts control of the animation from specifying abso-
lute positions of objects to applying forces and torques to
the objects in the scene. In addition, it is possible for a
dynamics system to automatically detect and respond to
object collisions. This is a much more difficult task for a
human to control.

A neural network makes an ideal controller for the fig-
ures to be animated. Manually programming a neural net-
work is yet more difficult for a human, and setting up
training examples to make the neural network learn by
back propagation is not straightforward, since there is no
functional solution to be solved.

Through the use of a genetic algorithm, one can de-
termine the performance of a neural network as a whole,
and select for whatever behavior is desired. Animator
control is then directed through model design and behav-
ior choices. In our system the genetic algorithm max-
imises the distance that the walking figure covers over a
randomly generated terrain.

Key words: gait control, genetic algorithm, neural net-
work controller, physically based animation

1 Introduction: Animation of Jointed Figures

Creating a realistic animation of jointed figures can be a
difficult task [?]. Today, there are two major methods in
use by animators. The first method usesinverse kinemat-
ics, where an animator moves some limb of an object and
all attached skeletal elements are adjusted to compensate,
using reactive forces [?]. The second usesmotion cap-

ture, where an actor or prop rigged up with sensors per-
forms in front of a camera, and the motions are digitized
as a near-complete animation. An animator can then edit
the animation so produced. Basically, all methods try to
overcome the problem of making a figure move realisti-
cally, such that they appear to conform to the laws of our
physical world, and also look fluid and efficient in their
motion.

1.1 Animation Dynamics

Another method that is gaining popularity in the graph-
ics world for creating realistic animations is the use of
dynamics [?]. Since the 1980’s [?] dynamics has been
used for computer animation to produce highly realistic
results, where the animator has control over the forces
and torques applied to the model, rather than its absolute
position.

David Baraff states in his paper [?], ”A realistic
physical-based simulation of rigid bodies demands that
no two bodies inter-penetrate. In order to enforce this
constraint, a simulator must first detect potential inter-
penetration between two bodies, and then act to prevent
the two bodies from penetrating.” The former is funda-
mentally a kinematic problem, involving the positional
relationship of objects in the world. The latter is a dy-
namic problem, in that it involves predicting behavior ac-
cording to physical laws [?].

Physical Simulation

Collision Engine
Currently Active
Neural Network

GUI and Process Control
Simulation Mode Training Mode

Muscle
Control

Sensor
Information

Genetic Algorithm

Neural Network
Population

Simulation Control

Network Loading

User Control Visualization

Fitness Feedback

Motion Data

Figure 1: An overview of Creeper



1.2 Creeper: Dynamics Through Neural Networks
and Evolution

The system described in this paper is calledCreeper. The
system makes use of a neural network to control a phys-
ically based walking model. The model uses a genetic
algorithm to train the inputs to a neural network in order
to learn a gait which will achieve a greater distance over
uneven terrain. An overview of the system is shown in
Figure 1.

This paper is organized as follows: Section 1 serves
as an introduction to the computer animation and artifi-
cial intelligence methods used in this work. Section 2
introduces our system and describes the physically based
animation methods used. Section 3 deals with the col-
lision detection methods. Section 4 introduces the arti-
ficial intelligence concepts implemented in a neural net-
work controller. Section 4.1 describes the gait controller,
in section 5 the evolution controller is presented.

The results of our experiments are described in Sec-
tion 6. and the many things left for future work are de-
scribed in Section 7.

2 TheCreeperPhysics

There have been two main classes of methods presented
for dealing with dynamics equations: analytical and nu-
merical. Analytical techniques conform to a mathemati-
cally rigorous theory [?], and produce quantitatively ac-
curate results [?], however, they give rise to elaborate
derivations and intricate algorithms [?]. Numerical meth-
ods have issues with inaccuracies [?], and may fail in
some cases [?], but are more generally applicable and
easier to comprehend [?]. There also do exist improved
methods for numerical integration [?], [?], [?].

One method of using a numerical scheme to calculate
and animate rigid body dynamics is presented in [?]. In
this work, van Overveld states that the dynamical prop-
erties of a rigid body are completely determined by the
tensor of inertia, the total mass, and location of the center
of gravity. Thus it is possible to create a representative
dynamical model for rigid objects. A variation of this
method was used inCreeperto build a simulation that
accurately and efficiently models the dynamics of semi-
rigid structures.

2.1 Application of Dynamics to theCreeper

A model in Creeperconsists of a set of points, orpar-
ticles, each with a position in space, a velocity, and a
mass. Some pairs of these points are connected by line
segments. For each time division, the next position and
velocity of each point is calculated from the sum of the
accelerations applied to it during that time step, and its
previous position and velocity,

ph+1 = ph + vh t+ 0.5 ah t2 (1)

vh+1 = vh + ah t (2)

wherep is position,v is velocity,a is acceleration,h is
the current time step, andt is time.

Line lengths are kept constant by applying a correcting
acceleration parallel to the line, balanced to return the line
to its proper length and taking into account the relative
velocities of the two points,

a =
r(d− vt)

t2
(3)

wherer is a rigidity constant, which can be used to set the
elasticity of the lines. The simulation also has standard
gravity and simple drag built-in, which can be set through
control parameters.

3 Collision Detection

At present, most animation systems do not provide even
minimal collision detection, but require the animator to
visually inspect the scene for object interaction and re-
spond accordingly. This is time-consuming and difficult,
even for keyframe systems where the animator explicitly
defines the motion. It is even worse for procedural or
dynamical animation systems, where the motion is gen-
erated automatically.

Two methods for detecting collisions are presented by
Matthew Moore et al. [?]. One is designed to test thein-
terpenetration of surfacesmodeling flexible objects, and
the other is designed to test theinterpenetration of con-
vex polyhedra, where concave polyhedra can be decom-
posed into collections of convex ones. The penetration
of a point through the surface of a triangle is tested for a
fixed time increment. When the triangle is fixed in space,
for example as a a component of the surface representing
the ground, the calculation isO(mn) for m triangles and
n points. The system must also test for edge-surface pen-
etrations [?]. In the case where two objects are in contin-
uous contact, friction must also be considered to achieve
realism [?].

3.1 Application of Detection
In the system presented here, the physical simulation is
run for one time step and the predicted position of each
point at the end of that time step is calculated. Colli-
sions are detected by testing for penetration of each point
through every line. A collision point can be found by
solving the parametric vector equation,

P + (P ′ − P )t = A+ (B −A)u+ (A′ −A)t
+ ((B′ −B)− (A′ −A))ut (4)



whereP , A, B are points in the system,AB is the line,
P ′, A′, B′ are the predicted position after the time step,
u is a parametric variable, andt is time.

If 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, then the point has
intersected the line at timet and positionu along the line,
see Figure 2.

A

B

P'

P

u

t

Collision Point

Figure 2: Visualization of a collision test, with a fixed
line.

Equation 4 can be expanded to a second order poly-
nomial equation int, so there are two solutions fort,
however, this can be a computationally expensive test,
when done with each point/line combination [?]. To re-
duce the number of times the above calculations must be
performed for theCreepercollision detection algorithm,
a bounding box test is first done. In the case that the two
bounding boxes, of the motion of the point and the mo-
tion of the line, do not intersect, the collision test can be
omitted since no collision could have occurred.

3.2 Collision Response
In keyframed and procedural animation systems, colli-
sion detection is the main requirement, where collision
response is left for the animator to perform. In animation
systems using dynamics to generate motion, the system
itself must respond to a collision.

The most intuitive way to handle collisions is with
springs. Dynamic systems must have a method for apply-
ing external forces to objects. Thus, when a collision is
detected, a very stiff spring is temporarily inserted to push
the objects apart. The main problem with this method is
that it can be computationally expensive for hard colli-
sions. As the springs are compressed, smaller and smaller
time steps are required for accurate numerical integration.
An analytical solution for the collision of two arbitrarily
articulated rigid objects is available as well. The analyti-
cal solution depends upon the conservation of momentum
during a collision, and results in a new angular and linear
velocity for each body.

Some combination of spring and analytical collision
response may be desirable, since the case where an object
is resting on another due to gravity would cause the ana-
lytical solution to be solved repeatedly, whereas a simple
spring that counteracts gravity would be more stable in
this case.

3.3 Application of Response
The first response after a collision is detected is to prevent
interpenetration. This is done by modeling all collisions
as non-elastic collisions, and setting the final position of
pointsPAB to their position at the time of the collision.
Although all collisions inCreeperare modeled as non-
elastic collisions, elastic collisions are simulated realisti-
cally due to the elasticity of the models.

Once an initial collision has been dealt with, it is added
to a list of active contact points. This contact point is kept
track of until such time as the objects move apart again,
and the contact point can be discarded. Where two ob-
jects are in contact, and as long as the force between the
objects is greater than zero, a frictional force will hold the
objects together through the contact point, and the points
PAB are kept linear. This frictional force is infinitely
strong in the current implementation, such that the con-
tact point will not move along the surface of the line.

As long as two objects are in continuous contact, forces
are exchanged through the contact point, and are balanced
by position of the contact point along the line, see Fig-
ure 3.

More force applied from P to A

Force applied from AB to P

Less force applied from P to B

A

B

P

Figure 3: Visualization of a contact point.

4 Making the CreeperMove

For a physically-based figure to move with intent, it must
move under its own power. Jihun Park et al [?] state,
”A human body is complicated mechanically, and is very
different from the robotic mechanisms. Most people use
robotic mechanisms for their human body animation, we
believe, because of the complexity of musculotendon ac-



tuators. But by simple muscle actuators, we can get more
realistic results than simple joint torque actuation like a
robot”. In other words, for a biological animated figure
to appear realistic in its movements, it should simulate
the physical response of real muscles and tendons. How
the muscles are positioned is a model design issue [?],
and the effect of a muscle’s force on an articulated figure
is an aspect of the physical simulation. How a muscle
behaves can be considered separately, and in terms of bi-
ological features [?], though the question remains how to
control the muscles.

4.1 Walking Control With Neural Networks
Using a physical simulation for animation changes the
animator’s task from controlling the position of the
model, to controlling the forces and torques applied to
the model [?]. This is not only as demanding as using
traditional animation, but also more difficult for a human
to comprehend. Although there has been work in limit-
ing this complexity by using goal-oriented control [?] [?],
there has also been success in using lower-level artificial
intelligence techniques to control model parameters [?],
[?], [?], [?]. Michael van de Panne uses a sensor-actuator
network [?] to control an articulated figure. In this work

One such technique is based on neural networks, which
implement a network of interconnected simple process-
ing elements, following the scheme of how brain cells
process information [?]. Each cell in the network is called
a neuron, which employs a simple function to map its
weighted inputs to an output signal (Figure 4). The out-
putx(out)

n of neuronn is calculated as:

x(out)
n = Ω(f(

∑
i

wi xi)) (5)

wheref is the transfer function of the neuron, which is
applied after the weighting of the input signalsxi, andΩ
denotes the output function, which, in our case, is a unity
filter function,

Ω(x) =

 1 : x > 1
−1 : x < −1
x : otherwise

(6)

The transfer functionf of a neuron may vary between
implementations, depending upon the application it is in-
tended for. Generally, simple functions are used, such as
a threshold

fθ(x) =
{

0 : x ≤ θ
1 : x > θ

(7)

or sigmoidal function

fθ(x) =
1

1 + e−θx
(8)

4.2 TheCreeperNetwork Controller
The neural network controllers used byCreeperare or-
ganized as a standard feed-forward network structure,
where signals are propagated from an input to an output
layer, via one layer of hidden neurons, as shown in Fig-
ure 4. Although the network contains no explicit recur-
sive connections, the loop through the environment acts
as a recursive path [?].

Muscle0

Muscle1

Input Layer Hidden Layer Output Layer

Touch0

Touch1

Touch2

Touch3

Position

Velocity

Position

Velocity

Force
Muscle0

Force
Muscle1

A Single Neuron
...

fn() Out

I0*Wi0

I1*Wi1

In*Win

Wf0 Wf1 Wfn

...

Figure 4: A neuron as used by Creeper

The inputs to the networks are the measured and fil-
tered muscle length and delta length, (i.e the difference
between the previous and current lengths), for each mus-
cle, and a touch sensor for each vertex in the model.
The outputs from the neural system control the change
in length of each muscle. Each neuron is fed a weighted
sum of its inputs, scaled by the sum of the weights, and
computes output based on several possible, genetically
chosen functions including:

f(x) = 2xa+ s (9)

f(x) = 1.0− (θ + 1)(2x(a+1)) (10)

f(x) =

 1.0 : x > s+ θ
−1.0 : x < s− θ

0 : otherwise
(11)

f(x) =
2a

1 + 2−(6+3θ)×(x+s)
− a (12)

f(x) = a× cos(0.63× t× f + s× π) + θ (13)

In these formulas above,θ denotes a threshold,a an am-
plitude, ands is a shift parameter. These sets of param-
eters (for each function) are included in the neural net-
work chromosome, where they are treated like additional



weights that determine which of these functions are used
and for which parameter settings.

The weights of all the connections are adjusted through
a training session, which results in a functional mapping
from input to output signals [?], [?].

5 Controller Evolution

Michiel van de Panne [?] points out that the top down
approach assumes that we have knowledge of the type
of motion that is desired, but it is often difficult to come
up with the desired gait, or the motion desired may be
physically impossible for the model to generate. Like van
de Panne’s creatures, theCreeper’sgait is automatically
generated. In this approach we use a genetic algorithm to
evolve a gait to optimize certain fitness criteria.

A genetic algorithm makes use of Darwin’s theory of
evolution to transform a random population of individu-
als to a set of highly fit individuals, based on a functional
definition of what makes an individual fit. The optimiza-
tion is accomplished by repeatedly selecting the individ-
uals with a higher fitness, and creating a new population
based on these fit individuals.

The general scheme of a genetic algorithm, the details
of which are explained in the following section, is as fol-
lows:

1. t := 0

2. A random populationP (t) of individuals is gener-
ated

3. Each individualx ∈ P (t) is tested for its fitnessσ(x)

4. Individuals are selected according to a fitness-
proportinate selection scheme

5. Recombinations and mutations are applied to the se-
lected individuals, which constitute the new popula-
tion P (t+1)

6. t := t+ 1

7. Goto step 3, until a termination criterion is met

Hugo de Garis [?] successfully used a neural network
to control the articulation of a simple stick figure, but in
a non-dynamic environment. In order to train the neural
network to walk, he used a genetic algorithm, where the
calculated fitness was the distance the stick figure moved
during a short simulation. Karl Sims [?] evolved not only
the neural network controller for his blocky figures, but
the structure of the actor as well. This produced actors
that exhibited a selection of different behaviors, when
trained with different fitness functions. Larry Gritz et al
[?] and [?], used genetic programming in order to develop

LISP controllers for an articulated lamp actor. There are
other examples of this technique used successfully too,
such as in [?], [?], wherein a genetic programming sys-
tem is used to evolve the topology, the neuron function-
ality and the weights of a neural network controller.

5.1 Simulation Mode
Our gait animation system has two main modes for sim-
ulation and training. In simulation mode, either a single
neural network with random initial weights is created, or
a trained network is loaded from a file, which can then be
run continuously in real time. No learning occurs during
the simulation.

5.2 Training Mode
In training mode, a populationP of N individual neu-
ral networks (withN chosen commonly in the range
[25, 100]) are randomly generated, or loaded from a file,
and the genetic algorithm is used to adjust the weights of
the neurons. Each neural network is represented as a list
of its neural weights. Each weight can take on values in
the interval[−1, 1] and have an accuracy ofK = 16 bits.

Fitness Calculation
For every generation, each individualnk ∈ P is given
30 seconds in the simulation, and a fitness valueσ(nk)
is calculated based on how well theCreeperperforms on
a particular terrain. The shape of the terrain is param-
eterized and is randomly generated for each individual
Creeperin order to promote more generalized neural con-
trollers [?]. The fitness calculation takes two criteria into
account: (1) the distance traveled from the starting point,
and (2) the energy used:

σ(nk) = p(final)
x − p(start)

y

− we ×
∑

n∈Output
|x(h)
n − x(h+1)

n | (14)

wherewe is a user-defined constant for weighting the en-
ergy influence.

Offspring with Variation
After evaluating the whole population, pairs of individu-
als (n1, n2) ∈ P 2 are selected in a fitness-proportionate
manner. That is, the probabilityp(nk) of an individual
nk to be selected for further promotion into the next gen-
eration is directly dependent on its fitness:

p(nk) =
σ(nk)∑
i∈P σ(ni)

(15)

Variation of the two neural network encodings,n1 and
n2, occurs on a per-weight basis through the two ge-
netic operators of multi-point crossover and point mu-
tation. Multi-point crossover is used to recombine the



weight vectors ofn1 andn2, where each vector has the
form ni = (w1i, . . . wMi), i = 1, 2, and a weight set
of sizeM is assumed for each network. The recom-
binationrec(n1, n2) is performed with a probability of
µcross = 0.001 per chromosome as follows (see Fig-
ure 5):

rec(n1, n2) = n′ = (w′1, . . . , w
′
k, . . . , w

′
M ) (16)

where the weights for the new chromosome are calcu-
lated by

w′k =
{
mut(switch(wki)) : χ ≤ µcross

mut(wki) : χ > µcross
(17)

switch(wki) =
{
wk1 : i = 2
wk2 : i = 1 (18)

with the initial assumption thati = 1. Furthermore,χ
denotes a function that generates uniformly distributed
random numbers in the interval[0, 1] ⊂ <.

Subsequently, each weight,w = (w1, . . . , wK) ∈
{0, 1}K , is mutated with probabilityµmut = 0.1, by flip-
ping a single randomly chosen bit, whereχK generates a
random integer between1 and K.:

mut(w) = (mut(w1), . . . ,mut(wK)) (19)

mut(wi) =
{

1− wi : χK = i
wi : otherwise

(20)

Selection and subsequent variation through the two ge-
netic operators, crossover and mutation, are iteratively
applied until the a new offspring population is filled with
the same numberN of individuals of the parent popu-
lation. This new population replaces the current gener-
ation, with the exception that the bestµelite = 3 indi-
viduals of a population survive into the next generation
unaltered. This process of generating offspring popula-
tions is repeated continuously, until stopped by the user
or a termination criterion is satisfied.

6 Results

Preliminary results have shown some successes and some
failures. Figure 7 is the fitness graph of a successfully
trained model, showing the fitness of each individual per
generation of training. At the start of the training, the
individuals in the population have a fitness average of ap-
proximately zero. The terrain then quickly rises, how-
ever, as high scoring individuals are better represented in
following generations, in many mutated forms, while low

W0 W1 W2 W3 W4 Wn

Mutation

Crossover

Weight Vector 1

Weight Vector 2

W5 ...

W0 W1 W2 W3 W4 WnW5 ...

00010001 01100010

01111110

00000001

00000000

01001101

00100111 1110000111100110

11100110 11111101

00100000

10000001

01101111

Crossed Weights

Randomly Chosen Crossover Points

Randomly Chosen Mutation Points

W0 W1 W2 W3 W4 Wn...

W0 W1
01101101

W2 W3 W4
00100011

Wn...
01100000

Final Weights

00010001 0110001001001101 01111110 00100111 11100001

00010001 01111110 11100001

W5
11111101

W5
11111101

Figure 5: The Genetic Algorithm as used by Creeper

scoring individuals are discarded. In the case shown in
the figure, the first individuals reach a near maximum fit-
ness occur around generation 75, but by generation 125,
over half the population have reached this level, in vari-
ous forms, as the successful genes propagate through the
population. Note how the mutation and recombination
operators, necessary for gene pool diversity, cause a per-
centage of low scoring individuals every generation. Al-
though these individuals have little to no effect on the
gene pool, there is a probability that some individuals
with a higher fitness will be produced, so progress can
be made [?].

The walking animations produced look physically re-
alistic within the constraints of the 2D system, and the
neural network can deal with the uneven terrain. The gait
generated is not always symmetric or efficient, in that
some individuals walk with a pronounced limp, or kick
their legs as they walk. This could be fixed in later ver-
sions by includingstyle[?], [?] components to the fitness
function, and so the techniques used in this system show
promise for the automatic production of gaits. Provid-
ing the neural network with more information about its
environment may help as well, since when the touch sen-
sors were introduced into the system, the resultant walk-
ing animations looked more realistic. A few frames from
a walking sequence after training are shown in Figure 6.

Model design is an important issue inCreeper. If a
model is poorly designed, it might be difficult or impos-
sible for a controlling neural network to produce a gait.
Figure 8 shows a fitness graph where a model failed to
learn. The graph shows three distinct cases, where the
walking figure falls forward, stands upright, or falls back-
ward. It seems to be important that a model is designed
with enough strength and limb leverage such that it can
easily lift a foot off the ground to take a step forward, but
without so much strength that it can vibrate across the



Figure 6: Some frames from an animation of the walk after training.

1
9

17
25

0

25

50

75

100

125

150

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

F
it
n
e
s
s
 V

a
lu
e

In d ividual In dex

G en eration

10-12

8-10

6-8

4-6

2-4

0-2

-2-0

Figure 7: Fitness Graph for successful learning

terrain.

We are currently gathering statistics, on the effect of
the various evolution parameters, that will be presented
in the final version of this paper. In addition, a number
of more complex models are being experimented with.
A screenshot of the system, showing a simple walking
creature, the textured background and uneven terrain is
shown in Figure 9.

7 Conclusion and Future Work

This system is, for the most part, robust and accurate,
and is able to automatically create a realistic animation

1
9

17
25

33
41

49
0

5

10

15

20

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
F
it
n
e
s
s
 V

a
lu
e

In d ividual In dex
G en eration

Figure 8: Fitness graph showing a failure to learn

of a walking figure. Collision detection and response, al-
though not fully complete, greatly improve the realism of
the simulation. The current implementation works well
in the simulation of rigid body dynamics, however, there
are some notable shortcomings that will be addressed in
future versions of theCreeperprogram. Most notably,
the implementation is in two dimensions, due to the fact
that three dimensional collision detection is much more
difficult to compute and more time consuming to calcu-
late. In the move to 3D, there would also be additional
requirements on the direction of walking. In order to be-
come a true actor, theCreepershould be able to follow
curved paths as well as straight lines. This would occur
under the control of a higher mind which sets the amount
of forward motion and left or right turns appropriately.
Control decisions like these could be implemented as ad-



Figure 9: Screenshot of the walking creature.

ditional parameters of the neural network controller.
Having a model editing program, or being able to im-

port 2D or 3D objects as models, would be a good thing
to have. Currently, models forCreeperare designed
on paper, then transcribed by hand to a text file, listing
point coordinates and connecting lines. Having a built-in
model editor would allow for quick changes to me made
with little effort, and allow for free experimentation. Us-
ing a professional model design tool, then importing the
model, would also make surfaces easier to apply, and per-
haps allow for texture mapping the objects, for better vi-
sualization.

Regarding the neural network controller and its train-
ing, it may be beneficial to take advantage of the Baldwin
effect [?], where individuals would employ some form of
learning during the physical simulation. Another possi-
bility for extension is to impose a higher degree of mod-
ularity onto the network, relating the topologies of the
neural networks to the structures of the models [?]. Con-
sequently, two symmetric limbs will have a symmetric
network topology, so that a step forward with one leg will
produce the same motion as a step forward for the other
leg. It may also prove useful to evolve network topolo-
gies, to allow for the automatic generation of coordina-
tion subnets [?].

Acknowledgements

This work is supported in part by grants from the Natural
Science and Engineering Research Council of Canada.


	Introduction: Animation of Jointed Figures
	Animation Dynamics
	Creeper: Dynamics Through Neural Networks and Evolution

	The Creeper Physics
	Application of Dynamics to the Creeper

	Collision Detection
	Application of Detection
	Collision Response
	Application of Response

	Making the CreeperMove
	Walking Control With Neural Networks
	The Creeper Network Controller

	Controller Evolution
	Simulation Mode
	Training Mode

	Results
	Conclusion and Future Work

