Evolution of a Neural Network for Gait Animation

Anonymous

Anonymous

Abstract ture, where an actor or prop rigged up with sensors per-
In this paper we describe efforts to create a physicallfporms in front of a camera, and the motions are digitized
based system that automatically produces realistic reals a near-complete animation. An animator can then edit
time animations of walking figures, controlled by a neuthe animation so produced. Basically, all methods try to
ral network, the weights and functionality of which isovercome the problem of making a figure move realisti-
evolved by genetic algorithm techniques. cally, such that they appear to conform to the laws of our
In traditional computer graphics, the animator is forceghysical world, and also look fluid and efficient in their
to use intuition about the physical world in specifying thenotion.
motions o_f objects in a scene. The_ scenes must then Eel Animation Dynamics
manually inspected for collisions. Since humans are sen-
sitive to detecting anomalies in everyday physics, and reAnother method that is gaining popularity in the graph-
motions tend to be complex, manual control techniquei§5 world for creating realistic animations is the use of
have generally proven to be unsatisfactory. dynamics p]. Since the 1980's7] dynamics has been
The use of dynamics greatly improves motion realismi/Sed for computer animation to produce highly realistic
and shifts control of the animation from specifying absof€sults, where the animator has control over the forces
lute positions of objects to applying forces and torques t8"d torques applied to the model, rather than its absolute
the objects in the scene. In addition, it is possible for ROSition.
dynamics system to automatically detect and respond toDavid Baraff states in his paper?]["A realistic
object collisions. This is a much more difficult task for aphysical-based simulation of rigid bodies demands that
human to control. no two bodies inter-penetrate. In order to enforce this
A neural network makes an ideal controller for the figconstraint, a simulator must first detect potential inter-
ures to be animated. Manually programming a neural neenetration between two bodies, and then act to prevent
work is yet more difficult for a human, and setting upthe two bodies from penetrating.” The former is funda-
training examples to make the neural network learn bjnentally a kinematic problem, involving the positional
back propagation is not straightforward, since there is n@lationship of objects in the world. The latter is a dy-
functional solution to be solved. namic problem, in that it involves predicting behavior ac-
Through the use of a genetic algorithm, one can dé&ording to physical laws?.
termine the performance of a neural network as a whole,
and select for whatever behavior is desired. Animatdr
control is then directed through model design and behay- —===_| GUl| and Process Cortrol Vidletion

ior choices. In our system the genetic algorithm maxt el M TR
imises the distance that the walking figure covers overfa woion Dta 1
randomly generated terrain. Genetic Algorithm

Simulation Control

. H : H Neural Network
Key words: gait control, genetic algorithm, neural net- . ll

work controller, physically based animation

\ 4 y

.) Network Loading
1 Introduction: Animation of Jointed Figures RscalStition e
Creating a realistic animation of jointed figures can be b ——f G
difficult task [?]. Today, there are two major methods |n| Informaton

use by animators. The first method ugesrse kinemat-
ics, where an animator moves some limb of an object and
all attached skeletal elements are adjusted to compensate,
using reactive forces?]. The second usemotion cap-

Figure 1: An overview of Creeper

1.2 Creeper Dynamics Through Neural Networks
and Evolution

2

The system described in this paper is calBrdeper The Prti = Prtopt+05ant @)
system makes use of a neural network to control a phys- Uht1 = Untant @
ically based walking model. The model uses a genetignere,, is position,v is velocity, is accelerationk is
algorithm to train the inputs to a neural network in ordegne current time step, ands time.
to learn a gai_t which will a_chieve a greater di_stance OVET | ine lengths are kept constant by applying a correcting
uneven terrain. An overview of the system is shown iRcceleration parallel to the line, balanced to return the line
Figurefl. to its proper length and taking into account the relative

This paper is organized as follows: Sectidn 1 servege|ocities of the two points,
as an introduction to the computer animation and artifi-
cial intelligence methods used in this work. Sectjpn 2 g Fd—2t) 3)
introduces our system and describes the physically based 12
animation methods used. Section 3 deals with the calvherer is a rigidity constant, which can be used to set the
lision detection methods. Secti@h 4 introduces the artelasticity of the lines. The simulation also has standard
ficial intelligence concepts implemented in a neural netgravity and simple drag built-in, which can be set through
work controller. Sectiofn 4.1 describes the gait controllegontrol parameters.
in section[p the evolution controller is presented.

The results of our experiments are described in Sed- Collision Detectpn _ _
tion . and the many things left for future work are de-At present, most animation systems do not provide even

scribed in Sectioll 7. minimal collision detection, but require the animator to
visually inspect the scene for object interaction and re-
2 TheCreeperPhysics spond accordingly. This is time-consuming and difficult,

There have been two main classes of methods presen%‘eﬁﬁn for keyframe systems where the animator explicitly

for dealing with dynamics equations: analytical and nu(-:J nes thle ”_‘0“‘:_”- I 'St even wr?rse tfhor protgedl_JraI or
merical. Analytical techniques conform to a mathemati- yntar;ncat anera II(I)n systems, where the motion Is gen-
cally rigorous theory 7], and produce quantitatively ac- erated automatically. . .

curate results7, however, they give rise to elaborate Two methods for detecting collisions are presented by

derivations and intricate algorithmg][Numerical meth- L\/Iatthev: I\/Ifoore fe t alf.?]. On((ja |ﬁ deﬁlgnsld tob'gestt te: d
ods have issues with inaccuracié, [and may fail in erpenetration of surtacesiode’ing fiexible objects, an

some cases?], but are more generally applicable andthe Othle;]'s ddesEned to test th&?rrr)]er(;etratlonbof(;son-
easier to comprehen@][There also do exist improved vex p((j)yte ral‘lN (Ere cor}cave polyhe ra_(r:sn € etcclrn—
methods for numerical integratioR][[7], [?]. posed Into collections of convex ones. The penetration
o thod of usi ical sch ‘ cul of a point through the surface of a triangle is tested for a
ne method ot usIng a humerical scheme to calcu A ed time increment. When the triangle is fixed in space,
and animate rigid body dynamics is presented?n [n

. : for example as a a component of the surface representin
this work, van Overveld states that the dynamical pro P P b ¢

Rhe ground, the calculation @8(mn) for m triangles and

erties of a rigid body are completely determined by th% points. The system must also test for edge-surface pen-

tensor of inertia, the total mass, and location of the centef, .. pl. In the case where two objects are in contin-

of grav_|ty. Thus it is p_05_5|ble_ to create a _representa_twﬁous contact, friction must also be considered to achieve
dynamical model for rigid objects. A variation of this realism]

method was used i€reeperto build a simulation that

accurately and efficiently models the dynamics of sems-1 Application of Detection

rigid structures. In the system presented here, the physical simulation is
L . run for one time step and the predicted position of each

2.1 Application of Dynamics to theCreeper point at the end of that time step is calculated. Colli-

A model in Creeperconsists of a set of points, @ar- sions are detected by testing for penetration of each point

ticles each with a position in space, a velocity, and ahrough every line. A collision point can be found by

mass. Some pairs of these points are connected by ligelving the parametric vector equation,

segments. For each time division, the next position and

velocity of each point is calculated from the sum of the

accelerations applied to it during that time step, and its + (P = P)t = A+ (B - Aju+ (A" - A)t

previous position and velocity, + ((B"=B)—(A"—A)ut (4)

whereP, A, B are points in the systerd B is the line, Some combination of spring and analytical collision
P’', A, B’ are the predicted position after the time stepresponse may be desirable, since the case where an object
u IS a parametric variable, artds time. is resting on another due to gravity would cause the ana-

If 0 <t < 1and0 < u < 1, then the point has lytical solution to be solved repeatedly, whereas a simple
intersected the line at timeand position: along the line, spring that counteracts gravity would be more stable in
see Figurg]2. this case.

3.3 Application of Response
The first response after a collision is detected is to prevent
P interpenetration. This is done by modeling all collisions
Collision Point as non-elastic collisions, and setting the final position of
points PAB to their position at the time of the collision.
Although all collisions inCreeperare modeled as non-
elastic collisions, elastic collisions are simulated realisti-
cally due to the elasticity of the models.

Once an initial collision has been dealt with, it is added
to a list of active contact points. This contact point is kept
track of until such time as the objects move apart again,
and the contact point can be discarded. Where two ob-
jects are in contact, and as long as the force between the
objects is greater than zero, a frictional force will hold the
Figure 2: Visualization of a collision test, with a fixed opjects together through the contact point, and the points
line. PARB are kept linear. This frictional force is infinitely

i strong in the current implementation, such that the con-

Equation[H# can be expanded to a second order poly;c; point will not move along the surface of the line.

nomial equation ir¢, so there are two solutions far As long as two objects are in continuous contact, forces

however, this can be a computationally expensive teslq exchanged through the contact point, and are balanced
when done with each point/line combinatidh.[To re- py nqsition of the contact point along the line, see Fig-
duce the number of times the above calculations must bgap-

performed for theCreepercollision detection algorithm,
a bounding box test is first done. In the case that the t\glo

bounding boxes, of the motion of the point and the mo} ~ More force applied from Pto A

tion of the line, do not intersect, the collision test can b _
omitted since no collision could have occurred. Force applied from AB to P

3.2 Collision Response

In keyframed and procedural animation systems, coll

sion detection is the main requirement, where collisiop

response is left for the animator to perform. In animatio

systems using dynamics to generate motion, the systgm

itself must respond to a collision.
The most intuitive way to handle collisions is with Lessforce applied from Pto B

springs. Dynamic systems must have a method for appli

ing external forces to objects. Thus, when a collision is

detected, a very stiff spring is temporarily inserted to push Figure 3: Visualization of a contact point.

the objects apart. The main problem with this method is

that it can be computationally expensive for hard colli-

sions. As the springs are compressed, smaller and smaffer Making the CreepeMove

time steps are required for accurate numerical integratioRor a physically-based figure to move with intent, it must

An analytical solution for the collision of two arbitrarily move under its own power. Jihun Park et @] ftate,

articulated rigid objects is available as well. The analyti“A human body is complicated mechanically, and is very

cal solution depends upon the conservation of momentudifferent from the robotic mechanisms. Most people use

during a collision, and results in a new angular and lineaobotic mechanisms for their human body animation, we

velocity for each body. believe, because of the complexity of musculotendon ac-

[~

tuators. But by simple muscle actuators, we can get moe2 TheCreeperNetwork Controller

realistic results than simple joint torque actuation like &he neural network controllers used Byeeperare or-
robot”. In other words, for a biological animated figureganized as a standard feed-forward network structure,
to appear realistic in its movements, it should simulatg;here Signa|s are propagated from an input to an output
the physical response of real muscles and tendons. Haser, via one layer of hidden neurons, as shown in Fig-
the muscles are positioned is a model design is8le [ure[@. Although the network contains no explicit recur-
and the effect of a muscle’s force on an articulated figurgive connections, the loop through the environment acts
is an aspect of the physical simulation. How a musclgs a recursive pat/?[

behaves can be considered separately, and in terms of bi-

ological features], though the question remains how to

control the muscles. Input Layer ‘ Hidden Layef’ Output Layer
4.1 Walking Control With Neural Networks Musde
Using a physical simulation for animation changes thg

animator’s task from controlling the position of the
. . Muscley
model, to controlling the forces and torques applied tp [
the model P]. This is not only as demanding as using
traditional animation, but also more difficult for a human
to comprehend. Although there has been work in limit
ing this complexity by using goal-oriented contra] [7],
there has also been success in using lower-level artificijl
intelligence techniques to control model paramet&fs [
[?1, [?], [?]- Michael van de Panne uses a sensor-actuator
network [?] to control an articulated figure. In this work Figure 4: A neuron as used by Creeper

One such technique is based on neural networks, which
implement a network of interconnected simple process- The inputs to the networks are the measured and fil-
ing elements, following the scheme of how brain cellsered muscle length and delta length, (i.e the difference
process informatiory. Each cell in the network is called between the previous and current lengths), for each mus-
a neuron, which employs a simple function to map itgle, and a touch sensor for each vertex in the model.
weighted inputs to an output signal (Figute 4). The outThe outputs from the neural system control the change

A Single Neuron

Wi W ... Win

fnQ |out

putg;E;’“t) of neuronn is calculated as: in length of each muscle. Each neuron is fed a weighted
sum of its inputs, scaled by the sum of the weights, and
nguﬂ = f(z w; T;)) (5) computes output based on several possible, genetically
i chosen functions including:

where f is the transfer function of the neuron, which is

applied after the weighting of the input signals and2

denotes the output function, which, in our case, is aunity f(z) = 2za+s)
filter function,

1 a>1 fl@) = 10— (0+1)Cer) (10)
Qz)=< -1 : z<-1 (6)
x @ otherwise LO : xz>s +z
= —1.0 : - 11
The transfer functiorf of a neuron may vary between f(@) 8 Zt;eiwise (11)
implementations, depending upon the application it is in-
tended for. Generally, simple functions are used, such as flz) = 2a _a (12)
a threshold T 14 2-(6+30)x(z+s)
_J O z<0 f(x) = axcos(0.63xtxf—+sxm)+6(13)
or sigmoidal function In these formulas abové,denotes a threshold,an am-
plitude, ands is a shift parameter. These sets of param-
folz) 1 @8) eters (for each function) are included in the neural net-

1 +e bz work chromosome, where they are treated like additional

weights that determine which of these functions are usddSP controllers for an articulated lamp actor. There are
and for which parameter settings. other examples of this technique used successfully too,

The weights of all the connections are adjusted througsuch as in 9], [?], wherein a genetic programming sys-
a training session, which results in a functional mappintem is used to evolve the topology, the neuron function-
from input to output signals?], [?]. ality and the weights of a neural network controller.

5.1 Simulation Mode

5 Controller Evolution o e H) des for si
Michiel van de Panne?] points out that the top down ur_galt amma_tl(_)n system as_two main modes for sim-
ulation and training. In simulation mode, either a single

approach assumes that we have knowledge of the type . A . ,
i . . . e éural network with random initial weights is created, or
of motion that is desired, but it is often difficult to come

X) X . X a trained network is loaded from a file, which can then be
up with the desired gait, or the motion desired may be . . : . .

)) ; . run continuously in real time. No learning occurs during
physically impossible for the model to generate. Likevan_ .

, o : the simulation.

de Panne’s creatures, tlgeeper’sgait is automatically o
generated. In this approach we use a genetic algorithm %2 Training Mode
evolve a gait to optimize certain fitness criteria. In training mode, a populatio® of N individual neu-

A genetic algorithm makes use of Darwin’s theory ofral networks (with/N chosen commonly in the range
evolution to transform a random population of individu-[25, 100]) are randomly generated, or loaded from a file,
als to a set of highly fit individuals, based on a functionahnd the genetic algorithm is used to adjust the weights of
definition of what makes an individual fit. The optimiza-the neurons. Each neural network is represented as a list
tion is accomplished by repeatedly selecting the individef its neural weights. Each weight can take on values in
uals with a higher fitness, and creating a new populatiothhe interval[—1, 1] and have an accuracy &f = 16 bits.
based on these fit individuals.

The general scheme of a genetic algorithm, the detai
of which are explained in the following section, is as fol-
lows:

Fitness Calculation

,—sor every generation, each individuaj € P is given

30 seconds in the simulation, and a fithess vat(e;.)

is calculated based on how well t@zeepermerforms on

1. +—=0 a particular terrain. The shape of the terrain is param-
eterized and is randomly generated for each individual

2. A random populatiorP® of individuals is gener- Creeperin order to promote more generalized neural con-

ated trollers [?]. The fitness calculation takes two criteria into

S) o account: (1) the distance traveled from the starting point,
3. Eachindividuak € P(") is tested for its fitness(z) and (2) the energy used:

4. Individuals are selected according to a fitness-

proportinate selection scheme o(ng) = p;fmu) _ pglstm*t)
5. Recombinations and mutations are applied to the se- — we X Z |l — (1| (14)

lected individuals, which constitute the new popula- n€Output

tion PG+D)

wherew, is a user-defined constant for weighting the en-
6. t:=t+1 ergy influence.

Offspring with Variation
After evaluating the whole population, pairs of individu-

Hugo de Garis7] successfully used a neural networkals (n1,n2) € P* are selected in a fitness-proportionate
to control the articulation of a simple stick figure, but inmanner. That is, the probabilify(r) of an individual
a non-dynamic environment. In order to train the neurabx to be selected for further promotion into the next gen-
network to walk, he used a genetic algorithm, where th@ration is directly dependent on its fitness:
calculated fitness was the distance the stick figure moved
during a short simulation. Karl Sim&][evolved not only p(ng) = M
the neural network controller for his blocky figures, but 2iepa(ni)
the structure of the actor as well. This produced actors Variation of the two neural network encodings, and
that exhibited a selection of different behaviors, whems, occurs on a per-weight basis through the two ge-
trained with different fitness functions. Larry Gritz et alnetic operators of multi-point crossover and point mu-
[?] and [?], used genetic programming in order to develogation. Multi-point crossover is used to recombine the

7. Goto step 3, until a termination criterion is met

(15)

weight vectors ofz; andny, where each vector has the |
form n; = (U)li, e wMi)! 1 =]-7 21 and a Welght set Wa.ghtvecwr_lp 00\/0\100001 DYO\(I)%ll)l mvx‘\flxzxm wv‘\xlx:j’fm .w,f.... | 1:’1\:15"11 U\llivmrluu
of size M is assumed for each network. The recom
. . . . e 1 W, W W W. W, W W
binationrec(ni, ny) is performed with a probability of | WEI"Veror2 |0 e | ool | oo 4y
leross = 0.001 per chromosome as follows (see Fig-
ure @) Crossover Randomly Chosen Crossover Points
Crossed Weights | Wo [Wq [Wp [W3 [Wyq (W5 [..] W,
000100010100110101111110{ 00100111 1110000111111101] | 01100010]
/ / I /
T@C(’I’Ll, n2) = (wh o ’wlw o ,wM) (16) Randomly Chosen Mutation Points
Mutation
where the weights for the new chromosome are calcy- ,
Final Weights Wo |Wp [Wp | W3 [Wy |Ws [..[W,
Iated by 00010001 0]&01101 011111 011 11100001 11111101 01100000

w), = { mut(switch(wi;)) X < Heross (17) Figure 5: The Genetic Algorithm as used by Creeper

mUt(wkz) X > Meross
switch(w) = W o 1=2 (18) scoring individuals are discarded. In the case shown in
ki Wra =1 the figure, the first individuals reach a near maximum fit-

with the initial assumption that — 1. Furthermorey ness occur around generation 75, but by generation 125,

denotes a function that generates uniformly distribute8"€" half the population have reached this level, in vari-
random numbers in the interval, 1] C . ous forms, as the successful genes propagate through the

Subsequently, each weight; = (uw: wi) € population. Note how the mutation and recombination
{0,1}%, is mutated with probabilityt,y,... _ 0.1” by flip- operators, necessary for gene pool diversity, cause a per-

ping a single randomly chosen bit, wherg generates a centage of low scoring individuals every generation. Al-
random integer betweenand K.: though these individuals have little to no effect on the

gene pool, there is a probability that some individuals
with a higher fithness will be produced, so progress can

mut(w) = (mut(w,),..., mut(wg)) (19) 0bemade?].
The walking animations produced look physically re-
1—w; : xg =i alistic within the constraints of the 2D system, and the
mut(w;) = { wz C otherwise (20) neural network can deal with the uneven terrain. The gait

generated is not always symmetric or efficient, in that
Selection and subsequent variation through the two ggéome individuals walk with a pronounced limp, or kick
netic operators, crossover and mutation, are iterativefj€ir Iegs as they walk. This could be fixed in later ver-
applied until the a new offspring population is filled with Sions by includingstyle[?], [?] components to the fitness
the same numbeN of individuals of the parent popu- function, and so the techniques used in this system show
lation. This new population replaces the current genepromise for the automatic production of gaits. Provid-
ation, with the exception that the best;;. = 3 indi- ing the neural network with more information about its
viduals of a population survive into the next generatiognvironment may help as well, since when the touch sen-
unaltered. This process of generating offspring popul&0rs were introduced into the system, the resultant walk-
tions is repeated continuously, until stopped by the usdfg animations looked more realistic. A few frames from

or a termination criterion is satisfied. a walking sequence after training are shown in Figure 6.
Model design is an important issue @reeper If a
6 Results model is poorly designed, it might be difficult or impos-

Preliminary results have shown some successes and sositde for a controlling neural network to produce a gait.
failures. Figurd]7 is the fitness graph of a successfullifigure[® shows a fitness graph where a model failed to
trained model, showing the fitness of each individual pdearn. The graph shows three distinct cases, where the
generation of training. At the start of the training, thewalking figure falls forward, stands upright, or falls back-
individuals in the population have a fitness average of apvard. It seems to be important that a model is designed
proximately zero. The terrain then quickly rises, howwith enough strength and limb leverage such that it can
ever, as high scoring individuals are better represented @asily lift a foot off the ground to take a step forward, but
following generations, in many mutated forms, while lowwithout so much strength that it can vibrate across the

Fitness Value

o Generation
Individual Index

Fitness Value

Generation

Figure 8: Fitness graph showing a failure to learn

17 o
25 8 2-0

Individual Index

of a walking figure. Collision detection and response, al-
though not fully complete, greatly improve the realism of
the simulation. The current implementation works well
in the simulation of rigid body dynamics, however, there

terrain. are some notable shortcomings that will be addressed in

We are currently gathering statistics, on the effect of ,re versions of theCreeperprogram. Most notably,
the various evolution parameters, that will be presentefle jmplementation is in two dimensions, due to the fact
in the final version of this paper. In addition, a numbeg,~t three dimensional collision detection is much more
of more complex models are being experimented withyigic it to compute and more time consuming to calcu-

A screenshot of the system, showing a simple walkingyte | the move to 3D, there would also be additional
creature, the textured background and uneven terrain fSquirements on the direction of walking. In order to be-

shown in Figurg]o. come a true actor, th€reepershould be able to follow
curved paths as well as straight lines. This would occur
under the control of a higher mind which sets the amount
This system is, for the most part, robust and accuratef forward motion and left or right turns appropriately.
and is able to automatically create a realistic animatio@ontrol decisions like these could be implemented as ad-

Figure 7: Fitness Graph for successful learning

7 Conclusion and Future Work

Figure 9: Screenshot of the walking creature.

ditional parameters of the neural network controller.

Having a model editing program, or being able to im-
port 2D or 3D objects as models, would be a good thing
to have. Currently, models fo€Creeperare designed
on paper, then transcribed by hand to a text file, listing
point coordinates and connecting lines. Having a built-in
model editor would allow for quick changes to me made
with little effort, and allow for free experimentation. Us-
ing a professional model design tool, then importing the
model, would also make surfaces easier to apply, and per-
haps allow for texture mapping the objects, for better vi-
sualization.

Regarding the neural network controller and its train-
ing, it may be beneficial to take advantage of the Baldwin
effect [?], where individuals would employ some form of
learning during the physical simulation. Another possi-
bility for extension is to impose a higher degree of mod-
ularity onto the network, relating the topologies of the
neural networks to the structures of the modeé]s Con-
sequently, two symmetric limbs will have a symmetric
network topology, so that a step forward with one leg will
produce the same motion as a step forward for the other
leg. It may also prove useful to evolve network topolo-
gies, to allow for the automatic generation of coordina-
tion subnets?].

Acknowledgements

This work is supported in part by grants from the Natural
Science and Engineering Research Council of Canada.

	Introduction: Animation of Jointed Figures
	Animation Dynamics
	Creeper: Dynamics Through Neural Networks and Evolution

	The Creeper Physics
	Application of Dynamics to the Creeper

	Collision Detection
	Application of Detection
	Collision Response
	Application of Response

	Making the CreeperMove
	Walking Control With Neural Networks
	The Creeper Network Controller

	Controller Evolution
	Simulation Mode
	Training Mode

	Results
	Conclusion and Future Work

