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Abstract

Implicit surface modeling systems have been used since
the mid-1980’s for the generation of cartoon-like charac-
ters. Recently implicit models combined with constructive
solid geometry (CSG) have been used to build engineering
models with automatic blending. This work is based on a
structured implicit modeling system which includes CSG,
warping, 2D texture mapping and operations based on the
BlobTree, and its application to the generation of a com-
plex and visually accurate biological model of the sea shell
Murex cabritii. Since the model is purely procedurally de-
fined and does not rely on polygon mesh operations, it is
resolution independent and can be rendered directly using
ray tracing. An interface has been built for the BlobTree
using an interpreted programming language (Python). The
language interface readily allows a user to procedurally de-
scribe the shell based on numeric data taken from the actual
object.

Key Words. Modeling - Seashells - Implicit Surfaces -
Constructive Solid Geometry

1. Introduction

The seemingly simple mathematical character of shells,
which yield a great variety of beautiful shapes, has attracted
much attention from computer modelers. Two maotivations
for such work are to synthesize realistic images that can be
incorporated into computer-generated scenes, and to gain a
better understanding of the mechanism of shell formation
(Fowler et al.1992, Meinhardt 1995). This paper is con-
cerned with the first of these two goals and is based upon
implicit modeling techniques using the BlobTree(Wyvill et
al. 1999).

The BlobTree has made possible the construction of
much more complex models than the cartoon like charac-
ters as depicted in movies such as (Wyvill 1988). In the
BlobTree system models are defined by expressions which
combine implicit primitives using blending, warping, and
boolean set operations in an homogeneous fashion. The
BlobTree also incorporates controlled blending (Guy and
Wyvill 1995), and 2D texture mapping (Tigges and Wyvill
1998, Tigges and Wyvill 1999), without which it is difficult
to capture naturally occurring shapes and patterns.

The first shell model intended specifically for use
in computer graphics was developed by Kawaguchi
(Kawaguchi 1982). He created shell models using polygon
meshes. Other methods of modeling shells have included
the use of inter-penetrating spheres, and generalized cylin-
ders. Fowler et al. 1992 reviewed previous work on shell
modeling, and extended the field by introducing free form

parametric curves to capture the shape of shell aperture, and
by using reaction-diffusion methods to incorporate pigmen-
tation patterns into the models.

Fowler et al. 1992 describes several open problems in
the modeling of shells. Two of these are:

e Modeling of spines. Previous methods of modeling
have been able to capture small perturbations of the
surface of the shell. Large modifications of the shape
such as the spines in Murex cabritii (Fig. 13) have not
been captured by existing methods.

e Capturing the thickness of shell walls. The parametric
representations used thus far typically model the shell
walls as mathematical surfaces which have no actual
thickness. Rendering the inside and outside differently
can produce the illusion of a substantive wall, but the
opening of the shell is not properly visualized.

In this work both of the above problems are addressed
using the BlobTree. A model of Murex cabritii is described
which includes the large spines, shell walls of non-zero
thickness, and allows different textures to be applied to dif-
ferent parts of the shell while automatically blending the
textures where these parts join. Our model is resolution in-
dependent and can be polygonized at an arbitrary resolution,
as well as ray traced directly, for higher quality images.

This paper is organized as follows. Section 2 discusses
existing methods that have been combined to build the
model. Section 3 presents the method of model construc-
tion. The obtained results are presented and discussed in
Section 4.

2. Background

Background work will be considered in two parts. For-
mulas that describe the geometry of shells will be discussed
in Section 2.1. The BlobTree, which is used to construct the
model, is introduced in Section 2.2.

2.1. Modeling Shell geometry

As reviewed in (Fowler et al. 1992, Meinhardt 1995),
the surface of a shell without protrusions may be defined
by sweeping a closed generating curve C' in the shape of
the aperture of the shell along a logarithmic helico-spiral
S. The scale of the generating curve increases in geometric
progression as the angle of rotation around the shell’s axis
increases arithmetically.

The helico-spiral is conveniently described in a cylindri-
cal coordinate system. The radius R (distance of a point P
on the helico-spiral from the shell axis) is an exponential
function of the angle of revolution 6 around the axis:

R(0) = Rop57); Ry >0, p>1, 6>0, (1)
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Figure 1. One half of a longitudinal cross-
section of a turbinate shell, illustrating Equa-
tions 2 and 3

where Ry is the initial radius and p is the ratio of the radii
corresponding to a rotation of 360°. The vertical displace-
ment H of point P increases in proportion to the radius:

H(0) = R(0)cot 3, B> 0, @)

where 3 is the angle between the axis of the spiral and a line
L passing through successive whorls of the helico-spiral
(Fig. 1). A whorl is defined as a single turn or volution
of a spiral shell.

The size of the generating curve C at point P can eas-
ily be determined under the assumption that C' is a circle
of radius D lying in the plane including the shell axis and
the point P, and that the circles in consecutive whorls are
tangential to each other. From Fig. 1 we then obtain:

D(0) = 20 et @3)

In the case of non-circular generating curves, Equation
3 remains useful as an approximate indicator of the curve
size.

2.2. TheBlobTree

The major advantage of implicit surface modeling sys-
tems has been the use of automatic blending between skele-
tal elements. Recent developments in such systems include
the addition of space warping which provides a method
of implementing deformations (Crespin et al. 1996), and
Boolean operations used in CSG systems (Pasko et al. 1995,
Whyvill and van Overveld 1996). CSG systems typically
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Figure 2. A sample BlabTree

use a tree structure to describe the relationship of Boolean
set operations such as union and intersection between half-
space primitives.

The BlobTree (Wyvill and Guy 1999) has been intro-
duced as a method of organizing all of these operations
in a manner that enables global and local operations to be
exploited in a general and intuitive fashion. In the Blob-
Tree, an implicit surface model is defined using a tree data
structure which combines implicit surface primitives as leaf
nodes, with arbitrary operations such as blending, warping,
and Boolean operations as interior nodes. We refer to the
structure as the BlobTree.

One advantage of the BlobTree is that it is easily ex-
tended to incorporate new functionality. Several problems
have been associated with the use of implicit surfaces as a
general modeling method. Of great importance is the abil-
ity to make objects blend selectively (locally) rather than
globally, and also the lack of a natural coordinate system
to allow 2D texturing. These problems have recently been
addressed, and their solutions have been incorporated into
the BlobTree: see (Guy and Wyvill 1995) and (Tigges and
Wyvill 1998, Tigges and Wyvill 1999). The nature of the
BlobTree cleanly allows us both local and global texturing
of implicit models.

Models are defined by expressions which combine im-
plicit primitives and the operators U (union), N (intersec-
tion), — (difference), + (blend), ©,, (super-elliptic blend),
c (controlled blend), w (warp), ¢ (translate), s (scale), r (ro-
tate), and m (2D texturemap). At the lowest level these
operators act on one or more primitives. The result of each
operation is a BlobTree, and may be passed to another op-
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erator. The operators listed above are n-ary with the excep-
tion of warp, affine transformations and 2D texture map-
ping, which are unary operators. An example of a simple
BlobTree model is given in Fig. 2.

The affine transformations are the standard ones and are
defined as: t(x,y, z)(B) - translate BlobTree B by (z, y, 2);
s(z,y, z)(B) - scale BlobTree B by (z, vy, 2); r(axis, 8)(B)
- rotate BlobTree B by 6 about the given axis using the right-
hand rule.

Blending operators are of particular importance to the
model construction described in Section 3 and are examined
in detail.

Super éliptic blending allows the modeler to control
the amount of blending using the method introduced in
(Ricci 1973), and achieves a large range of blends. Stan-
dard blending is referred to as B, + B (i.e. the sum of
the functions fp, and fp,). Super elliptic blending will be
denoted as B, ¢,, By, and is defined as:

3=

[BaonBy, = (fB." + fB,") 4)

The standard blending operator + is a special case of
Equation 4 with n = 1. Moreover:

Jdim (fp," + f5,")" = max(fs,.f5).  ©)

Thus, when n varies from 1 to infinity, it creates a set of

models interpolating between blending A + B and union

AU B, Fig. 3 shows a series of blends where n is varied
between n = 1 and n = 10, which illustrate this effect.

This generalized blending is associative, i.e.

J(BuonBy)ouB. = [Buon(BuonB.)- Fig. 2 shows the

nodes to be binary or unary, but the binary nodes can easily
be extended using the above formulation to n-ary nodes.

Controlled blending allows us to blend one BlobTree
B, with another BlobTree By, and to blend B;, with a third
BlobTree B., without blending B, with B,, as described in
(Guy and Wyvill 1995). It is defined here as:

C(b1,b2,...,bn)(Bl,BQ,...,Bm) , (6)
b; = (jl7k2)7 jukz S {1,,m}Vz S {1,,71}

where m BlobTrees are being included in the controlled
blend, and each b; defines a blend between BlobTree B,
and BlobTree B,.. In the current implementation blends
within a controlled blend are limited to pairwise blends, and
super-elliptic blending is not available, however these can
easily be added to the BlobTree.

3. Modeling Murex cabritii

To model Murex cabritii requires a description of the
parts of the shell. The model is derived from observations
made from Fig. 13, and from a textual description of the
shell found in (Rehder 1981, page 507) which describes the
following features:

e A smallish, oval aperture in a strongly convex body
whorl.

e A long slender canal below the main body whorl, nar-
rowly open, with three axial rows of four to five spines.

e Each whorl has three varices (ridges) which bear sev-
eral sharp curving spines.

e Beaded axial riblets (or small bumps) are present be-
tween varices.

For the remainder of this paper a whorl is defined as a part
of the main body formed by a rotation about the axis of the
shell, beginning immediately after a varix, and ending after
three varices have been formed. From Fig. 13 we have
estimated that a whorl corresponds to a rotation of 348°
about the axis of the shell, thus the angle between succes-
sive varices is equal to 116°.

The shell was modeled with seven whorls. Five to six
spines were modeled in the axial rows rather than four to
five as described above. The bumps occur periodically both
parallel and perpendicular to the helico-spiral. Five sets of
bumps were added along the helico-spiral between each pair
of varices. The y-axis in the standard coordinate system is
defined as the axis of rotation of the shell for the remainder
of this paper. The following parameters were used to define
the helico-spiral for the model:

B =22.5°,
p=1.3,
Ry = 0.2, ™

D(0) = £ =t = 0.341 « R(9).



CC‘!‘
o0

Figure 4. Six point primitives placed on a
helico-spiral. Asthe size of the field produced
by each primitive increases, the resulting sur-
face forms part of the main body whorl of a
shell

Figure 5. Each whorl of a shell is composed
of three sections (shown in Fig. 4). On the left
all sections blend with all other sections, on
the right controlled blending constrains each
section to blend only with its two neighbours
along the helico-spiral

Construction of the implicit model of Murex cabritii will
be discussed next. Section 3.1 describes building the main
body whorl of the shell. Adding the spines and bumps to
the shell is discussed in Section 3.2. Creating an opening in
the shell is described in Section 3.3 and the application of
2D textures is discussed in Section 3.4.

3.1. Main Body Whorl

The formulas in Section 2.1 can be used to calculate po-
sition (Equations 1 and 2) and size (Equation 3) of a gener-
ating curve along a helico-spiral, so that successive curves
placed along the helico-spiral and connected in a polyg-
onal mesh approximate the surface of a shell. Fowler et
al. 1992 used piecewise Bezier curves to construct generat-

ing curves, which were applied to model a great variety of
shells.

We used a similar method to create the implicit model.
A generating implicit surface was described using a skeletal
implicit point primitive. The placement of an instance of the
generating surface on the helico-spiral at any angle 6 was
performed in three steps:

1. Scale by D(6) - Equation 3.

2. Translate by (R(6),H (9),0) - Equations 1 and 2.

3. Rotate by 6 about the y-axis.

Equation 8 defines the function By = P(B, ) which takes
an arbitrary BlobTree B and returns a new BlobTree By
which tranforms B as described above.

By = P(B,90),

P(B,0) =r(Y,0)(T(B,0)),
T(B,0) = t(R(0), H(0),0)(5(B,
S(B,8) = s(D(0), D(6), D(6))(

Equation 9 describes the BlobTree for a whorl B,,%, where
0, is the interval between adjacent instances of the generat-
ing surface defined by the BlobTree By, a and b define the
start and end of the whorl, and b — a + 1 is the number of
generating surfaces used in the whorl:

o), ©
).

Bug = ZBQN 9)
By, —P(Bg,ﬁ * 7).

The symbol " is used to represent the blend of multiple
BlobTrees. Consecutive surfaces along the whorl are auto-
matically blended together. Fig. 4 shows a series of point
primitives placed along a helico-spiral: as the field defined
by each primitive is increased, the resulting surface tends
toward a shell whorl with a circular aperture.

To avoid unwanted blending between consecutive
whorls, controlled blending was used. A whorl consists of
three sections each of which is contained between two suc-
cessive varices, and corresponds to a 116° rotation about
the axis of the shell. A section was created by placing six
instances of the generating surface on the helico-spiral us-
ing B,,%*° from Equation 9 with §, = %°. To create
the whole body B,, with seven complete whorls, 21 sec-
tions are combined using controlled blending (Equation 6)
as shown in Equation 10.

Bm = C(Lblendpairs)(LBlobtrees);
Lblendpaws - {(Z 7;+1)7i € {1727~-~720}}7 (10)
Lpiobtrees = {Buwi "1 € {0,6,12,...,120}}.

Thus, each section is blended with its two immediate neigh-
bours, but not with any other sections. The resulting surface



Figure 6. On the left is the generating surface
used for the model of Murex cabritii, on the
right is the whorl this surface defines

is smooth along the helico-spiral, but adjacent whorls do not
blend together. Fig. 5 shows the effect of controlled blend-
ing, using a point primitive as the generating surface.

To incorporate the long slender canal below the main
body whorl, a cone primitive, bent with a warp operator,
was placed below the point primitive. The generating sur-
face and the resulting whorl it defines are shown in Fig. 6.
To reduce the complexity of the model, the canal was only
modeled in the last 1% whorls where it could be seen.

3.2. Adding Varices, Bumpsand Spines

Varicesare the spiny ridges extending out from the main
body whorl at even intervals of 116° around the axis of the
shell. The varix B, was modeled as a series of curving
spines of varying size, with the relative size and location
of each spine within a varix determined separately for each
whorl (Table 1). Individual spines were modeled using cone
primitives bent by 30° using a warp operator. The place-
ment of each spine is given by Equation 11 for a series of
spines B, where n defines the number of spines, B;, de-
fines a spine lying on the x-axis with its base at the origin
and the tip bent in the direction of the positive y-axis, zy, is
the distance to the edge of the shell, and «;; and ¢, are given
by Table 1:

n

Bs = ZT(Z7 ai)(Tk(Bk))v
i=1 11
TL(Bu) = (20, 0,0)(Sk (Ba)), (D

Sk(Br) = 5(34, 63, 0:)(Br).

Figure 7. Creation of a varix. Top left: bent
cones are placed as curved spines. Top right:
two concentric tori blend spines together.
Bottom left: smaller spines are modeled with
wider tips. Bottom right: All spines scaled by
dmaz along helico-spiral (Equation 12)

Most of the spines in the varix of Murex cabritii are not
free standing, but are blended together in a ridge. Two con-
centric torus primitives were added to connect the spines to
each other near the shell surface. To make the shorter spines
stand out from the ridge, they were modeled with a thicker
top, and when scaling the spines by the §; (from Table 1),
Omaz (Omae 18 the maximum value of all §; from Table 1)
was used to scale each spine along the z-axis to increase the
width of spines across the varix. Equation 12 shows these
operations where By, is a bent spine with a variable width
of tip and defines the BlobTree for a varix B,, B, is the
BlobTree for the two tori. The effect of each of these oper-
ations can be seen in Fig. 7.

B, = ZT(Za i) (Tk(Bk;)),

=1
Tk(Bki = t(xkaoao)(sk(Bki))v (12)
Sk(Bki) = 5(51'7 6i75mam)(Bki)v
B, = Bs + B,

To include a varix at an arbitrary position along the helico-
spiral, B, is placed using Equation 8:

Byg = P(By,0). (13)



Table 1. Relative size (¢; in Equation 11) of
curving spines at each of 3 varices per whorl
in the model of Murex cabritii. Angle indicates
rotation in the plane of the generating curve
from a horizontal orientation

Whorl
Angle (°) | 1| 2 3 4 5 6 7

-90 0.55
-80 0.64
-70 0.55
-60 1.14
-50 0.55
-40 1.92
-30 0.55
-20 0.82
-10 0.55 | 0.55

0 0.8 | 1.44
10 155 | 0.64
20 0.9 | 0.64 | 0.64
30 0.7 | 0.7 | 055
40 08| 15 | 055 | 1.62
50 08109 |15 | 064|096 | 072
60 0.7 | 1.06 | 0.6 | 0.64
70 0.55
80 0.5

Bumps were modeled using single point primitives
which were scaled by ({z,(y, (. + 0.8), where (g =
n(s, 15),d € {x,y,z}, s is the default size of a bump
and n(u, o) returns a pseudo random number with a nor-
mal distribution where 4 is the mean and o is the standard
deviation. The number of bumps in each set of bumps is
determined by the number of spines defined for the current
whorl. One bump was placed for every second curved spine
using the same method employed to place the curved spines
(Equation 11).

Super-elliptic blending was employed to blend the
bumps with the surface of the shell. This was required
to avoid the tendency of the whorl surface to blend too
smoothly with the bumps, as can be seen in Fig. 8. To create
a much more abrupt blend, a value of n = 400 was used in
Equation 4. Such a high value of n was required due to the
fact that the implicit primitives defining the whorl defined
a much larger and stronger field than that produced by the
bump primitives. Fig. 8 shows two whorl sections with five
sets of bumps on them, one with regular blending and no
random scaling, and the other employing both super-elliptic
blending and random scaling.

The axial rows of spines protruding from the lower
canal were modeled using cone primitives. There is one row
of spines below each of the three varices on the last whorl

Figure 8. Creation of bumps. Left: similar
bumps blended to shell using + operator.
Right: randomly scaled bumps blended to
shell with o499 Operator. The value 400 was
required due the great disparity in strength
and extent of field between the large whorl
and small bumps

Table 2. Relative size of axial spines below
last 3 varices in the model of Murex cabri-
tii. Varix number corresponds to the order
in which they were formed (eg. varix 3 is the
last varix formed and is at the opening of the
shell)

Varix
Spine 1 2 3
1 0.96 | 0.95 | 1.00
0.92 | 0.99 | 0.90
0.84 | 0.76 | 0.92
0.68 | 0.51 | 0.70
0.45 | 0.35 | 0.60
0.25 | 0.28

o0 wWwN

of the shell. The spines were placed at even intervals from
each other along the canal. Three instances of the spines
were then transformed using Equation 8 using the same an-
gle at which the last three varices are formed on the main
body of the shell. The relative sizes and number of spines
were determined separately for each row, as specified in Ta-
ble 2.

The spines are not perfectly straight in nature, so each
spine was randomly bent by 3° to 9° one to three times us-
ing a warp operator. The spines can be seen in Fig. 9 with
and without the random bending warps.



Figure 9. Axial rows of 5-6 spines. Left:
spines are straight. Right: each spine ran-
domly bent 3° to 9° 1-3 times

3.3. Creating an Opening

Combining the elements described thus far provides a
good approximation of the exterior of a Murex cabritii
shell. To construct an opening in the shell, a solid model,
Bopening, Was constructed which matched the shape of the
hollow portion of the shell. A CSG difference operation re-
moved Bopening from the model of the shell creating the
interior space.

Bopening Was created using the same method described
for the main body whorl. A similar generating surface was
created which was slightly smaller in each dimension or-
thogonal to the helico-spiral. The basis of the generating
surface was formed from a single point primitive, slightly
smaller than that of the main whorl’s. The inner canal was
modeled by four slender cones, bent as in the main body
whorl’s generating surface. Four cones were required a sin-
gle cone was too slender to describe a sufficient arc of the
whorl. Four additional cones, were used to extend the in-
ner edge of the surface to the edge of the previous whorl.
Equation 14 shows how the opening was carved out of the
shell where B¢ is the complete shell without the open-
ing, Binside defines a whorl generated with the generating
surface for the inside of the shell and B,,” is from Equation
9:

Bmurez = Bshell - Bopening7
Bopening = Binside - ngl)ZS- (14)

The previous whorl is subtracted from the inside whorl to
create Bopening, Which in turn is subtracted from the main
body whorl. This keeps the previous whorl intact. The gen-
erating surface used to create the hollow portion of the shell,
the whorl it defines, and the surface which is used to cut out
the opening from the main shell are shown in Fig. 10.

Figure 10. On the left is the generating surface
used for the inside of Murex cabritii, in the
center is the whorl this surface defines, and
on the right is the final surface which will be
cut out of the main shell to create the opening

Observation of sea shells similar to Murex cabritii
(Murex troschel) reveal that the opening is roughly circular.
The opening which is carved out in Equation 14 is not circu-
lar. An inside wall was modeled separately then added into
the model after carving out the opening. Equation 15 shows
the final combination which was used to define B,,urez
where B;,side wair 1S the BlobTree for the interior wall. The
opening with and without the inside wall is shown in Fig.
11.

Bmure:c = (Bshell - Bopening) U Binside wall - (15)
3.4. Texturing the Shell

The model captures most of the form of Murex cabritii,
but to get a more realistic image four 2D textures and two
separate texturing methods were applied to the model. The
textures are shown in Fig. 12, and were all created using
standard paint programs.

The main body whorl is textured in parts using the
method introduced in (Tigges and Wyvill 1998). This
method works by first mapping the texture to a bounding
parametric surface S with a known 2D parameterization.
The wv coordinates for texturing on any point p; on the im-
plicit surface I are determined by following a combination
of the gradient of the field, and a vector normal to S, to-
wards S. When S is reached at point p;, the wv coordinates
for point p, are used for texturing p;.

Fig. 12(a) shows the texture applied to each section in
Lpiobirees (defined in Equation 10). The parts of the main



Figure 11. On the left is the opening which
is carved out by Equation 14, on the right is
the final shape of the opening after adding in
Binside wan @S in Equation 15

body whorl where two textured sections are blending are
positioned so that they are covered by a varix. This conceals
discontinuities in the pattern resulting from by the blending
of two sections separately textured with the same texture-
map.

The texturing method described above is computation-
ally expensive, but was required to achieve the desired ef-
fect on the main whorl. A faster method of texturing was
used for all of the other textured parts of the model. These
include the spines in the varices, the spines below the main
body whorl and the bumps on the main body whorl. In
this method textures are mapped to a known 2D parame-
terization of each of the primitives. When blending two or
more textured BlobTrees, the resulting colour at a point P in
space is determined using a linear combination of the colour
of each BlobTree scaled by its field value at point P. This
method is fully described in (Tigges and Wyvill 1999).

An inherent feature of the texturing methods imple-
mented in the BlobTree is that all of the textures are au-
tomatically blended with each other. This gives our model
a natural look where separately textured parts of the model
are joined. The use of all of these textures can be seen in
Fig. 14.

4. Resaults and Conclusion

We have presented an application of a structured model-
ing technique that combines implicit surfaces, CSG, and 2D

(8 Main (b) (0) Axid )

body Spinesin rows of Bumps
whorl varices spines on main
whorl

Figure 12. Textures and their corresponding
uses in the model of Murex cabritii

texture mapping. This combination of techniques is incor-
porated in an implementation of the BlobTree developed at
the University of Calgary (Wyvill et al. 1998). A procedural
interface is available for the description of models, allowing
exact and concise definition of models which are easily ma-
nipulated. Specifically the equations for BlobTrees shown
in this paper were implemented in the Python programming
language, which allowed us to create functions that defined
each individual part of the shell and then combine these
functions in other functions until we had a function which
defined the entire sea shell.

Using the BlobTree, a realistic model of Murex cabri-
tii was built (Fig. 14). This model not only demonstrates
that implicit surfaces are a valid choice for modeling natu-
ral forms, but that they are capable of creating models where
traditional methods fail. Specifically, large protrusions on a
sea shells surface have been captured by switching from a
parametric to an implicit definition of the shell form.

Our model does not rely on polygon mesh operations, it
is resolution independent, and can be rendered directly us-
ing ray tracing. Fig. 14 took approximately two hours to ray
trace on a cluster of 14, 500 MHz DEC Alphas. This rep-
resents a significant amount of computation. Work is under
way to improve the efficiency of our rendering methods.

The following areas of the model remain open to im-
provement: the opening was modeled by observing the
opening on similar shells (Murex troschel); the position and
number of spines and bumps were based on a single view of
the shell, the number and placement of these features was
arbitrary and suddenly change from one whorl to another;
the textures were created in a paint program and pasted on
to give a good approximation only; the varices do not extend
to the lower canal.

The controlled blending used in the current model does



Figure 13. Murex cabritii

not allow much flexibility. The blends can only be specified
between two objects at once, and super elliptic blends are
not allowed. An exploration of this area might prove quite
fruitful. A major extension of the model would be to use
reaction diffusion techniques to place spines and bumps on
the shell.

5. Acknowledgments

We would like to thank Mark Tigges and Andrew Guy
for providing the tools with which this model was built.
The MACI project for high performance computing, who
made available to us the DEC Alpha cluster. This work is
partially supported by grants from the Natural Sciences and
Engineering Research Council of Canada.

References

[1] Crespin B, Blanc C, Schlick C (1996) Implicit sweep ob-
jects. (Proceedings of Eurographics ’96) 15:165-174.

Figure 14. Model of Murex cabritii

[2] Fowler DR, Meinhardt H, Prusinkiewicz P (1992) Modeling
seashells. (Proceedings of SIGGRAPH ’92) Comput Graph
26:379-387.

[3] Guy A, Wiyvill B (1995) Controlled blending for implicit
surfaces. (Proceedings of Implicit Surfaces "95) 1:107-112.

[4] Kawaguchi Y (1982) A morphological study of the form of
nature. Comput Graph 16(3):223-232.

[5] Meinhardt H (1995) The Algorithmic Beauty of Sea Shells.
Springer-Verlag, New York, New York, USA.

[6] Pasko A, Adzhiev V, Sourin A, Savchenko V (1995) Func-
tion representation in geometric modeling: concepts, imple-
mentation and applications. Visual Comput 11(8):429-446.

[7] Rehder (1981) The Audobon Society Field Guide to North
American Seashells. Alfre A. Knopf, Inc., New York, New
York, USA.

[8] Ricci (1973) Constructive Geometry for Computer Graph-
ics. Comput J 16(2):157-160, May.

[9] Tigges M, Wyvill B (1998) Texture Mapping the BlobTree.
(Proceedings of Implicit Surfaces *98) 3:123-130.

[10] Tigges M, Wyvill B (1999) A field interpolated texture map-
ping algorithm for skeletal implicit surfaces. (Proceedings
of Computer Graphics International *99) pp 25-33.



[11] Wivill B, Galin E, Guy A (1999) Extending The CSG
Tree. Warping, Blending and Boolean Operations in an
Implicit Surface Modeling System. Comput Graph Forum,
18(2):149-158.

[12] Wyvill B, Guy A, Tigges M (1998) Jungle Soft-
ware  Projects. http://www.cpsc.ucalgary.ca/  jun-
gle/software/index.html.

[13] Whyvill B, van Overveld K (1996) Polygonization of Implicit
Surfaces with Constructive Solid Geometry. J Shape Mod-
elling 2(4):257-274.

[14] Wyvill B (1988) The Great Train Rubbery. SIGGRAPH 88
Electronic Theatre and Video Review, Issue 26.



