
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24(2005), Number 3

Pen-and-Ink Accelerated Implicit Blobtree Surfaces

Submission id: 403

Abstract
A system for fast rendering of Blobtree implicit surfaces in pen-and-ink styles is presented. Using the idea that
small amounts of visual information can convey a detailed subject, we accelerate the rendering process by ren-
dering only the surface’s silhouette and interior strokes in principal directions of curvature and in the contour
direction. Our system extends previous work that generates the surface’s silhouette and tiny interior marks for
simple implicit surfaces. We contribute methods to extract interior strokes from the surface suitable for animated
primitives, a method to extract silhouette strokes for Blobtree surfaces, and methods to generate several stroke
styles found in natural-science illustration.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

1.1. Goal

The goals of this research are (1) to create accurate natural-
science style pen-and-ink images of Blobtree implicit sur-
faces and (2) to provide an accelerated method to visualize
these surfaces which is compatible with animated surfaces.

1.1.1. What did we try to do?

We introduce a new system, the Non-Photorealistic Blobtree
(NPRBT) which automatically renders static or animated
Blobtree implicit surfaces with styles and techniques used
by natural-science pen-and-ink artists. The system renders
silhouette and interior strokes and provides support for trans-
parency, various stroke styles and several different stroke
placement techniques.

For silhouette extraction, the system extends a method
presented by Bremmer and Hughes [1] using a Witkin Heck-
bert particle system[3] along with an modified extraction
method which handles gradient discontinuities and high-
frequency portions of the surface. To stylize these strokes,
the NPRBT simulates various stroke styles using OpenGL
primitives. For interior stroke extraction, the system extends
methods presented by Elber[2] and Akleman[?]. Particles
are passed to a selection pipeline which determines the par-
ticles that receive strokes. Then, the system creates stylized
curved strokes along the surface.

1.1.2. Who would benefit?

This system benefits two groups of people. First of all, it is
useful for modelers, animators and designers who require a
program capable of interactive visualizations because it pro-
vides a fast interactive rendering of moderately complicated
implicit Blobtree surfaces. Secondly, pen-and-ink renderings
of implicit surfaces benefit any situation where a pen-and ink
rendering of an object is required, such as in drafting, tech-
nical natural-science illustration or cartoon illustration.

1.2. Previous Work

There are three main works that address silhouette and
interior stroke extraction and stylization for implicit
surfaces[1, ?, 2] in an NPR context.

Bremer and Hughes[1] use a hybrid ray-
tracer/integration/OpenGL system to extract silhouettes and
some interior strokes for pen-and-ink simulation. To do
this, their system creates random rays from the scene’s eye
and collides them with the implicit surface. For successful
intersections, a small interior mark is placed on the surface.
To extract the silhouette, the system uses an integrator
find the silhouette of the surface from this point. Finally,
silhouette strokes are extracted using another integration
method which estimates the silhouette direction. Finally,
visible portions of the silhouettes are rendered in an ink-line
style with varying width based on curvature.

Elber[2] presents a system which renders short strokes on

submitted to EUROGRAPHICS 2005.

2 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

the interior of the surface for another pen-and-ink style. To
accomplish this, his system distributes particles on the sur-
face, evaluates shape measures and then extracts strokes di-
rectly from the particles. These strokes can be grouped and
directed in various orientations to convincingly convey de-
tails of the surface. A variety of stroke types, such as scrib-
bles, straight lines and jagged lines, can be applied to the par-
ticles and his system allows for transparency. Although this
system doesn’t specifically extract long silhouette strokes,
particles can be grouped near the silhouette of a surface for
a similar effect.

Akleman[?] extracts long flowing strokes along the inte-
rior of the implicit surface to create a painting style. His sys-
tem uses particles similar to Elber’s in that they adhere to
and move across the surface. In this case, however, the posi-
tions of the particles are saved as the particles move across
the surface and long strokes are created from these lists of
points during rendering.

1.3. Approach

1.3.1. What approach did we try?

Our algorithm takes an input an implicit Blobtree model
[Cite Papers] and uses particles as a base to create interior
and silhouette strokes. The algorithm works completely in
object space and is organized as follows:

1. Particles move towards a desired position based on user-
input, for example to areas of high convex curvature.

2. Silhouette strokes are extracted
3. Silhouette strokes are stylized and hidden-line removal is

performed.
4. Interior strokes are extracted
5. Interior strokes are stylized and hidden-line removal is

performed.

Silhouette extraction is based on the method from Brem-
mer and Hughes[1]. Our version has been modified to use
data from the particles to cope with high-frequency changes
in the surface created by various primitives, warps and CSG
operations. Furthermore our method requires less computa-
tion to operate and is thus faster. Interior stroke extraction is
loosely based on Elber’s[2] approach and attempts to create
accurate, realistic strokes in the fastest time possible directly
from the particles.

1.3.2. Under what circumstances do we think it should
work well?

1.3.3. Why do we think it should work well under those
circumstances?

2. Methodology

2.1. What pieces had to be implemented to execute my
approach?

The NPRBT system separates stroke creation into two sys-
tems: the (1) theSilhouette Stroke Systemand (2) theInterior

Stroke System. Furthermore, both of these systems rely on
a third underlying system, the particle-basedStroke Place-
ment Systemfor data. For silhouettes, theStroke Placement
Systemprovides start positions to trace out the silhouette
and spatial information to help this extraction. For interior
strokes, the particles in the Stroke Placement system are used
to directly position and stylize interior strokes. TheSilhou-
ette Stroke Systemextracts the silhouettes, determines visi-
bility and renders the silhouettes in natural-science pen-and-
ink styles. TheInterior Stroke Systemselects which parti-
cles from the Stroke Placement System will be used to create
strokes, determines visibility and stylizes the strokes.

3. The Stroke Placement System

The NPRBT Stroke Positioning Systemuses a modified
Witkin-Heckbert[3] particle system to distribute particles on
an implicit surface. Witkin and Heckbert present a system
where certain particles (floaters) space themselves uniformly
on an implicit surface. Our system uses these floaters and
adds several new repulsion methods, used to create interest-
ing groupings of interior strokes (Section??) and new “an-
chor” particles used for Silhouette and CSG strokes.

3.1. Were there several possible implementations?

Another possible approach as a base for strokes is Bremmer
and Hughes’[1] approach, where, for each frame rendered,
ray intersections are used to create interior strokes and to
extract the silhouette.

3.2. If there were several possibilities, what were the
advantages/disadvantages of each?

The main drawbacks for the ray intersection method are (1)
it does not produce frame-coherent strokes, (2) it is much
more expensive than the particle system approach and (3)
it is impossible to get a specific distribution of strokes with
this method (such as grouping strokes in areas of convex cur-
vature). Frame coherency is a problem because the rays cast
for each frame rendered are completely random, and thus the
strokes created from the intersection points move randomly
from frame to frame. This approach is much more expensive
than the particle system approach because ray intersections
with implicit surfaces are very expensive, especially com-
pared to the amount of computation required for each parti-
cle from frame to frame.

3.3. Which implementation(s) did we do? Why?

We tested both the ray intersection approach and the parti-
cle system approach. The particle system was chosen as the
base for the NPRBT system because it requires much less
computation and provides a perfect base to create coherent

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 3

Figure 1: The NPRBT Stroke Positioning System uses parti-
cles on the implicit surface as a base to create strokes. Black
particles are on the front-facing side of the surface, light grey
particles are on the rear-facing side of the surface and red
particles are silhouette particles. A grid is used to spatially
partition the particles and accelerate the speed of the repul-
sion equation. In this image, the volume of the grid is the
light blue box surrounding the particles.

silhouette and interior strokes for regular and animated sur-
faces. The particles maintain their relative position over suc-
cessive frames of animation and therefore the strokes created
are frame-coherent.

3.4. What did we implement? – Include detailed
descriptions

The Stroke Placement System first performs a particle ini-
tialization preprocess to place a small number of particles
on the surface. Then, for each frame rendered, two “forces”
move the particles into one of several orientations. As this
occurs, the system also saves information about the surface
into an octtree grid and creates staticsilhouetteparticles and
CSGparticles.

3.4.1. Initialization Preprocess

During initialization, particles are created at random posi-
tions on the implicit surface. There are several methods to
create particles on the surface. Our system [write current
method here].

[TODO]

3.4.2. Runtime

Once particles are initialized on the surface, the system ren-
ders strokes from the particles (Section??) and distributes
the particles on the surface. There are several reasons to ren-
der strokes from the particles as they distribute themselves.
For animated surfaces, it ensures that the particles will pro-
vide frame-coherent strokes and remain in the proper distri-
bution as the surface changes. Furthermore, since it can take
a moment to properly place particles in a perfect configu-
ration, this loop providesfeedback as to the status of the
system. Since the particles are always on the surface from
initialization, this feedback provides a proper impression of
the surface, although perhaps not in a uniform distribution.

Figure 2: This simple 2D example illustrates how̄F(x)
keeps the particles on the surface using the gradient. (a)
∇ f (x), the gradient, is a vector pointing directly away from
the surface. (b,c) The value of the implicit function at the
particle position can be used to guess the distance of the
particle to the surface and to scalēF(x), calculated in equa-
tion 2.

Particle motion is governed based on two “forces”: (1)
F̄(x), a force that pulls particles towards the surface along
the gradient and (2)̄R(x), a force which repulses particles
apart. These are included in the following equation, which
is executed for each particle in the system for each frame of
animation:

x̄+ = Sspeed∗ (Ssur f ace∗ F̄(x)+Srepel∗ R̄(x)) (1)

wherex is the particle’s position and theS values are all
user-controlled scalars.̄F(x) is calculated from:

F̄(x) = (f (x)− iso)∗∇ f (x) (2)

where f (x) is the implicit function,iso is the iso-surface
value and∇ f (x) is the gradient. This equation will create a
vector pointing directly towards the surface (unless the par-
ticle is exactly on the surface). Furthermore, note thatF̄(x)
is scaled by the difference between the field-value and the
iso-value of the surface, an estimate of how far the particle
is from the surface.

To space the particles on the surface,R̄(x) is used (Equa-
tions3 to ??). This force is calculated by assuming all neigh-
boring particles in any given particle’s vicinity contribute
to repulsion based on their distance. This is accomplished
by calculating the vector from each neighboring particle to
the current particle, normalizing it and scaling it by distance
with the same method used to calculate a magnetic repulsion
force. If this is done uniformly, the particles will distribute
themselves evenly. For a system withn particles where struc-
ture P holds these particles, this is calculated with the fol-
lowing summation:

M̄(x) =
n

∑
k=1

(
maxDist−‖x−Pk.x‖

maxDist
)∗ x−Pk.x
‖x−Pk.x‖

∗Pk.dis

(3)

submitted to EUROGRAPHICS 2005.

4 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

wheremaxDistis the maximum distance of particles that are
included in the summation andPk.dis is a scalar used to con-
trol particle distribution. If an even particle distribution is de-
sired, this value is not used, and the repulsion will be equal
from all particles. To place more particles in areas of high-
curvature, the following scalar is used forPk:

Pk.dis= 1.0−Pk.curvature/maxCurvature (4)

wheremaxCurvatureis the maximum curvature of all parti-
cles. This formula will create values from 0.0, where parti-
cles have the maximum curvature, up to 1.0, where particles
are at a position on the surface that has no curvature. Artists
often vary application of strokes based on the distance of the
surface to the eye (depth-cues). This can be simulated, alter-
nately with:

Pk.dis=
‖Pk.x−eye‖
maxLength

(5)

wheremaxLengthis the maximum depth into the scene. This
formula will create values from 0.0 to 1.0 as particles in-
crease in distance from the eye. Thus, as particles are deeper
in the scene, they (and the strokes that are created from them)
will space themselves out further.

Different particle distributions are desirable because the
particles are used directly to create strokes (Section??) and
artists often create groups of strokes with non-even distribu-
tions.

Unless all the particles included in equation3 are co-
planar, the vectorM̄(x) will point off the surface. This can
push particles off the surface in areas of high curvature. To
prevent this, we adjust the vector̄M(x) to be orthogonal to
the gradient:

R̄(x) =∇ f (x)× (M̄(x)×∇ f (x)) (6)

3.4.3. Particle Creation and Destruction

To finds a stable particle layout quickly, particles are cre-
ated and destroyed. When the repulsion equation3 returns a
value lower than thecreation-thresholdfor a particle, there
are very few other particles in the vicinity. In this case the
particle is duplicated. Conversely, when equation3 returns a
very high value for a particle, there is a large number of par-
ticles in the region and the system deletes the particle. These
operations decrease the amount of time that it takes for the
particle system to become stable.

3.4.4. Silhouette and CSG Particles

The particle system also maintains a list of particles that are
on the silhouette of the surface and on CSG discontinuities.

Silhouetteparticles are created whenever a regular parti-
cle crosses the silhouette. This can be done by checking the
angle between the view direction from the eye to the parti-
cle and the gradient of the surface at the particle’s position
(Figure??a). When this angle between these is about 90 de-
grees, the particle is on the silhouette. This can be tested
using the dot product operation, which returns 0 when the
angle between two vectors is 90 degrees. Thus, the NPRBT
system checks for when the result of the dot product opera-
tion switches sign. When this happens the particle’s position
is used to create a new silhouette particle. Thesesilhouette
particles are never altered or moved until the silhouette of the
surface changes (when the surface moves during an anima-
tion or when the program user rotates or moves the surface).
In this case, the system attempts to move the silhouette par-
ticles back onto the silhouette using the following:

x̄+ = Sspeed∗ (Ssur f ace∗ F̄(x)+SsilhouetteS̄L(x)) (7)

S̄L(x) = (∇ f (x) · (x−eye))∗∇ f (x)× ((x−eye)×∇ f (x))
(8)

If the particle does not find the silhouette after 10 iter-
ations, the silhouette particle is discarded. Of course, new
silhouette particles are found for each view so this step is
not necessarily required. In our implementation, our goal is
as many silhouette particles as possible so that the chance
of missing a silhouette is minimized. Our system usually
finds many silhouette particles on a single silhouette for each
viewing angle.

CSGparticles are again created from regular particles. In
this case, however, we are looking for the position of gra-
dient discontinuities. To do this, the system compares the
gradients of the surface at the particle’s current and previous
position. If the difference between the two gradients is larger
than some threshold, we assert that the particle has crossed
a CSG discontinuity (Figure??b). Then, the CSG particle
is created directly between these two positions. These CSG
particles are never altered or moved unless the surface imme-
diately around the CSG join moves in which case the points
will no longer be on the CSG operation and they are deleted.

3.5. What didn’t we implement? Why not?

Your text here...

4. The Silhouette Stroke System

The NPRBT system creates long stroke chains which follow
the silhouette (contour) of the implicit surface. To extract
these silhouette chains, (Section4.4.1) a version of Bremer
and Hughes’[1] method is computationally simpler and it is
extended to handle high-frequency areas and CSG discon-
tinuities on the surface. Then, (Section4.4.5) the silhouette

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 5

chains are stylized using one of several styles and ink appli-
cation methods.

4.1. Were there several possible implementations?

Our approach to render silhouettes is to extract complete
stroke chains from the surface. It is also possible to ren-
der silhouettes using individual strokes as is demonstrated
by Elber[2].

4.2. If there were several possibilities, what were the
advantages/disadvantages of each?

In terms of stylization and control, it is possible to create all
sorts of effects with both methods to render strokes. How-
ever, with use of single silhouette chains, a neater result can
be produced.

4.3. Which implementation(s) did we do? Why?

Both methods are implemented in our system, as demon-
strated in Figure??, but we recommend using the Silhouette
Stroke System instead of getting the interior stroke system
to group strokes at the silhouette.

4.4. What did we implement? – Include detailed
descriptions

The pipeline for the system is presented in Figure??. When
the system finds a new silhouette particle that does not be-
long to a previously extracted silhouette stroke chain, the
stroke extraction begins. Once this is complete, Hidden Line
Removal is performed and shape measures used with render-
ing methods to stylize the strokes.

4.4.1. Silhouette Extraction

Blending implicit surfaces are well suited for silhouettes be-
cause, unlike polygonal meshes, a continuous path exists
on the surface that the exact silhouette follows. Bremer and
Hughes[1] take advantage of this by using the gradient of
the surface to step along the curve of the silhouette. This ap-
proach does not work directly for Blobtree implicit surfaces
because discontinuities exist at CSG boundaries on the sur-
face. However, as we present, slight modifications to Brem-
mer and Hughes’ method can handle these situations.

Observe that a curvec lies on the silhouette of an implicit
surfaceS if the following hold†:

1. c(t) ∈ S for everyt
2. the tangent plane to the surface atc(t) containsv, the view

direction, for everyt

† Bremer and Hughes[1]

In other words, to be a silhouette curve for the surface, it
must lie on the surface (at valueiso) and the direction from
the eye to the point must be orthogonal to the gradient (the
definition of a silhouette):

f (c(t)) = iso (9)

∇ f (c(t)) ·v = 0.0 (10)

The complete silhouette extraction method, detailed in Fig-
ure 3, starts from a silhouette particle and follows a func-
tion based on the conditions in equations9 and 10 along
the silhouette. As each new point is calculated, it is stored
in a chain data structure (section4.4.3). Termination oc-
curs when (1) the extraction meets the original starting point
(meaning that a looping silhouette has been found) or (2) the
stroke trace exceeds the maximum length (this is provided as
a last minute out in an error case) (Figure3). The first time
the trace hits an existing stroke or the silhouette disappears
due to local geometry, the system returns to the original start-
ing point and traces the silhouette in the other direction. The
second time this happens, the loop terminates. Note that the
silhouette is traced, even if it is occluded by some closer part
of the surface. This is done to ensure that the entire silhouette
is traced and to facilitate transparency (section??).

The system presented here is modified slightly from Bre-
mer and Hughes’[1] approach. They require a ray-surface
intersection test, an integration loop to find a point on the
silhouette and another integration loop to trace around the
silhouette for each frame of animation. The NPRBT does
not require the first two steps because theStroke Placement
Systemprovides points on the silhouette (section3.4.4). Fur-
thermore, our silhouette extraction method is altered slightly,
as is now detailed.

4.4.2. Estimating the Silhouette Direction

The method to calculate the direction along the silhouette
requires three parts: an initial estimate of the silhouette di-
rection, and two correction steps that adjust the direction.
Without these correctors, the trace loses the silhouette. The
initial estimate is based on the idea in formulas9 and10,
that the silhouette should remain on the surface and follow
the direction where the angle between the view direction and
the gradient are ninety degrees (figure??):

D(x) = (∇ f (x)× (x−eye)) (11)

wherex is the current position.D(x) approximates the direc-
tion of the tangent to the gradient at pointx (Figure4a).

As is illustrated in Figure4a, if this direction is used alone
to trace the stroke, the the surface and the silhouette will
slowly be lost. To compensate for these problems, the ini-
tial direction is modified by adding two “correctors” (figure

submitted to EUROGRAPHICS 2005.

6 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

Figure 3: A high-level view of silhouette extraction.

Figure 4: Left: Calculation of the new point before the cor-
rectors (equation11). Middle: Using the field value and
new gradient∇ f (x+D(x)) to keep the trace on the surface
(equation13). Right: Using the new view direction to keep
the trace on the silhouette (equation14).

4b,c) to keep the trace following the silhouette. Before cal-
culation of these correctors takes place, a new position is
calculated from equation11:

ẋ = x+kstepsize∗D(x) (12)

wherekstepsizeis a scalar value specifying the magnitude of
the step that the silhouette tracing algorithm takes. With this
calculated, the first corrector adjusts this point closer to the
surface:

Dsur f ace(ẋ) =∇ f (ẋ)∗ (0.5− f (ẋ)) (13)

Note the similarity with this equation and equation2 which
keeps particles in theStroke Placement Systemon the sur-
face. The field value of the surface is used to scale the size
of the step taken back towards the surface along the gradient.
The gradient direction is used because it is the best quick es-
timate of the direction to the closest point on surface. As the
trace progresses, this corrector will constantly pull the trace
back onto the surface, although it will not put the point ex-
actly on the surface. The second corrector keeps the stroke
following the silhouette:

Dsilhouette(ẋ) = (D(x)×∇ f (ẋ))∗ (view·∇ f (ẋ)) (14)

where view = ẋ− eye. As the silhouette trace moves off
the silhouette, the magnitude ofview· ∇ f (x + D(x)) will
increase to pull the stroke back towards silhouette. This is
slightly modified from Bremmer and Hughes’[1] approach.
In their method, a different direction, based on the Hessian
is used to pull ˙x back to the silhouette. Hessian evaluation
requires 12 surface-evaluation tests. Our version only uses
the gradient, requiring four surface-evaluation tests. The ef-
ficiency of an algorithm is dependant on the number of times
that the surface-evaluation test is called.

OnceD(x), Dsur f ace(x) andDsilhouette(x) have been cal-
culated, the new chain position is calculated by their sum
(the process of adding the vectors is illustrated in figure4):

Xnew= kstepsize∗D(X)+ksur f ace∗Dsur f ace(X)+ksilhouette∗Dsilhouette(X)
(15)

where kstepsize, ksur f ace and ksilhouette are user-selectable
scalars. A discussion of these is provided in section4.4.4.

4.4.3. Chains

As the silhouette is extracted, points are stored in a “chain”,
a datastructure that stores points so that, during stroke ren-
dering and stylization, each link (an element in the chain) is
drawn joined to its left and right neighbors. The contents of
the NPRBT’s chain data structure is illustrated in figure??.
Each link contains aposition, aplot_directionvector (spec-
ifying the direction to widen the stroke, section4.4.6), avis-
ible boolean (specifying whether the link is visible or not)
and aplot_widthscalar (specifying the width of the stroke
at the link). This width is interpolated between links during
rendering.

4.4.4. Integration Step size and Dealing with
High-Frequency Areas and CSG Discontinuities

4.4.5. Silhouette Stylization and Rendering

TheNPRBT Stroke Stylization Systemrenders strokes chains
in a variety of styles in 3D in OpenGL. To complete this,

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 7

the system uses (4.4.6) a stylization module which simulates
several styles typical to pen-and-ink rendering. This mod-
ule uses information about (4.4.8) stroke visibility and (??)
shape measuresto further stylize strokes and simulate pen-
and-ink rendering.

4.4.6. Stroke Volumes

In the NPRBT system, silhouette strokes vary in width and
simulate various natural-science stroke styles. This is ac-
complished using strokeribbons: a varying-width quad-strip
which follows the stroke path. First, the method to calcu-
late these quad-strips will be provided. Then, methods to use
OpenGL primitives such as GL_LINE, GL_TRIANGLE and
GL_POINT in these volumes to simulate different artistic
styles will be presented.

To create the quad strip rendering-area, each links con-
tributes two points: it’s position (calleda) and another point
projected out from this position in the direction of the gra-
dient, scaled by either curvature or depth (calleda′). With
scaleas the scalar value to size the displacement (Section
4.4.9), the following is used to createa′:

a′ = a+∇ f (a)∗scale (16)

Each quad is created from the points from a link (a, a′) and
it’s neighbor (b, b′) for each pair of links in the chain (Figure
5top-left).

4.4.7. Rendering ink to the Volumes

The NPRBT system simulates several natural-science ren-
dering styles often used by artists simulate texture, to pro-
vide information about the object they are illustrating or to
create a certain feel in the image. This is accomplished us-
ing a similar method to Sousa et al.[?] where OpenGL line,
point and polygon primitives into the stroke volumes (a, a′,
b, b′) . Our method is modified for silhouette strokes and
more styles are presented (including transparent effects).

The styles that our system creates are ink-filled, serrated,
variable-serrated, broken-serrated, double-line and stipple
(Figure6). The intensity of these strokes is constant (black).
For transparency effects, our system provides a dotted-line
style and can change the colour of occluded strokes to light
grey or red.

The ink-filled style and the double-line (Figure6a,f) are
the simplest. The ink-filed style is made simply by drawing a
black QUAD with points (a, a′, b, b′) (Figure5). The double
line style is created using two line-strips: one that follows
the (a) points (the position values) and one that follows the
(a′) points (Formula16) along the links.

The stipple and serrated edge styles (Figure6b-e) require
a slightly more involved rendering as the serrated edge styles

Figure 5: Top: The (a, a′, b, b′) and the (a∗, a′, b∗, b′) vol-
ume.Bottom: Applying the quality-stipple style to the vol-
umes.

Figure 6: The stroke styles simulated in this system. From
left to right: ink-filled, serrated-edge, serrated-edge random,
serrated-edge with ink-filled, stippling and double line.

uses many lines parallel to the stroke direction and stip-
pling uses many random dots in the stroke-volume. For these
styles, an outline is always rendered. The fastest method in
our system to draw an outline is to use a line-strip primitive
following the (a) points in the chain (Figure6b,c,e). How-
ever, artists often vary the width of the stroke using serrated
styles, so another option is to use a render a quad into part of
the edge of (a, a′, b, b′) area (Figure6d). In our system, we
calculatea∗ = 2

3a+ 1
3a′ and use that point to create the quad

instead ofa′. Then, the serrated edge lines or stipple dots are
drawn into the area (a∗, a′, b∗, b′) (Figure5top-right).

To create the non-random serrated lines (Figure6b,c), the
system interpolates two points along the line (a∗, b∗) or (a,
b) if only line primitives are used at the silhouette. The user
provides the resolutionres as to how many serrated edges
are desired per quad and the following algorithm is used:

SERRATED-STROKE(a,b,a′,b′, res)
1 res← res∗ (|ab|/lmax)
2 δa← a
3 δa′ ← a′

4 γa← (b−a)/res
5 γa′ ← (b′−a′)/res
6 step← 0
7 for t← 0 to 1, step+ = 1/res
8 do δa+ = γa

submitted to EUROGRAPHICS 2005.

8 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

9 δa′+ = γa′

10 DrawLine(δa,δa′)

The stipple (Figure6) and the random-serrated style (Fig-
ure 6) are both created by introducing randomness into the
algorithm, and interpolating between theplot_directionval-
ues for points (a) and (b) instead. Withna as the plot direc-
tion from a link in the chain andnb as the plot direction for
its neighbor, the following algorithm is used to create the
random-serrated style:

RANDOM-SERRATED(a,b,na,nb, res)
1 res← res∗ (|ab|/lmax)
2 δa← a
3 γa← (b−a)/res
4 δna ← na

5 γna ← (nb−na)/res
6 step← 0
7 for t← 0 to 1, step+ = 1/res
8 do δa+ = γa

9 δna+ = γna

10 DrawLine(δa,δa + rand()∗deltana)

where rand() returns a random value between 0 and 1. To
create stipple marks, we replace line X withDrawPoint(δa+
crand()∗deltana) where crand returns(1−rand)2. This cre-
ates a high density of points at the silhouette which falls off
as one moves to the inside of the stroke.

Returning to the standard serrated-edge style, artists
sometimes break the serrated stroke near its tip. We simu-
late this using the following algorithm:

SERRATED-STROKE(a,b,a′,b′, res)
1 res← res∗ (|ab|/lmax)
2 δa← a
3 δi ← 0.2∗a+0.8∗aprime

4 δ j ← 0.1∗a+0.9∗aprima

5 δa′ ← a′

6 γa← (b−a)/res
7 γa′ ← (b′−a′)/res
8 step← 0
9 for t← 0 to 1, step+ = 1/res

10 do δa+ = γa

11 δi+ = 0.2∗ γa+0.8∗ γa′

12 δ j+ = 0.1∗ γa+0.9∗ γa′

13 δa′+ = γa′

14 DrawLine(δa,δi)
15 DrawLine(δ j,δa′)

For non-looping chains, the beginning and the end of the
stroke are scaled down in width.

4.4.8. Hidden line removal

The NPRBT system does not render surface geometry. Thus,
there is nothing in the Z-Buffer to automatically occlude

strokes blocked by a closer part of the surface. Thus, a Hid-
den Line Removal (HLR) method is required to remove
these lines.

For silhouette HLR, the NPRBT system casts a ray from
every fourth element in the silhouette chain to the eye and
checks for collisions with the surface. Note that the system
does not perform a complete surface collision because the
problem is not to find theexactcollision point, it is simply a
question of if there is a collision or not. If a collision is de-
tected, this part of the chain is occluded. The system repeats
the intersection test for the previous three points in the chain
to find the exact edge where visibility changes. From this
point, links are flagged asoccludeduntil the system finds
the point where the stroke becomes visible again, done again
by checking every fourth point. The system only checks ev-
ery fourth link because collision tests for Blobtree surfaces
are computationally expensive.

When part of a stroke is occluded, the system can removes
that portion from the rendering pipeline, as is done for most
of the images in this paper, or it can apply a transparent
style to the stroke. Transparent styles (Figure??) include
(1) a dotted line, created by rendering small quads into the
system’s stroke-volumes, or (2) a lighter intensity of stroke
(grey) or (3) a red stroke.

4.4.9. Silhouette Stroke Width

Like Bremmer and Hughes’ system[1], the NPRBT system
varies stroke-width using the curvature at the points in the
stroke or using the depth of the stroke. Use of these mea-
sures directly produces the inadequate results seen in Fig-
ure7a; strokes almost disappear where the measure returns
a low value and strokes become too thick in areas of high-
curvature.

Figure 7: Left: Using exact curvature values to vary the
width of a stroke on the dinosaur model. Right: Bounding
extremely low and high curvature values and mapping the
remaining values to an ease-in/ease-out function.

To process the values to be more suitable, the system
applies an upper and lower-bound to all of the values and
then scales them between user-specified min and max stroke
width values. In the case of curvature, we observed that [fill
in AUGH too late to type it now hehe]

the system uses an ease-in/ease out function,f (t) =
−2t2+3t, before mapping to the min and max values. effect

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 9

of applying an ease-in/ease-out function is that the curvature
varies smoothly from the low-bound to the high-bound (fig-
ure7right, section4.4.6).

4.5. What didn’t we implement? Why not?

Your text here...

5. The Interior Stroke System

The NPRBT system creates short strokes across the interior
of the surface in several styles. These strokes are created in
the position of certain particles from theStroke Positioning
System, selected based on shape-measures, and are directed
in the contour direction and the principal directions of cur-
vature. No integration-based extraction method, as used for
silhouette strokes, is used to trace interior strokes so that
strokes can be rendered and displayed quickly. Finally, the
system can curve strokes based on local curvature informa-
tion to improve the quality of the stroke.

5.1. Were there several possible implementations?

Your text here...

5.2. If there were several possibilities, what were the
advantages/disadvantages of each?

Your text here...

5.3. Which implementation(s) did we do? Why?

Your text here...

5.4. What did we implement? – Include detailed
descriptions

We implemented a (5.4.1) particle selection module (Fig-
ure 8a-d) which determines where to draw strokes and a
(5.4.2) stroke stylization module (figure8e) which points
these strokes in certain directions, sets their length based on
shape measures and curves the strokes to follow the surface.

5.4.1. Particle Selection

The NPRBT Interior Stroke System provides a pipeline to
select the particles that will be used to create strokes (Figure
8) that is evaluated for each frame rendered to handle ani-
mated primitives and to display strokes as the particles settle
on the surface after initialization. The system first removes
occluded particles and then it removes certain remaining
particles, based on shape-measures, from stroke inclusion.
This simulates shading and focus styles commonly used by
artists.

Occluded Particle Removal

To remove occluded particles, a two-step method is em-
ployed. The failsafe method to remove hidden particles is
to preform a ray-intersection test, however this test is com-
putationally expensive. Fortunately a simple test can remove
many hidden particles before relying on the ray-intersection
test. All particles that are back-facing are occluded and these
can easily be identified by comparing their gradient to the
view direction. If the angle between the two is less than 90
degrees, the particle is on the far side of the surface and thus
is removed from the list of particles to render.

Once back-facing particles have been removed, the re-
maining particles must be checked with the ray-surface in-
tersection to see if they are occluded by a closer surface. If a
collision occurs, some part of the surface is between the eye
and the particle and that particle is occluded and removed
from rendering.

The NPRBT system uses a shortcut to cut down the num-
ber of occlusion tests. For each frame rendered to the screen,
only one (random) particle in each grid cell (Section??) is
tested for occlusion (this particle is henceforth called the
test-particle). Once this is complete for all cells, the sys-
tem determines visibility for the particles in any one cell by
analyzing the test particles from the six cells immediately
around the current cell and the current cell itself and takes
one of three actions. (1) When all test-particles in the im-
mediate cells are visible, all particles in the current cell are
set to visible and no further tests are performed. (2) When
all of the test-particles in the immediate cells are occluded,
all particles in the current cell are considered occluded and
removed from the rendering pipeline. (3) When the immedi-
ate test-particles are both occluded and visible, each particle
in the current cell is tested for occlusion. The rationale for
this is that these particles must be close to a boundary of
an occluding surface and should each be tested to maintain
accuracy.

Remaining Particle Selection

Artists commonly choose to create many strokes in certain
regions of the surface and leave other regions void of strokes
[references TODO]. These artists commonly use shape mea-
sures, such as curvature and slope-steepness, or lighting and
depth information to position strokes as these help viewers
perceive the surface. To bridge regions with strokes and re-
gions without, artists blend the edges of regions-they lower
the number of strokes on the edges of a high stroke density
area to a sparse placement in a low stroke density area. The
rate at which this changes varies depending on the artist, the
subject and its application.

We present a simple method to accomplish this for im-
plicit surfaces. The system removes particles from render-
ing in certain areas, renders particles in others, and blends
the amount of particles rendered between these two areas
(figure ??). The system can use curvature, depth (distance
of point from eye) and lighting (angle between a point-light

submitted to EUROGRAPHICS 2005.

10 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

Figure 8: Top: The interior stroke extraction system evaluates particles for visibility (HLR) and for certain shape measures
to determine which particles get strokes applied to them. Bottom: (a) All particles in a sample scene, (b) removing back facing
particles, (c) removing occluded particles, (d) removing particles based on a user-selected measure, (e) stylizing small marks
in the principal direction of curvature on the surface.

and the gradient) for this step. To accomplish this, an upper-
thresholdut and a lower-thresholdlt are used in conjunction
with one of the fivemeasures. Any particle whosemeasure
is less thanlt is removed from rendering and any particle
whose measure is greater thanut is rendered. Particles in the
areas betweenut andlt are included and excluded so that the
resulting strokes blend between the two areas (figure??).

The system uses the particle’s index to create a pseudo-
random number and then compares this value with its shape
measure to determine whether the particle will be included.
The particle’s index is used to create a random number in-
stead of a standard random number generator because the
system redraws the particles for each step of the system’s
main loop and thus, completely random numbers would
cause individual particles to randomly be included or ex-
cluded for rendering and create flashing particles. Using the
particle’s number solves this because the position of a parti-
cle n will be random (section3.4.1). To determine this ran-
dom value, the following formula is used:

et =
n

number_o f_particles
∗ (ut− lt)+ lt (17)

wheren is the number of the particle. This equation calcu-
lates valueet which is scaled to be betweenlt andut.

If the selected shape measure is greater thanet at particle
n’s position, the particle will be included for conversion into
a stroke. This makes it so that particle inclusion is scaled so
that all particles are included where the shape measure isut
scaled linearly down to no particles being included where
their shape measure evaluates tolt . For instance, say depth
is the selected measure withut = 6 andlt = 3 and the depth
of a particle is found to be 4.65. If the particle’s number
is 10 and there are 500 particles in the system, thenet will
be 3.6 (equation17). Since 4.65 > 3.6, the particle would
be included in rendering. However, if the shape measure is
5.0, the particle would be excluded from rendering because
4.65 <= 5.0. The higher the shape measure is, the greater
the chance that the particle will be converted to a stroke.

Figure 9: This figure illustrates different effects of using
various values for ut and lt with light direction(−1,−1,0).
Left: A peanut shape without ut/lt thresholding. Top-row:
using a large difference between ut and lt creates a smooth
blend between areas with strokes and those without. Bottom-
row: using close ut and lt values creates a sharper transition
between stroke-filled areas and those without.

5.4.2. Interior Stroke Stylization

The NPRBT Interior Stroke Rendering System creates short
directional strokes on the surface at the position of each of
the particles selected with the processes described in the
previous section. Note that this system does not rely on a
functional integration as does the silhouette stroke extraction
method to extract long stokes. Instead, the method here cre-
ates short strokes using the principal directions of curvature
or the contour direction and can curve these strokes based on
surface curvature.

Time is critical for particle rendering because it must be
performed for each loop of the NPRBT system to display
particle motion and to permit for animated primitives.

Stylizing Strokes

The NPRBT system provides a slightly more involved
method to create short lines on the surface. The method
works as follows: (1) a direction is selected for each ren-
dering particle, (2) this direction is used to create end points
for the stroke with intensity and length variation based on
shape measures and the option of (2.1) smooth stroke cre-
ation based on curvature.

1. Stroke Directions

Lines can be created in three different directions with the
NPRBT system: (1) the primary principal direction of curva-
ture (the direction where the surface curves the most, figure
10a), (2) the secondary principal direction of curvature (the

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 11

direction where the surface curves the least, figure10b) and
(3) the contour direction (figure10c). To extract the princi-
pal directions of curvature and associated scalar values of
curvature, our system extracts the eigen-vectors and eigen-
values from the Hessian of the surface as described in [?].
To extract the contour direction on the surface, we use:

contour(X) =∇ f (X)× (X−eye)
‖(X−eye)‖ (18)

2. Creating the Stroke

The system advances to where the stroke is ready to be ren-
dered. Rendering first involves calculating where the end-
points of the stroke are and, for smoothed strokes, where the
control points for Bezier curve generation of the stroke are
and executing the Bezier method to create the stroke.

To create a basic line, point calculation involves project-
ing two points out from the particle position in the stroke
direction as illustrated in figure11a. These pointsp1 andp2
are created with:

p1(X) = X +stroke_direction(X)∗scl (19)

p2(X) = X−stroke_direction(X)∗scl (20)

where X is the particle’s position,stroke_direction(X) is
the stroke direction calculated for positionX and scl is a
scalar value which determines the length of the stroke. In
the NPRBT system,scl can be set by the user, can be based
on one of the scalar measures in section?? or can be a user
set-value multiplied by a measure.

The NPRBT system can curve the strokes slightly based
on surface curvature to make the strokes adhere better to
the surface and to improve the quality of the rendering. To
do this, the system creates fourcontrol-points, c1,c2,c3,c4
based on the particle’s position to be used with a Bezier
curve method (figure11right).

These points are created fromp1 andp2 along the gradi-
ent direction at the particle’s position. With a Bezier curve
approach, the curve starts at the first control pointc1 and
ends at the last control pointc4. For convex areas,c1 andc4
are projected negatively along the gradient into the surface
with:

c1 = p1− (∇ f (x)∗0.75∗scl∗curvature(x)) (21)

c4 = p2− (∇ f (x)∗0.75∗scl∗curvature(x)) (22)

where scl is the distance betweenp1 and p2 and
curvature(x) gives the curvature from the Hessian matrix
(section??). c2 andc3 are projected away from the surface
along the gradient direction with:

Figure 11: Left: To create a stroke, the system simply cre-
ates two endpoints from a particle’s position using one of
several direction measures and uses them to create a line.
Right: If smoothed strokes are desired, two extra points can
be created from the endpoints using the gradient of the sur-
face and all four points can be used as control points for a
Bezier curve.

Figure 12: The body of a train model with strokes applied in
(left) the primary principal direction of curvature and (right)
the secondary principal direction of curvature. Strokes are
curved to follow the surface.

c2 = p1 +(∇ f (x)∗0.25∗scl∗curvature(x)) (23)

c3 = p2 +(∇ f (x)∗0.25∗scl∗curvature(x)) (24)

Using these control points the stroke will pass through the
particle position and will curve outwards with the surface
(figure12). For concave areas,c1 andc4 are switched with
c2 and c3. This will make strokes curve inwards with the
surface in concave areas (figure13).

Note that this value will return positive values in convex
areas and negative values in concave areas. Thus, it will au-
tomatically scalep3 andp4 inwards and outwards and will
produce flat lines in areas of no curvature.

3. Rendering the stroke

Rendering interior strokes relies on OpenGL calls. The sys-
tem first sets the width of the stroke (these can be based on
the shape measures, section??). To do this, theglLineWidth
functions are used. Then, strokes is rendered using the

submitted to EUROGRAPHICS 2005.

12 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

GL_LINE_STRIP primitive with the points in the stroke (2
points for straight strokes, more points for curved strokes)
(section??). A variety of effects can be achieved by varying
the width and length of the stroke. Figure10 shows use of
very short, thin strokes. In figure13, thick long strokes are
used to provide a strong impression of the surface.

Figure 13: Creating long, thick strokes onto a pear shape.
Top-left: different shades of orange and blue denote differ-
ent levels of positive and curvature respectively. Top-middle:
the stippling style. Top-right: strokes in the contour direc-
tion, curved to follow the surface. Bottom-left: strokes in
the primary principal direction of curvature. Bottom-middle:
strokes in the secondary principal direction of curvature.
Bottom-right: strokes in the primary and secondary direc-
tions of curvature. Note in the concave “bite” area that
strokes are mapped in the opposite direction to follow cur-
vature.

5.5. What didn’t we implement? Why not?

Your text here...

6. Results

6.1. How did we measure success?

Measures for success include visual quality of the images as
a whole and the quality of individual strokes and how much
speed increase our system gains over other methods.

6.2. What experiments did we execute?

We evaluate the NPRBT system qualitatively and quantita-
tively. Comments on the quality of the strokes created for
several surfaces (Figures?? to ??) with test-viewers are pro-
vided. Our method does not guarantee that all will be ex-
tracted. We test the amount of silhouettes missed with vari-
ous amounts of particles on the surface to demonstrate that
with a minimum coverage, this is not a problem. To demon-
strate the speed increase offered by our method, we compare
(1) the run-times of Bremmer and Hughes’ approach with
our silhouette extraction method and (2) the time required
to ray-trace and polygonize a surface compared to the time
required with our approach for several complicated models
(Figures??and??).

6.3. Visual Results with Timings

Here I will describe the results illustrated in the figures in-
cluding comments from viewers with timings of the system
versus timings from a polygonizer and with a ray-tracer.

6.4. Silhouette Extraction Measure

Our system does not guarantee that all silhouettes will be
extracted from the surface. Instead, it relies on an adequate
coverage by particles in the surface and accurate silhouette
extraction to find all of the silhouettes. For three different
models, the simple tooth model, the stalactite and the train
model, we now provide the percentage of the complete sil-
houette that our system extracts, averaged over 256 tests with
random viewing angles. To extract guaranteed complete sil-
houettes, a naive brute-force approach is employed.

6.5. What do my results indicate?

Your text here...

7. Discussion

7.1. Overall, is the approach we took promising?

Your text here...

7.2. What different approach or variant of this
approach is better?

Your text here...

7.3. What follow-up work should be done next?

Work should be done comparing different methods to extract
silhouette and interior strokes. For example, with a large
enough set of particles on the silhouette, an accurate sil-
houette stroke could be generated by chaining the particles
and using subdivision. This method would probably be sim-
pler to implement and might prove to be more efficient or

submitted to EUROGRAPHICS 2005.

Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces 13

more accurate. For interior strokes, more methods to extract
continuous long strokes over the surface, such as Akleman
used[?], should be explored for static and animated surfaces.
Such strokes were not explored significantly in this work
since they take too long to extract, and would slow down
visualization for regular and animated surfaces. However, it
might be possible to make a “fluid” stroke that maintains
its direction over the moving animated surface in a similar
method used by the particle system to keep particles on the
surface.

7.4. What did we learn by doing this project?

Non-photorealistic rendering not only provides value with
the inherit perceptual advantages of a non-photorealistic
style, but it can also be used to speed up and simplify ren-
dering implicit surfaces.

8. Conclusion

Your text here...

Acknowledgements

Your text here...

9. Appendices

Curvature

Curvature values can be calculated along with the princi-
pal directions of curvature with eigen-value and eigen-vector
analysis of the Hessian matrix. These directions and values
are useful because artists often use them to provide surface
cues [TODO cite paper or two here]. The Hessian is a 3 by 3
matrix which describes the acceleration of the implicit sur-
face. It is built as follows:

h(X) =


f ′xx(x) f ′xy(x) f ′xz(x)

f ′yx(x) f ′yy(x) f ′yz(x)

f ′zx(x) f ′zy(x) f ′zz(x)

 (25)

The eigenvectors of this matrix will be the primary principal
direction of curvature, the secondary principal direction of
curvature and the gradient of the surface. The correspond-
ing eigenvalues represent the amount of curvature in these
directions. The curvature values can be used withut and lt
(section??) to choose which particles will be rendered as il-
lustrated in figure14. The principal directions of curvature
can be used during stylization (section5.4.2) to create stroke
directions.

Calculation of the Hessian requires 3 gradient function

Figure 14: Left: including particles in more convex areas,
ut = X and lt = X. Right: including particles in more con-
cave areas, ut= X and lt= X.

evaluations which in turn each require 4 field function eval-
uations. Although an efficient algorithm is dependant on a
low number of implicit function evaluations, curvature in-
formation is very useful for stylization.

References

[1] D. Bremer and J.F. Hughes. Rapid approximate silhou-
ette rendering of implicit surfaces. pages 1–10, 1998.1,
2, 4, 5, 6, 8

[2] G. Elber. Line art illustrations of parametrix and implicit
forms. InIEEE Transactions on Visualization and Com-
puter Graphics, Vol. 4, No. 1, pages 71–81, 1998.1, 2,
5

[3] A.P. Witkin and P.S. Hecknert. Using particles to sam-
ple and control implicit surfaces. InProceedings Sig-
graph’94, pages pp. 269–277, 1994.1, 2

submitted to EUROGRAPHICS 2005.

14 Submission id: 403 / Pen and Ink Accelerated Implicit Blobtree Surfaces

Figure 10: Short, thin strokes on a pear shape in in the (a) primary principal direction of curvature, (b) the secondary principal
direction of curvature, (c) the contour direction, and (d) all three directions. Note in (d) that when extremely short stroke lengths
are used, a stippling effect is achieved.

submitted to EUROGRAPHICS 2005.

