PhysX and Vehicles

PhysX

Collision and Dynamics SDK (now) owned by Nvidia
* Included in UnrealEngine

* Includes a powerful vehicle driving model, which you
should use

* We used to allow rigid body physics libraries but
required building driving model from scratch

2 Gettlng a good dnvmg model is by far the blggest

Installing PhysX

- Get SDK from https://github.com/NVIDIAGameWorks/PhysX
- Latest version is 4.0 — make sure you use the right
documentation

You don't need to register for an account to get this

You DO need to register for an account to get PvD
(visual debugger, quite useful)

- SDK comes as source — clone or download from GitHub

- Follow Quick Start instructions on GitHub page
You need Visual Studio, CMake, and Python installed

You will end up with a VS solution containing projects
for all the PhysX libraries and all the samples

A couple of sample projects will fail if you don't have
DirectX SDK installed — doesn't matter

- We're going to concentrate on the SnippetVehicle4W sample

https://github.com/NVIDIAGameWorks/PhysX

Basics of PhysX Vehicle SDK

* Essential tasks
* Set up library
* Create world and floor plane
* Create some meshes
* Allocate simulation data

Initialization

« PxPhysics
— Base context for all operations
— Initialize visual debugger here if you want it

// Foundation.
gFoundation = PxCreateFoundation(PX PHYSICS VERSION, gAllocator,
gErrorCallback);

Initialization

« PxCooking
— Utility class for creating meshes in physics

— Converts a simple vertex stream representing a mesh into an
internal structure which it can use for its own purposes

— PhysX vehicles use meshes for all objects in vehicle system

PxCookingParams params(scale);
params.meshWeldTolerance = 0.001f;
params.meshPreprocessParams =

Initialization

« PxScene

— Container for all objects in the simulation
— Global world properties (i.e. gravity)

PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());
sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);

PxU32 numWorkers = 1; // number of threads PhysX can use.
// 0 means PhysX update runs on the main thread.

The ground

Without this your cars will fall forever ;)

Creating and adding simple objects with standard shapes is very
straightforward

createDrivablePlane is a helper function which creates and
returns a PxRigidStatic object

PxRigidStatic is the base class for rigid objects which aren't
expected to move. There are helper functions to create planes,
spheres, boxes, etc.

Note the 'material'. The parameters for the material include the
coefficient of restitution. The material properties for two colliding
shapes affect how PhysX will handle the collision.

//Create a plane to drive on.

gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f);

PxFilterData groundPlaneSimFilterData(COLLISION FLAG_ GROUND,
COLLISION FLAG GROUND AGAINST, 0, 0);

gGroundPlane = createDrivablePlane(groundPlaneSimFilterData, gMaterial,

gPhysics);

gScene->addActor (*gGroundPlane) ;

Set up vehicle support

PxInitVehicleSDK(*gPhysics);
PxVehicleSetBasisVectors (PxVec3(0,1,0), PxVec3(0,0,1));
PxVehicleSetUpdateMode (PxVehicleUpdateMode: :eVELOCITY CHANGE);

... that was suspiciously easy.

Mesh creation

For a convex mesh, the mesh cooker takes a stream of PxVec3 objects —
the vert positions for each triangle in the mesh.

It produces a PxConvexMesh object which is PhysX's internal
representation of a mesh optimized for its use.

Created meshes have a hard limit of 256 verts, so the more input verts
there are, the more approximate the output mesh will be. If you want more
complicated collision, cook a triangle mesh instead.

PxConvexMeshDesc convexDesc;

convexDesc.points.count = numVerts;

convexDesc.points.stride = sizeof (PxVec3);

convexDesc.points.data = verts;

convexDesc.flags = PxConvexFlag::eCOMPUTE CONVEX;

// This flag asks the cooker to calculate the mesh from the vert list,
expecting

// three verts per triangle. Without this flag you must also fill in data to
// describe the actual polys and vert indices of the mesh.

PxConvexMesh* convexMesh = NULL; // this will hold the created mesh
PxDefaultMemoryOutputStream buf;
if (cooking.cookConvexMesh (convexDesc, buf))

{
PxDefaultMemoryInputData id(buf.getData(), buf.getSize());

convexMesh = physics.createConvexMesh(id);

Venhicle description

- The function initVehicleDesc() creates a VehicleDesc
object (this is a convenience class in the sample, not a
PhysX class) containing lots of parameters defining the
size and performance of the vehicle.

- Play with these numbers to get different behaviour.
(There's actually a bug in this function, see if you can spot
it

- The default car has six wheels, of which four are powered
and the other two unpowered.

- The function createVehicle4W() is the starting point for
creating the vehicle model and its simulation data, based
off the VehicleDesc structure.

The actor for the vehicle

« createVehicle4W starts by making a mesh for a
wheel and a mesh for the chassis. You will probably
replace these later on.

« Avehicle has a PxRigidDynamic object for its actor.

* Note difference from ground plane (PxRigidStatic) —
the scene knows that PxRigidDynamic actors will be
moving around.

PxVehicleChassisData rigidBodyData;

rigidBodyData.mMOI = vehicled4WDesc.chassisMOI;
rigidBodyData.mMass = vehicled4WDesc.chassisMass;
rigidBodyData.mCMOffset = vehicle4WDesc.chassisCMOffset;

vehdWActor = createVehicleActor(rigidBodyData, wheelMaterials,
wheelConvexMeshes,
numWheels, wheelSimFilterData, chassisMaterials, chassisConvexMeshes, 1,
chassisSimFilterData, *physics);

(createVehicleActor is a helper function in the sample code which
actually makes a PxRigidDynamic object and adds the chassis and
wheels to it as sub-shapes.)

Wheels setup

* The sample calculates initial local poses for the
wheels, i.e. where they are relative to the chassis.
You'll need to supply these poses yourself when you
come to use your own meshes.

PxVehicleWheelsSimData* wheelsSimData =
PxVehicleWheelsSimData::allocate(numWheels);

//Compute the wheel center offsets from the origin.

PxVec3 wheelCenterActorOffsets[PX MAX NB WHEELS];

const PxF32 frontZ = chassisDims.z*0.3f;

const PxF32 rearZ = -chassisDims.z*0.3f;

fourwheel: :computeWheelCenterActorOffsets4W(frontZ, rearZ, chassisDims,
wheelWidth, wheelRadius, numWheels, wheelCenterActorOffsets);

//Set up the simulation data for all wheels.

fourwheel: :setupWheelsSimulationData(vehicle4WDesc.wheelMass,
vehicled4WDesc.wheelMOI, wheelRadius, wheelWidth,
numWheels, wheelCenterActorOffsets,
vehicledWDesc.chassisCMOffset, vehicled4WDesc.chassisMass,

wheelsSimData) ;

Vehicle simulation setup

PxVehicleDriveSimData4W driveSimData;

//Differential

PxVehicleDifferentiald4dWData diff;
diff.mType=PxVehicleDifferential4WData: :eDIFF TYPE LS 4WD;
driveSimData.setDiffData(diff);

//Engine

PxVehicleEngineData engine;

engine.mPeakTorque=500.0f;

engine.mMaxOmega=600.0£f;//approx 6000 rpm Trust the Sample code, the

driveSimData.setEngineData(engine);

//Gears sample code is your friend.
PxVehicleGearsData gears;

gears.mSwitchTime=0.5¢f; Some of these numbers
driveSimData.setGearsData(gears); -

i could be quite tweakable.

PxVehicleClutchData clutch;
clutch.mStrength=10.0f;
driveSimData.setClutchData(clutch);
//Ackermann steer accuracy
PxVehicleAckermannGeometryData ackermann;
ackermann.mAccuracy=1.0f;
ackermann.mAxleSeparation=
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eFRONT LEFT).z-
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eREAR LEFT).z;
ackermann.mFrontWidth=
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eFRONT RIGHT) .x-
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eFRONT LEFT).x;
ackermann.mRearWidth=
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eREAR RIGHT).x -
wheelsSimData->getWheelCentreOffset (PxVehicleDrive4WWheelOrder: :eREAR LEFT).X;
driveSimData.setAckermannGeometryData(ackermann) ;

Putting it all together

« This is the code which actually uses
createVehicle4W to create a PxVehicleDrive4W
object and add it to the scene.

* Note that the vehicle object owns a rigid dynamic
actor, and that's what's added to the scene. The rest
of the vehicle object is the data and state to do with
the car simulation (engine, wheels, gearbox, etc).

VehicleDesc vehicleDesc = initVehicleDesc();

gVehicledW = createVehicled4W(vehicleDesc, gPhysics, gCooking);

PxTransform startTransform(PxVec3(0, (vehicleDesc.chassisDims.y*0.5f +
vehicleDesc.wheelRadius + 1.0f), 0), PxQuat(PxIdentity));

gVehicled4dW->getRigidDynamicActor ()->setGlobalPose(startTransform);

gScene->addActor (*gVehicled4dW->getRigidDynamicActor());

Per-frame actions

The sample code puts the car through a series of manoevres
— forward, backwards, turns, handbrake turns.

It does this by populating gVehiclelnputData with simulated
keypresses or simulated analog stick data (based on
whether gMimicKeylnputs is true or false). You should
replace this code with actual inputs from the keyboard or
gamepad.

Then it applies this input data to the venhicle.

Then it performs raycasts for each vehicle in the scene, to
find out which wheels are on the ground.

Then it updates each vehicle, using the raycast results. This
function turns the wheels, updates the engine RPM, works
out the car's current speed, and works out what forces to
apply to the car model.

Then it ticks the scene for 1/60t of a second.
This all happens in the function stepPhysics()

Rendering the scene

* The snippet samples will render the scene for you if RENDER_SNIPPET
is defined

* Otherwise you can see the scene in PvD
* Here's the standard render code in renderCallback()

PxU32 nbActors = gScene->getNbActors(PxActorTypeFlag::eRIGID DYNAMIC |
PxActorTypeFlag: :eRIGID STATIC);
if (nbActors)

{

Debugging

* PvD - PhysX debugger
* Separate EXE

* Needs additional setup when you initialize PhysX (as
shown earlier) so the scene will talk to the debugger

* Debugger window lists actors, renders shapes and
meshes

* Can show additional data like forces, velocities, normals
* If your rendered scene doesn't basically match this, your

Rendered scene and PvD view of scene

<= PhysX Snippet VehicledW

O PhysX Visual Debugger

File Camera Commands Help

K| (K| || (] |2 3] (%] D] Frame I 28184
Scel Scene id: 6 Render (£ Profile Memory View Er Settings
PxPhysics [id:4] N\Q:l:a;::zteion

Camera speed scale
Camera controller | i1stPersi ¥
Bounding box None v

Coordinate system None A

Velocity None v
Transparent None v
Joints None ¥
Wireframe None v
Scene queries None v
Contacts None v
Sleeping objects | All v
Name Value Trigger shapes All v
Transparency
Gizmo scale
Joints scale
Particle size
Name Start Frame End Frame Frame Count .
Up Axis Y+ v
Clip 1 28188 28188 Chirality Right-Handed ~

2019-01-03

: 10:59 PM
- O Type here to search % : ®© 33 ® dx 7 ENG []

Integrating PhysX into your project

Building the PhysX solution builds the libraries you'll
need.

Copy the libraries and header files into your game's
repo and include / link them from there

You'll need headers from physx/include and pxshared/
iInclude

Also copy the DLLs. These have to be on the execution
path when your game EXE runs (this usually means in
the same folder)

You'll find the built libraries and DLLs under physx\bin

Release config is the fastest but doesn't support PvD.
Profile supports PvD but doesn't check your data.
Checked supports PvD and checks your data. Each
config is correspondingly slower.

Things you can change

* Anywhere you see a hardcoded number in the sample code, it
might be a worthwhile tweakable value

* Remember to adjust how many wheels your car has!
* Some values are documented, some are 'magic'

* Some numbers are not expressed in the units you might
expect...

engine.mMaxOmega=600.0f; //approx 6000 rpm
// This is because 'omega' is the symbol for rotational
// velocity which PhysX measures in radians per second.
* The car and wheel meshes need to be replaced with your own
meshes (sample ones are OK for milestone 2)

* Try other vehicle types — tanks, 6W drive (you'll need to
uncomment the relevant lines in SampleVehicle.cpp to make
this work)

A word on collision...

When the sample creates the car, it includes data which will
be used by the scene's filter shader, indicating what kinds of
surfaces the chassis and the wheels can collide with.

Similarly when it creates the ground plane, this is flagged
with the kinds of collision it will handle.

If the wheels can collide with the ground, the car won't fall
through it ;)

You'll need to set the right flags for other objects that the car
might 'collide’ with (e.g. trigger volumes, pickups).

For general collision information, read the PhysX help file.
Basically you'll want to implement a collision callback, which

will be called to inform you of each collision (and the two
objects which collided).

Conclusions

Use the PhysX vehicle SDK. It will save time and sanity.

Mechanics of setup are complex - don’t be afraid to steal
the PhysX sample code.

The driving model in the PhysX sample app is now the
baseline - need to make it better if you want good marks
on the driving portion of things

PhysX is generally very well documented. But also very
extensive! Concentrate on what you need — mesh
cooking, rigid body collisions, vehicles, raycasts.

There are separate libraries for particles (including fluids)
and for cloth if you're feeling incredibly ambitious, but
don't get distracted ;)

Remember to make a nice system for quickly reloading
your tunables and recreating your cars — it'll save you lots
of iteration time!

