
PhysX and Vehicles

1



PhysX

• Collision and Dynamics SDK (now) owned by Nvidia 
• Included in UnrealEngine 
• Includes a powerful vehicle driving model, which you 

should use 
• We used to allow rigid body physics libraries but 

required building driving model from scratch 
• Getting a good driving model is by far the biggest 

challenge for teams, and was often holding back 
game quality significantly



Installing PhysX

● Get SDK from https://github.com/NVIDIAGameWorks/PhysX 
● Latest version is 4.0 – make sure you use the right 

documentation 
● You don't need to register for an account to get this 
● You DO need to register for an account to get PvD 

(visual debugger, quite useful) 
● SDK comes as source – clone or download from GitHub 
● Follow Quick Start instructions on GitHub page 

● You need Visual Studio, CMake, and Python installed 
● You will end up with a VS solution containing projects 

for all the PhysX libraries and all the samples 
● A couple of sample projects will fail if you don't have 

DirectX SDK installed – doesn't matter 
● We're going to concentrate on the SnippetVehicle4W sample

https://github.com/NVIDIAGameWorks/PhysX


Basics of PhysX Vehicle SDK

• Essential tasks 
• Set up library 
• Create world and floor plane 
• Create some meshes 
• Allocate simulation data 
• Allocate actor and add to world 
• Per frame : Set up inputs to drive and steering 
• Per frame : Wheel raycasts 
• Per frame : Tick simulation



Initialization

 
// Foundation.  
gFoundation = PxCreateFoundation(PX_PHYSICS_VERSION, gAllocator,  

gErrorCallback);  
 
// PvD initialization – optional.  
gPvd = PxCreatePvd(*gFoundation);  
PxPvdTransport* transport = PxDefaultPvdSocketTransportCreate(PVD_HOST, 
5425,  

10);  
gPvd->connect(*transport,PxPvdInstrumentationFlag::eALL);  
 
// Physics.  
gPhysics = PxCreatePhysics(PX_PHYSICS_VERSION, *gFoundation,  

PxTolerancesScale(), true, gPvd);

• PxPhysics 
– Base context for all operations 
– Initialize visual debugger here if you want it



Initialization

PxCookingParams params(scale); 
params.meshWeldTolerance = 0.001f; 
params.meshPreprocessParams = 
  PxMeshPreprocessingFlags(PxMeshPreprocessingFlag::eWELD_VERTICES |  
  PxMeshPreprocessingFlag::eREMOVE_UNREFERENCED_VERTICES |  
  PxMeshPreprocessingFlag::eREMOVE_DUPLICATED_TRIANGLES);  
 
mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, params);

• PxCooking 
– Utility class for creating meshes in physics 
– Converts a simple vertex stream representing a mesh into an 

internal structure which it can use for its own purposes 
– PhysX vehicles use meshes for all objects in vehicle system



Initialization

 
PxSceneDesc sceneDesc(gPhysics->getTolerancesScale());  
sceneDesc.gravity = PxVec3(0.0f, -9.81f, 0.0f);  
 
PxU32 numWorkers = 1; // number of threads PhysX can use.  
// 0 means PhysX update runs on the main thread.  
// 1+ means PhysX update runs on other threads.  
gDispatcher = PxDefaultCpuDispatcherCreate(numWorkers);  
sceneDesc.cpuDispatcher = gDispatcher;  
 
// The scene filter shader is a function you write which determines whether  
// two 'colliding' objects should count as a collision (which you'll get  
// notified about) or not.  
sceneDesc.filterShader = VehicleFilterShader;  
 
gScene = gPhysics->createScene(sceneDesc);

• PxScene 
– Container for all objects in the simulation 
– Global world properties (i.e. gravity)



The ground

 
//Create a plane to drive on.  
gMaterial = gPhysics->createMaterial(0.5f, 0.5f, 0.6f);  
PxFilterData groundPlaneSimFilterData(COLLISION_FLAG_GROUND,  

COLLISION_FLAG_GROUND_AGAINST, 0, 0);  
gGroundPlane = createDrivablePlane(groundPlaneSimFilterData, gMaterial, 
gPhysics);  
gScene->addActor(*gGroundPlane);

• Without this your cars will fall forever ;) 
• Creating and adding simple objects with standard shapes is very 

straightforward 
• createDrivablePlane is a helper function which creates and 

returns a PxRigidStatic object 
• PxRigidStatic is the base class for rigid objects which aren't 

expected to move. There are helper functions to create planes, 
spheres, boxes, etc. 

• Note the 'material'. The parameters for the material include the 
coefficient of restitution. The material properties for two colliding 
shapes affect how PhysX will handle the collision.



Set up vehicle support

PxInitVehicleSDK(*gPhysics);  
PxVehicleSetBasisVectors(PxVec3(0,1,0), PxVec3(0,0,1));  
PxVehicleSetUpdateMode(PxVehicleUpdateMode::eVELOCITY_CHANGE);

... that was suspiciously easy.



Mesh creation
For a convex mesh, the mesh cooker takes a stream of PxVec3 objects – 
the vert positions for each triangle in the mesh. 
It produces a PxConvexMesh object which is PhysX's internal 
representation of a mesh optimized for its use. 
Created meshes have a hard limit of 256 verts, so the more input verts 
there are, the more approximate the output mesh will be. If you want more 
complicated collision, cook a triangle mesh instead. 

PxConvexMeshDesc convexDesc;  
convexDesc.points.count = numVerts;  
convexDesc.points.stride = sizeof(PxVec3);  
convexDesc.points.data  = verts;  
convexDesc.flags = PxConvexFlag::eCOMPUTE_CONVEX;  
// This flag asks the cooker to calculate the mesh from the vert list, 
expecting  
// three verts per triangle. Without this flag you must also fill in data to  
// describe the actual polys and vert indices of the mesh.  
 
PxConvexMesh* convexMesh = NULL; // this will hold the created mesh  
PxDefaultMemoryOutputStream buf;  
if(cooking.cookConvexMesh(convexDesc, buf))  
{  
    PxDefaultMemoryInputData id(buf.getData(), buf.getSize());  
    convexMesh = physics.createConvexMesh(id);  
}



Vehicle description

● The function initVehicleDesc() creates a VehicleDesc 
object (this is a convenience class in the sample, not a 
PhysX class) containing lots of parameters defining the 
size and performance of the vehicle. 

● Play with these numbers to get different behaviour. 
(There's actually a bug in this function, see if you can spot 
it ;) 

● The default car has six wheels, of which four are powered 
and the other two unpowered. 

● The function createVehicle4W() is the starting point for 
creating the vehicle model and its simulation data, based 
off the VehicleDesc structure.



The actor for the vehicle

 
PxVehicleChassisData rigidBodyData;  
rigidBodyData.mMOI = vehicle4WDesc.chassisMOI;  
rigidBodyData.mMass = vehicle4WDesc.chassisMass;  
rigidBodyData.mCMOffset = vehicle4WDesc.chassisCMOffset;  
 
veh4WActor = createVehicleActor(rigidBodyData, wheelMaterials, 
wheelConvexMeshes,  

numWheels, wheelSimFilterData, chassisMaterials, chassisConvexMeshes, 1,  
chassisSimFilterData, *physics);

• createVehicle4W starts by making a mesh for a 
wheel and a mesh for the chassis. You will probably 
replace these later on. 

• A vehicle has a PxRigidDynamic object for its actor. 
• Note difference from ground plane (PxRigidStatic) – 

the scene knows that PxRigidDynamic actors will be 
moving around.

(createVehicleActor is a helper function in the sample code which 
actually makes a PxRigidDynamic object and adds the chassis and 
wheels to it as sub-shapes.)



Wheels setup

PxVehicleWheelsSimData* wheelsSimData = 
PxVehicleWheelsSimData::allocate(numWheels);

{  
 
//Compute the wheel center offsets from the origin.  
PxVec3 wheelCenterActorOffsets[PX_MAX_NB_WHEELS];  
const PxF32 frontZ = chassisDims.z*0.3f;  
const PxF32 rearZ = -chassisDims.z*0.3f;  
fourwheel::computeWheelCenterActorOffsets4W(frontZ, rearZ, chassisDims,  
    wheelWidth, wheelRadius, numWheels, wheelCenterActorOffsets);  
 
//Set up the simulation data for all wheels.  
fourwheel::setupWheelsSimulationData(vehicle4WDesc.wheelMass,  
    vehicle4WDesc.wheelMOI, wheelRadius, wheelWidth,  
    numWheels, wheelCenterActorOffsets,  
    vehicle4WDesc.chassisCMOffset, vehicle4WDesc.chassisMass,  
    wheelsSimData);

}

• The sample calculates initial local poses for the 
wheels, i.e. where they are relative to the chassis. 
You'll need to supply these poses yourself when you 
come to use your own meshes.



Vehicle simulation setup
PxVehicleDriveSimData4W driveSimData;
//Differential
PxVehicleDifferential4WData diff;
diff.mType=PxVehicleDifferential4WData::eDIFF_TYPE_LS_4WD;
driveSimData.setDiffData(diff);
//Engine
PxVehicleEngineData engine;
engine.mPeakTorque=500.0f;
engine.mMaxOmega=600.0f;//approx 6000 rpm
driveSimData.setEngineData(engine);
//Gears
PxVehicleGearsData gears;
gears.mSwitchTime=0.5f;
driveSimData.setGearsData(gears);
//Clutch
PxVehicleClutchData clutch;
clutch.mStrength=10.0f;
driveSimData.setClutchData(clutch);
//Ackermann steer accuracy
PxVehicleAckermannGeometryData ackermann;
ackermann.mAccuracy=1.0f;
ackermann.mAxleSeparation=

wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_LEFT).z-
wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_LEFT).z;

ackermann.mFrontWidth=
wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_RIGHT).x-
wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eFRONT_LEFT).x;

ackermann.mRearWidth=
wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_RIGHT).x -
wheelsSimData->getWheelCentreOffset(PxVehicleDrive4WWheelOrder::eREAR_LEFT).x;

driveSimData.setAckermannGeometryData(ackermann);

Trust the sample code, the 
sample code is your friend. 
Some of these numbers 
could be quite tweakable.



Putting it all together

• This is the code which actually uses 
createVehicle4W to create a PxVehicleDrive4W 
object and add it to the scene. 

• Note that the vehicle object owns a rigid dynamic 
actor, and that's what's added to the scene. The rest 
of the vehicle object is the data and state to do with 
the car simulation (engine, wheels, gearbox, etc).

VehicleDesc vehicleDesc = initVehicleDesc();

gVehicle4W = createVehicle4W(vehicleDesc, gPhysics, gCooking);

PxTransform startTransform(PxVec3(0, (vehicleDesc.chassisDims.y*0.5f +  
vehicleDesc.wheelRadius + 1.0f), 0), PxQuat(PxIdentity));

gVehicle4W->getRigidDynamicActor()->setGlobalPose(startTransform);

gScene->addActor(*gVehicle4W->getRigidDynamicActor());



Per-frame actions
• The sample code puts the car through a series of manoevres 

– forward, backwards, turns, handbrake turns. 
• It does this by populating gVehicleInputData with simulated 

keypresses or simulated analog stick data (based on 
whether gMimicKeyInputs is true or false). You should 
replace this code with actual inputs from the keyboard or 
gamepad. 

• Then it applies this input data to the vehicle. 
• Then it performs raycasts for each vehicle in the scene, to 

find out which wheels are on the ground. 
• Then it updates each vehicle, using the raycast results. This 

function turns the wheels, updates the engine RPM, works 
out the car's current speed, and works out what forces to 
apply to the car model. 

• Then it ticks the scene for 1/60th of a second. 
• This all happens in the function stepPhysics()



Rendering the scene

• The snippet samples will render the scene for you if RENDER_SNIPPET 
is defined 

• Otherwise you can see the scene in PvD 
• Here's the standard render code in renderCallback()

PxU32 nbActors = gScene->getNbActors(PxActorTypeFlag::eRIGID_DYNAMIC |  
PxActorTypeFlag::eRIGID_STATIC);

if(nbActors)
{

std::vector<PxRigidActor*> actors(nbActors);
gScene->getActors(PxActorTypeFlag::eRIGID_DYNAMIC | PxActorTypeFlag::eRIGID_STATIC,  

reinterpret_cast<PxActor**>(&actors[0]), nbActors);
Snippets::renderActors(&actors[0], static_cast<PxU32>(actors.size()), true);

}



Debugging

• PvD – PhysX debugger 
• Separate EXE 
• Needs additional setup when you initialize PhysX (as 

shown earlier) so the scene will talk to the debugger 
• Debugger window lists actors, renders shapes and 

meshes 
• Can show additional data like forces, velocities, normals 
• If your rendered scene doesn't basically match this, your 

rendering is wrong ;) 
• Disabled in 'release' config of PhysX



Rendered scene and PvD view of scene



Integrating PhysX into your project

● Building the PhysX solution builds the libraries you'll 
need. 

● Copy the libraries and header files into your game's 
repo and include / link them from there 

● You'll need headers from physx/include and pxshared/
include 

● Also copy the DLLs. These have to be on the execution 
path when your game EXE runs (this usually means in 
the same folder) 

● You'll find the built libraries and DLLs under physx\bin 
● Release config is the fastest but doesn't support PvD. 

Profile supports PvD but doesn't check your data. 
Checked supports PvD and checks your data. Each 
config is correspondingly slower.



Things you can change

• Anywhere you see a hardcoded number in the sample code, it 
might be a worthwhile tweakable value 

• Remember to adjust how many wheels your car has! 
• Some values are documented, some are 'magic' 
• Some numbers are not expressed in the units you might 

expect... 
engine.mMaxOmega=600.0f;//approx 6000 rpm  

// This is because 'omega' is the symbol for rotational 
// velocity which PhysX measures in radians per second.

• The car and wheel meshes need to be replaced with your own 
meshes (sample ones are OK for milestone 2) 

• Try other vehicle types – tanks, 6W drive (you'll need to 
uncomment the relevant lines in SampleVehicle.cpp to make 
this work)



A word on collision...

• When the sample creates the car, it includes data which will 
be used by the scene's filter shader, indicating what kinds of 
surfaces the chassis and the wheels can collide with. 

• Similarly when it creates the ground plane, this is flagged 
with the kinds of collision it will handle. 

• If the wheels can collide with the ground, the car won't fall 
through it ;) 

• You'll need to set the right flags for other objects that the car 
might 'collide' with (e.g. trigger volumes, pickups). 

• For general collision information, read the PhysX help file. 
Basically you'll want to implement a collision callback, which 
will be called to inform you of each collision (and the two 
objects which collided).



Conclusions
• Use the PhysX vehicle SDK. It will save time and sanity. 
• Mechanics of setup are complex - don’t be afraid to steal 

the PhysX sample code. 
• The driving model in the PhysX sample app is now the 

baseline - need to make it better if you want good marks 
on the driving portion of things 

• PhysX is generally very well documented. But also very 
extensive! Concentrate on what you need – mesh 
cooking, rigid body collisions, vehicles, raycasts. 

• There are separate libraries for particles (including fluids) 
and for cloth if you're feeling incredibly ambitious, but 
don't get distracted ;) 

• Remember to make a nice system for quickly reloading 
your tunables and recreating your cars – it'll save you lots 
of iteration time!


