
1

Topic 9: Recursion
To Understand Recursion You Must First Understand Recursion

2

Textbook

• Recommended Exercises
• The Python Workbook, 2nd Edition: 178, 179, 180, 181 and 182

• Recommend Readings
• The Python Workbook, 2nd Edition: Chapter 8

3

Recursion

• Definition:
• See Recursion

• Defining something in terms of itself
• Generally using a smaller or simpler version

• Recursive Function
• A function that calls itself

4

A Small Example

• Compute n factorial:
• Using a loop

• Initialize result to 1
• for i ranging from 1 to n (inclusive)

• Multiply result by i, storing the result back into i

• Another solution
• By definition, 0! is 1
• View n! as n * (n-1)!

5

A Small Example

6

Recursion

• A well-formed recursive function normally has two cases
• Base Case:

• Does not make a recursive call
• Permits function to terminate

• Recursive Case:
• Function calls itself
• Generally must be a call to a smaller or simpler version of the problem

7

Useful Examples of Recursion

• Drawing fractals
• Finding a path through a maze
• Flood fill / “paint bucket” tool
• Merge sort, quick sort, binary search
• Finding the total size of all of the files in a directory and its

subdirectories
• Parsing / evaluating expressions
• …

8

Greatest Common Divisor

• Finding the greatest common divisor of two positive integers, x
and y:

• If x can be evenly divided by y, then gcd(x,y) is y
• Otherwise, gcd(x,y) is gcd(y, remainder of x/y)

9

Fibonacci Numbers

• A sequence of values:
• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

• Defined recursively:
• By definition:

• fib(0) is 0
• fib(1) is 1

• Remaining values:
• Formed by computing the sum of the previous two values in the sequence

10

Fibonacci Numbers

11

Advantages of Recursion

• Very well suited to some problems
• Tree traversals
• Flood fill
• Fractal images
• Quick sort / merge sort
• …

• Easier to implement for some problems, sometimes faster than
iterative

12

Advantages of Iteration

• Typically
• Faster (but not always)
• Requires less memory (most of the time)

• Can be more intuitive for some problems / people

• But some problems are messy to express iteratively

13

Fractals

• Self similar images
• Often have reasonably simple recursive definitions

• 1 4

• 2

• 3

14

Koch Snowflake

15

Sierpinski Triangle

Sierpinski Trianglge
Source: http://commons.wikimedia.org/wiki/File:Sierpinski-Trigon-7.svg
License: Public Domain

20

Fractal T-Square

21

Fractal T-Square

22

Maze Path Finding

• Consider a two dimensional list containing 4 different values
• Entrance for the maze
• Exit for the maze
• Open spaces
• Walls

• Assume that the maze is fully enclosed

23

Maze Path Finding

• Algorithm solve(map, x, y)
• If the current square is a wall or a space we have already visited, return failure
• If the current square is the exit point, mark it as part of the solution and return success
• Mark the current square as part of the solution

• If solve(map, x, y+1) is successful, return success
• If solve(map, x, y-1) is successful, return success
• If solve(map, x+1, y) is successful, return success
• If solve(map, x-1, y) is successful, return success

• Mark the current square as visited but not part of the solution
• Return failure

24

Maze Path Finding

25

Recursion

• Recursion: See Recursion
• Very useful for some problems
• Caution:

• Can be inefficient
• Not a good solution for all problems – Use it when appropriate, don’t abuse it

