
1

Topic 9: Recursion
To Understand Recursion You Must First Understand Recursion

2

Textbook

• Recommended Exercises
• The Python Workbook, 2nd Edition: 178, 179, 180, 181 and 182

• Recommend Readings
• The Python Workbook, 2nd Edition: Chapter 8

3

Recursion

• Definition:
• See Recursion

• Defining something in terms of itself
• Generally using a smaller or simpler version

• Recursive Function
• A function that calls itself

4

A Small Example

• Compute n factorial:
• Using a loop

• Initialize result to 1
• for i ranging from 1 to n (inclusive)

• Multiply result by i, storing the result back into i

• Another solution
• By definition, 0! is 1
• View n! as n * (n-1)!

5

A Small Example

6

Recursion

• A well-formed recursive function normally has two cases
• Base Case:

• Does not make a recursive call
• Permits function to terminate

• Recursive Case:
• Function calls itself
• Generally must be a call to a smaller or simpler version of the problem

7

Useful Examples of Recursion

• Drawing fractals
• Finding a path through a maze
• Flood fill / “paint bucket” tool
• Merge sort, quick sort, binary search
• Finding the total size of all of the files in a directory and its

subdirectories
• Parsing / evaluating expressions
• …

8

Greatest Common Divisor

• Finding the greatest common divisor of two positive integers, x
and y:

• If x can be evenly divided by y, then gcd(x,y) is y
• Otherwise, gcd(x,y) is gcd(y, remainder of x/y)

9

Fibonacci Numbers

• A sequence of values:
• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

• Defined recursively:
• By definition:

• fib(0) is 0
• fib(1) is 1

• Remaining values:
• Formed by computing the sum of the previous two values in the sequence

10

Fibonacci Numbers

11

Advantages of Recursion

• Very well suited to some problems
• Tree traversals
• Flood fill
• Fractal images
• Quick sort / merge sort
• …

• Easier to implement for some problems, sometimes faster than
iterative

12

Advantages of Iteration

• Typically
• Faster (but not always)
• Requires less memory (most of the time)

• Can be more intuitive for some problems / people

• But some problems are messy to express iteratively

13

Fractals

• Self similar images
• Often have reasonably simple recursive definitions

• 1 4

• 2

• 3

14

Koch Snowflake

15

Sierpinski Triangle

Sierpinski Trianglge
Source: http://commons.wikimedia.org/wiki/File:Sierpinski-Trigon-7.svg
License: Public Domain

20

Fractal T-Square

21

Fractal T-Square

22

Maze Path Finding

• Consider a two dimensional list containing 4 different values
• Entrance for the maze
• Exit for the maze
• Open spaces
• Walls

• Assume that the maze is fully enclosed

23

Maze Path Finding

• Algorithm solve(map, x, y)
• If the current square is a wall or a space we have already visited, return failure
• If the current square is the exit point, mark it as part of the solution and return success
• Mark the current square as part of the solution

• If solve(map, x, y+1) is successful, return success
• If solve(map, x, y-1) is successful, return success
• If solve(map, x+1, y) is successful, return success
• If solve(map, x-1, y) is successful, return success

• Mark the current square as visited but not part of the solution
• Return failure

24

Maze Path Finding

25

Recursion

• Recursion: See Recursion
• Very useful for some problems
• Caution:

• Can be inefficient
• Not a good solution for all problems – Use it when appropriate, don’t abuse it

	Topic 9: Recursion
	Textbook
	Recursion
	A Small Example
	A Small Example
	Recursion
	Useful Examples of Recursion
	Greatest Common Divisor
	Fibonacci Numbers
	Fibonacci Numbers
	Advantages of Recursion
	Advantages of Iteration
	Fractals
	Koch Snowflake
	Sierpinski Triangle
	Fractal Fern
	Fractal Art
	Fractal Art
	Fractal Art
	Fractal T-Square
	Fractal T-Square
	Maze Path Finding
	Maze Path Finding
	Maze Path Finding
	Recursion

