
1

Topic 8: Files and Exceptions
“A common mistake that people make when trying to design 

something completely foolproof is to underestimate the ingenuity of 
complete fools.”

-Douglas Adams

2

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 149, 150, 151, and 156

• Recommended Exercises
• The Python Workbook, 2nd Edition: 158, 163, 164, 169, and 171

• Recommended Readings
• The Python Workbook, 2nd Edition: Chapter 7



3

Files

• Variables are temporary
• Value is lost when program ends
• Value is lost if computer loses power

• Files provide a less volatile form of storages
• Values are retained after the program ends
• Values are retained when the computer loses power

4

Types of Files

• Two types of files
• Text files

• Encoded using ASCII or Unicode
• Can be viewed with editors such as Emacs and Notepad
• Examples: Python source files, web pages, …

• Binary files
• Contain arbitrary sequences of bits which do not conform to ASCII or Unicode 

characters
• Examples: Most images, word processor files, …



5

File Access

• Two different ways to access data
• Sequential Access

• Start at the beginning of the file
• Read data from the file in the order that it occurs

• Random Access File
• Jump to an arbitrary location in the file
• Read some data
• Jump to a new location
• Read more data
• …

6

Opening a Text File

• Text files are opened in one of three possible modes
• Read

• Write

• Append



7

Opening a Text File

• Files must be opened before they can be used
• Use the open function

• Argument 1: The name of the file to open
• Argument 2: The one character abbreviation for the mode
• Returns a file object

• Example:

inf = open("input_file.txt", "r")

8

Reading from a File

• Once a file has been opened, we can invoke methods on the file 
object to read data from the file
• read(): reads the entire file as a string
• readline(): reads one line as a string

• Once we have read some data we often have to process it before 
it is ready for use by the rest of our program



9

Closing Files

• Files should be closed after we are done with them
• Some operating systems limit the number of files that can be open at one 

time
• Failing to close the file can result in a loss of data when writing to a file
• Use the close method

• Doesn’t require any arguments

10

Example: Computing a Sum

• Write a program that reads numbers from a file and computes 
their sum
• User will enter the name of the file
• Numbers will be in the file one per line



11

Example: Computing a Sum

12

Special Characters
• Inside of text files we have characters

• letters
• numbers
• punctuation marks

• Also have characters that control spacing
• newline 
• tab
• other control characters



13

Escape Sequences

• Escape sequences provide a mechanism for placing a character 
that controls spacing inside a string
• What if we want to have a string that includes a newline character?
• What about a double quote character?
• Use an escape sequence

• Begins with \ (backslash)
• Followed by one character describing the character that should be inserted

14

Escape Sequences

• Common Escape Sequences:
• \n – linefeed
• \t – tab
• \" – double quote
• \\ – backslash



15

Newline Headaches

• Representation of newline varies by operating system
• Unix and MacOS X – newline is represented by the linefeed character, \n
• DOS and Windows – newline is represented by two characters: a carriage 

return followed by a linefeed, \r\n
• On MacOS 9 newline is represented by a carriage return, \r

16

Command Line Arguments

• Most programs require input to run
• Can be read from the keyboard
• Can be read from a file
• Can come from arguments provided when the program is executed



17

Command Line Arguments

• Command line arguments are stored in the variable sys.argv
• A list with one element for each argument
• The element at index 0 is the name of the program
• All arguments are handled as strings
• Don’t forget to import sys

18

Command Line Arguments



19

Command Line Arguments

• Update our program for summing numbers so that the name of 
the file is passed as a command line argument

20

Example: Counting Words
• Write a program that computes some statistics about a text file

• Number of lines
• Number of words 
• Number of characters

• Filename will be provided as a command line argument



21

Example: Counting Words

22

Writing to Files

• Data can be saved for future use by writing it to a file
• Two writing options: 

• Create a new empty file
• CAUTION: If the file already exists its contents will be lost without warning

• Append data to the end of an existing file
• Use the write method once the file is open

• Takes one string as an argument
• Variables of other types must be converted to strings

• Does not automatically include a newline character



23

Example: Counting Words

• Extend our word counting program so that it writes the report to a 
file
• Name of file will be provided as a second command line argument

24

Standard Input, Standard Output and 
Standard Error
• We have been using files since the first program that we wrote

• Standard output is a file
• Values written go to screen
• Opened automatically when the program starts
• Closes Automatically when the program ends
• File variable is sys.stdout
• We can write to stdout using the write method, just like any other file



25

Standard Input, Standard Output and 
Standard Error
• Standard Input

• Also a file
• The input() function is equivalent to sys.stdin.readline().rstrip()

26

Standard Input, Standard Output and 
Standard Error

• Standard Error
• Another output file
• Values written go to screen
• Intended for displaying error messages instead of program output
• Allows us to redirect program output separately from error messages
• Useful for debugging



27

Example: Counting Words

• Extend our program so that it is more flexible
• If no command line arguments are provided input is read from the keyboard 

and output is sent to the screen
• If one command line argument is provided input is read from the file named 

as an argument and output is sent to the screen
• If two command line arguments are provided, input is read from a file and 

output is written to a file

28

Example: Count Words

• Key Idea:
• Since standard output is a file, the same  statements can be used to write 

output to the screen or a file
• Since standard input is a file, the same statements can be used to read 

input from the keyboard or a file
• Once the files are set up, the rest of the program is identical for files / 

screen / keyboard



29

Files

• Text files provide an easy mechanism for loading and storing 
small amounts of data
• Impractical for larger amounts of data that is frequently accessed 

(especially in random order)
• Accessing disks is slow

• Important for programs that read and write frequently to optimize access to files
• Common solution: Use existing database package

30

Exceptions

• What kinds of errors can occur?



31

Exceptions

• Most runtime errors are exceptions
• If the exception isn’t caught it causes the program to crash

• Error messages say what exception was thrown and what line it was thrown from
• Exceptions can be caught

• Once the exception is caught, the program can take necessary actions to recover 
from the exception and then continue executing

32

Exceptions

• Consider the following program:

a = float(input("Enter a number: "))
b = float(input("Enter another number: "))

print(a,"+",b,"=",a+b)
print(a,"-",b,"=",a-b)
print(a,"*",b,"=",a*b)
print(a,"/",b,"=",a/float(b))

• What can go wrong?



33

Exceptions

• Dividing by zero gives a ZeroDivisionError exception
• We can catch this exception and provide different behavior

• Create a try block which contains the code that might throw an exception
• Create an except block to catch the exception and provide more desirable behaviour

34

Exceptions

• Rewrite the arithmetic program so that divide by zero exceptions 
are caught



35

Exceptions

• What happens if a string is entered instead of a number?
• Extend our program so that this situation is handled more nicely

36

Exceptions

• Most file operations can throw exceptions
• Try to open a file that doesn’t exist
• Try to read from a file that you don’t have permission to read
• Someone removes memory stick / CD while you are reading from it
• These exceptions should be caught, even if the exception handler simply 

displays a meaningful message and quits the program



37

Multiple Exceptions

• Each try block can have several except blocks
• Each kind of exception needs to be handled differently
• May include a default except block that doesn’t specify the type of 

exception to catch
• Catches all exceptions that aren’t caught by another except block
• Typically displays an error message and exits

38

Exceptions

• Exceptions:
• are thrown when an error occurs
• can be caught to recover from the error

• We have only scratched the surface:
• What happens if an exception is thrown inside a function?
• How can our program throw an exception if it realizes something is 

wrong?



39

Databases

• A structured collection of records organized for ease of search 
and retrieval
• Many commercial packages exist

• Oracle, Microsoft Access, SQL Server, DB2, …
• Some free options too

• MySQL, …
• Packages often provide a GUI so that a user can access the data

40

Databases

• Most current databases use the relational model
• Database consists of two parts

• Schema: Describes the structure of the data
• Data: The actual records being stored

• Data is organized into tables
• Each table consists of one or more (almost always) columns



41

Example

• A table to store data about people

42

Relationships

• How do we efficiently model the relationship that a person lives 
at an address?
• Can more than one person live at an address? 

• Can a person have more than one address?



43

Primary Keys and Foreign Keys

• Primary Key:  
• A unique value associated with each row in a table
• Typically an integer

• Foreign Key:
• A primary key value from another table residing in the current table

44

Primary Keys and Foreign Keys

• How do we model the possibility that many people may reside at 
one address?



45

Primary Keys and Foreign Keys

• How do we efficiently model the possibility that people may have 
several addresses?

46

Accessing a Database

• Database runs as a separate process
• Commands sent to database

• Use a language known as SQL (Structured Query Language)
• Human readable, reasonably intuitive

• Results returned, often as lists
• Program uses values retrieved from database to compute and present the desired 

result



47

Databases

• Provide a ready-made solution for dealing with larger amounts of 
data
• Careful database design is important

• Avoid data duplication
• Queries on large databases may need to be optimized

• Tools are readily available
• MySQL is free to download
• Python libraries available for interacting with many different database packages

48

Wrapping Up - Files

• Files provide longer term storage of data
• Types

• Text files
• Binary files

• Can be opened for
• Reading
• Writing
• Appending

• Separate databases are commonly used to manage larger amounts of 
data



49

Wrapping Up - Exceptions

• Exceptions
• Many runtime errors are exceptions
• Default behaviour: crash program
• Exceptions can be caught

• Put code that might cause an exception in a try block
• Use except blocks to catch exceptions that can be recovered from

50

Where Are We Going?

• Now you have a large set of tools:
• Input, output, variables
• If statements
• For loops and while loops
• Functions
• Lists, dictionaries and strings
• Files and exceptions

• These tools are sufficient to solve many interesting problems


