
1

Topic 8: Files and Exceptions
“A common mistake that people make when trying to design

something completely foolproof is to underestimate the ingenuity of
complete fools.”

-Douglas Adams

2

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 149, 150, 151, and 156

• Recommended Exercises
• The Python Workbook, 2nd Edition: 158, 163, 164, 169, and 171

• Recommended Readings
• The Python Workbook, 2nd Edition: Chapter 7

3

Files

• Variables are temporary
• Value is lost when program ends
• Value is lost if computer loses power

• Files provide a less volatile form of storages
• Values are retained after the program ends
• Values are retained when the computer loses power

4

Types of Files

• Two types of files
• Text files

• Encoded using ASCII or Unicode
• Can be viewed with editors such as Emacs and Notepad
• Examples: Python source files, web pages, …

• Binary files
• Contain arbitrary sequences of bits which do not conform to ASCII or Unicode

characters
• Examples: Most images, word processor files, …

5

File Access

• Two different ways to access data
• Sequential Access

• Start at the beginning of the file
• Read data from the file in the order that it occurs

• Random Access File
• Jump to an arbitrary location in the file
• Read some data
• Jump to a new location
• Read more data
• …

6

Opening a Text File

• Text files are opened in one of three possible modes
• Read

• Write

• Append

7

Opening a Text File

• Files must be opened before they can be used
• Use the open function

• Argument 1: The name of the file to open
• Argument 2: The one character abbreviation for the mode
• Returns a file object

• Example:

inf = open("input_file.txt", "r")

8

Reading from a File

• Once a file has been opened, we can invoke methods on the file
object to read data from the file
• read(): reads the entire file as a string
• readline(): reads one line as a string

• Once we have read some data we often have to process it before
it is ready for use by the rest of our program

9

Closing Files

• Files should be closed after we are done with them
• Some operating systems limit the number of files that can be open at one

time
• Failing to close the file can result in a loss of data when writing to a file
• Use the close method

• Doesn’t require any arguments

10

Example: Computing a Sum

• Write a program that reads numbers from a file and computes
their sum
• User will enter the name of the file
• Numbers will be in the file one per line

11

Example: Computing a Sum

12

Special Characters
• Inside of text files we have characters

• letters
• numbers
• punctuation marks

• Also have characters that control spacing
• newline
• tab
• other control characters

13

Escape Sequences

• Escape sequences provide a mechanism for placing a character
that controls spacing inside a string
• What if we want to have a string that includes a newline character?
• What about a double quote character?
• Use an escape sequence

• Begins with \ (backslash)
• Followed by one character describing the character that should be inserted

14

Escape Sequences

• Common Escape Sequences:
• \n – linefeed
• \t – tab
• \" – double quote
• \\ – backslash

15

Newline Headaches

• Representation of newline varies by operating system
• Unix and MacOS X – newline is represented by the linefeed character, \n
• DOS and Windows – newline is represented by two characters: a carriage

return followed by a linefeed, \r\n
• On MacOS 9 newline is represented by a carriage return, \r

16

Command Line Arguments

• Most programs require input to run
• Can be read from the keyboard
• Can be read from a file
• Can come from arguments provided when the program is executed

17

Command Line Arguments

• Command line arguments are stored in the variable sys.argv
• A list with one element for each argument
• The element at index 0 is the name of the program
• All arguments are handled as strings
• Don’t forget to import sys

18

Command Line Arguments

19

Command Line Arguments

• Update our program for summing numbers so that the name of
the file is passed as a command line argument

20

Example: Counting Words
• Write a program that computes some statistics about a text file

• Number of lines
• Number of words
• Number of characters

• Filename will be provided as a command line argument

21

Example: Counting Words

22

Writing to Files

• Data can be saved for future use by writing it to a file
• Two writing options:

• Create a new empty file
• CAUTION: If the file already exists its contents will be lost without warning

• Append data to the end of an existing file
• Use the write method once the file is open

• Takes one string as an argument
• Variables of other types must be converted to strings

• Does not automatically include a newline character

23

Example: Counting Words

• Extend our word counting program so that it writes the report to a
file
• Name of file will be provided as a second command line argument

24

Standard Input, Standard Output and
Standard Error
• We have been using files since the first program that we wrote

• Standard output is a file
• Values written go to screen
• Opened automatically when the program starts
• Closes Automatically when the program ends
• File variable is sys.stdout
• We can write to stdout using the write method, just like any other file

25

Standard Input, Standard Output and
Standard Error
• Standard Input

• Also a file
• The input() function is equivalent to sys.stdin.readline().rstrip()

26

Standard Input, Standard Output and
Standard Error

• Standard Error
• Another output file
• Values written go to screen
• Intended for displaying error messages instead of program output
• Allows us to redirect program output separately from error messages
• Useful for debugging

27

Example: Counting Words

• Extend our program so that it is more flexible
• If no command line arguments are provided input is read from the keyboard

and output is sent to the screen
• If one command line argument is provided input is read from the file named

as an argument and output is sent to the screen
• If two command line arguments are provided, input is read from a file and

output is written to a file

28

Example: Count Words

• Key Idea:
• Since standard output is a file, the same statements can be used to write

output to the screen or a file
• Since standard input is a file, the same statements can be used to read

input from the keyboard or a file
• Once the files are set up, the rest of the program is identical for files /

screen / keyboard

29

Files

• Text files provide an easy mechanism for loading and storing
small amounts of data
• Impractical for larger amounts of data that is frequently accessed

(especially in random order)
• Accessing disks is slow

• Important for programs that read and write frequently to optimize access to files
• Common solution: Use existing database package

30

Exceptions

• What kinds of errors can occur?

31

Exceptions

• Most runtime errors are exceptions
• If the exception isn’t caught it causes the program to crash

• Error messages say what exception was thrown and what line it was thrown from
• Exceptions can be caught

• Once the exception is caught, the program can take necessary actions to recover
from the exception and then continue executing

32

Exceptions

• Consider the following program:

a = float(input("Enter a number: "))
b = float(input("Enter another number: "))

print(a,"+",b,"=",a+b)
print(a,"-",b,"=",a-b)
print(a,"*",b,"=",a*b)
print(a,"/",b,"=",a/float(b))

• What can go wrong?

33

Exceptions

• Dividing by zero gives a ZeroDivisionError exception
• We can catch this exception and provide different behavior

• Create a try block which contains the code that might throw an exception
• Create an except block to catch the exception and provide more desirable behaviour

34

Exceptions

• Rewrite the arithmetic program so that divide by zero exceptions
are caught

35

Exceptions

• What happens if a string is entered instead of a number?
• Extend our program so that this situation is handled more nicely

36

Exceptions

• Most file operations can throw exceptions
• Try to open a file that doesn’t exist
• Try to read from a file that you don’t have permission to read
• Someone removes memory stick / CD while you are reading from it
• These exceptions should be caught, even if the exception handler simply

displays a meaningful message and quits the program

37

Multiple Exceptions

• Each try block can have several except blocks
• Each kind of exception needs to be handled differently
• May include a default except block that doesn’t specify the type of

exception to catch
• Catches all exceptions that aren’t caught by another except block
• Typically displays an error message and exits

38

Exceptions

• Exceptions:
• are thrown when an error occurs
• can be caught to recover from the error

• We have only scratched the surface:
• What happens if an exception is thrown inside a function?
• How can our program throw an exception if it realizes something is

wrong?

39

Databases

• A structured collection of records organized for ease of search
and retrieval
• Many commercial packages exist

• Oracle, Microsoft Access, SQL Server, DB2, …
• Some free options too

• MySQL, …
• Packages often provide a GUI so that a user can access the data

40

Databases

• Most current databases use the relational model
• Database consists of two parts

• Schema: Describes the structure of the data
• Data: The actual records being stored

• Data is organized into tables
• Each table consists of one or more (almost always) columns

41

Example

• A table to store data about people

42

Relationships

• How do we efficiently model the relationship that a person lives
at an address?
• Can more than one person live at an address?

• Can a person have more than one address?

43

Primary Keys and Foreign Keys

• Primary Key:
• A unique value associated with each row in a table
• Typically an integer

• Foreign Key:
• A primary key value from another table residing in the current table

44

Primary Keys and Foreign Keys

• How do we model the possibility that many people may reside at
one address?

45

Primary Keys and Foreign Keys

• How do we efficiently model the possibility that people may have
several addresses?

46

Accessing a Database

• Database runs as a separate process
• Commands sent to database

• Use a language known as SQL (Structured Query Language)
• Human readable, reasonably intuitive

• Results returned, often as lists
• Program uses values retrieved from database to compute and present the desired

result

47

Databases

• Provide a ready-made solution for dealing with larger amounts of
data
• Careful database design is important

• Avoid data duplication
• Queries on large databases may need to be optimized

• Tools are readily available
• MySQL is free to download
• Python libraries available for interacting with many different database packages

48

Wrapping Up - Files

• Files provide longer term storage of data
• Types

• Text files
• Binary files

• Can be opened for
• Reading
• Writing
• Appending

• Separate databases are commonly used to manage larger amounts of
data

49

Wrapping Up - Exceptions

• Exceptions
• Many runtime errors are exceptions
• Default behaviour: crash program
• Exceptions can be caught

• Put code that might cause an exception in a try block
• Use except blocks to catch exceptions that can be recovered from

50

Where Are We Going?

• Now you have a large set of tools:
• Input, output, variables
• If statements
• For loops and while loops
• Functions
• Lists, dictionaries and strings
• Files and exceptions

• These tools are sufficient to solve many interesting problems

	Topic 8: Files and Exceptions
	Textbook
	Files
	Types of Files
	File Access
	Opening a Text File
	Opening a Text File
	Reading from a File
	Closing Files
	Example: Computing a Sum
	Example: Computing a Sum
	Special Characters
	Escape Sequences
	Escape Sequences
	Newline Headaches
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments
	Example: Counting Words
	Example: Counting Words
	Writing to Files
	Example: Counting Words
	Standard Input, Standard Output and Standard Error
	Standard Input, Standard Output and Standard Error
	Standard Input, Standard Output and Standard Error
	Example: Counting Words
	Example: Count Words
	Files
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Exceptions
	Multiple Exceptions
	Exceptions
	Databases
	Databases
	Example
	Relationships
	Primary Keys and Foreign Keys
	Primary Keys and Foreign Keys
	Primary Keys and Foreign Keys
	Accessing a Database
	Databases
	Wrapping Up - Files
	Wrapping Up - Exceptions
	Where Are We Going?

