
Topic 7: Lists, Dictionaries
and Strings

The human animal differs from the lesser primates
in his passion for lists of “Ten Best”

– H. Allen Smith

1

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition:

• Lists: 115, 116, 125 and 135
• Dictionaries: 136, 137, and 146
• Strings: 122, 123, 140, 141 and 143

• Recommended Exercises
• The Python Workbook, 2nd Edition:

• Lists: 111, 113, 114, 124, 126, and 128
• Dictionaries: 147 and 148
• Strings: 129, 130, 131, 132, 138, and 139

• Recommended Readings
• Starting Out with Python, 2nd Edition: Chapters 5 and 6

2

Lists

• Consider the following problem
• Write a program that reads the high and low temperature of each day for

the past year
• Once the data is read, compute

• Hottest day, coldest day
• Identify heat waves, extended cold periods
• Determine last day of frost in spring, first day of frost in fall
• Compute average and median temperature
• Graph the data

3

What is a List?

• A collection of values
• Values

• May all have the same type, or
• May have different types

• Each item is referred to as an element
• Each element has an index

• Unique integer identifying its position in the list
• A list is one type of data structure

• A mechanism for organizing related data

4

Creating a List
• Created like other variables

• Values are comma separated inside square brackets
• Examples:

low_temps = [1.4, -1.8, 0.7, 0.9, 1.2, -2.2, -0.3]
names = ["Ben"]
stuff = [1, "ICT", 3.14]
empty = []

5

Accessing Elements

• Each list element has a unique index
• Values range from 0 to length of the list - 1

• To access one element, use the name of the list, followed by the
index of that element in square brackets
• Use this one element just like any other variable

6

Changing Elements

• Individual elements in a list can be changed without impacting the
rest of the list

stuff = [1, "ICT", 3.14]

stuff[1] = "Hello"

print(stuff)

stuff[2] = "World"

print(stuff)

7

Loops and Lists

• A for loop iterates over the values in a list
• List can be created by the range function
• List can be created by any other means

• Consider the following loop:

stuff = [1, "ICT", 3.14]
for item in stuff:
 print(item)

8

Length of a List

• When a list is initially created, we know its length
• Adding / removing elements from the list will change its length
• New length can be determined using the len function in the standard

library
• Examples:

• len([0.69, 3.14, -16.0]) returns 3
• len([]) returns 0

9

Loops and Lists

• Sometimes we need a loop where the control variable varies over
the indices rather than the values

stuff = [1, "ICT", 3.14]
for i in range(0, len(stuff))
 print(stuff[i])

10

Adding Elements

• Several methods are defined on lists
• Use the name of the list you want to work with
• Follow it by a dot
• Use the name of the method
• Provide any required parameters

• Elements are added with append

stuff = [1,"ICT"]
stuff.append(3.14)
print(stuff)

11

Inserting New Elements

• Append allowed us to add an element to the end of a list
• What if we want to insert an item in the middle of the list?

12

Searching
• Use in to check if an item is present in a list

• 2 in [1,2,3,4,5] evaluates to True
• 8 in [1,2,3,4,5] evaluates to False

• Use index to determine where it is in the list
• [11,12,13,14].index(12) evaluates to 1
• [11,12,13,14].index(8) results in a Value Error

13

Removing

• How can we remove an item from a list?
• Use the remove method

• Removes the first occurrence of the item
• Subsequent identical items remain in the list
• Item must exist or a Value Error will occur

x = [1,2,1,3,4,2,1]

x.remove(1)

print(x)

14

Removing

• What if we want to remove all occurrences of an item from a list?

15

Removing

• What if we know the index of the item we want to remove?
• Use pop
• With no parameters: Removes last item
• With one parameter: Removes item at the index specified
• Returns the item that is removed

16

Example

• Compute the median of a list of values entered by the user
• User will enter an unknown number of values
• A blank line will be used to indicate that no additional values will be

entered
• If the list has an odd number of elements

• Median is the middle value
• If the list has an even number of elements

• Median is average of the two middle values

17

Design

18

Sorting

• How do we put things into order?

19

Selection Sort

20

Insertion Sort

21

Bubble Sort

22

Sorting

• Sorting is an important task
• Needed when working with large data sets
• Frequently occurs as part of other algorithms

• Sorting has been studied extensively
• Many algorithms, some of which are quite complex
• Selection Sort, Insertion Sort and Bubble Sort

• Relatively easy algorithms
• Poor performance for large data sets

23

Sorting in Python

• Python makes sorting a list easy
• Use the sorted function

• Takes one parameter which is an unsorted list
• Returns a new list sorted into increasing order

• Use the sort method
• Invoked on a list using dot notation
• Does not require any parameters
• Modifies the list, sorting it into ascending order

24

Example

• Compute the median of a list of values entered by the user

25

Other List Operations

• Concatenation
• Joins two lists
• Performed using the + operator

• Slicing
• Extracts a portion of a list
• Performed using : operator
• Forms

• ListName[first:last]
• ListName[first:last:increment]

26

More Dimensions

• All of the lists we have used so far have been one-dimensional
• We can add a second dimension by making each element in a list

another list

myList = []
myList.append([1,2])
myList.append([3,4])

27

What Are 2D Lists Used For?

• Images
• Each element stores a color

• Tables / Spreadsheets
• Each element stores a value

• Game boards
• Each element in the list records the piece, if any, that occupies the space
• Can be used to implement Tic Tac Toe, Chess, Checkers, Boggle,

Scrabble, …

28

Example: Boggle

• Generate a random board for Boggle
• 4x4 board
• Store the board in a 2D list
• Each space on the board contains one randomly selected letter
• Display the board
• Sample Board:

S N K O
V R E R
I D I N
N E G U

30

Example: Boggle

31

Tuples

• Similar to lists, but
- length cannot be changed
- Items cannot be assigned individually
- () empty tuple, (3,) length one tuple

aTuple = (1,"ICT",3.14)

32

From Lists to Dictionaries

• Consider the following problem
• Many cities in Alberta
• Want to have a list that contains the populations
• Need to be able to look up population by city

33

Dictionaries

• Dictionary: A collection of values
• Each element in a list has an index

• A unique integer, starting from 0
• Dictionaries allow us to extend this idea

• Each value in the dictionary has a unique identifier associated to it
• Referred to as a key
• Can be a string or a number

• Starting in Python 3.7, the key-value pairs in a dictionary are always stored in the
order in which they were inserted

34

Dictionary Example

• Create a dictionary that describes the population of several
Alberta cities

35

Adding to a Dictionary

• What if we want to add more cities to our dictionary later in the
program?

36

Removing Items

• Remove one item
• Use pop

• Example: cities.pop("Calgary")

• Remove all items
• Use clear method
• Example: cities.clear()

37

Dictionary Methods

• Want a list of the keys in a dictionary?
• Use dictionary_name.keys()
• Example:

for i in cities.keys():

 print(cities[i],"people live in",i)

38

Dictionary Methods

• Want a list of values in a dictionary?
• Use dictionary_name.values()

• Example: Compute the total population of all of the cities

39

Dictionaries Example

• Consider the following problem
• We have a list of values
• Want to determine the mode for the list

• Mode is defined to be the most frequently occurring value
• A list may have more than one mode

40

Dictionaries Example

41

Dictionaries Summary

• Dictionaries
• Hold a collection of values
• Each element is a key value pair

• Easy to lookup the value associated with each key
• New key value pairs can only be added at the end

• No ability to insert in the middle of the collection
• Key value pairs can be removed

42

Strings

• Strings
• A collection of characters
• Numerous methods available for manipulating strings

• upper
• lower
• swapcase
• rjust
• …

43

Strings

• Strings provide additional methods for searching, separating, etc.
• Processing input from the user is challenging

• Anything could be entered
• Generally want our program to handle this nicely
• Common to expend significant effort processing input before it is passed to the rest

of the program

44

Searching

• The find method searches a string for a substring

s = "Hello World!"
print(s.find("ll"))
print(s.find("o"))
print(s.find("o",5))
print(s.find("Wor",0,6))

45

Separating

• Use split
• Returns a list of strings
• Splits the string at each separator character that is encountered

s = "This is a test string"
list = s.split(" ")
for i in list:
 print(i)

46

Extracting Characters

• Characters in a string can be accessed by index
• Enclose index of single character in square brackets
• Use : to form a slice

s = "Hello World!"
print(s[3])
print(s[6:])

47

String Example: Validating a Password

• Write a function that determines if a password is (somewhat)
secure
• Has at least 7 characters
• Contains at least one upper case letter
• Contains at least one lower case letter
• Contains at least one numeric digit

48

String Example: Validating a Password

49

Functions Involving Strings, Lists and
Dictionaries
• Lists, Dictionaries & Strings

• Can be passed as parameters
• Can be returned as results

• Care must be taken to avoid inadvertently modifying a list or
dictionary (not string) inside a function

50

Functions Involving Lists and Dictionaries

51

Mutable vs. Immutable Types

• In Python, every variable is an object
• Consists of

• a pointer to some memory
• value(s) stored in that memory

• The location that the pointer points to can change
• For mutable types, the values stored in memory can also change
• Values stored in memory can not change for immutable types

52

Mutable vs. Immutable Types

• What happens when a new value is assigned to a variable storing
an immutable type?

53

Mutable vs. Immutable Types

• What happens when we change a value in a list (a mutable data
type)?

54

Mutable vs. Immutable Types

• Examples of Immutable Types
• Integer, Float
• String
• Boolean
• …

• Examples of Mutable Types
• Lists
• Dictionaries
• …

55

Mutable vs. Immutable Types Review

• What happens when you change the value of a variable with
immutable type?

• What happens when you change a variable with mutable type?

56

Mutable vs. Immutable Types Review

• Which types are immutable?

• Which types are mutable?

• Why are some types immutable and other types mutable?

57

Key Points

• Mutable vs. Immutable Types
• Memory at the end of the arrow doesn’t change for immutable types
• Changing the value of a variable with immutable type causes it to point to

a different piece of memory
• Changing a variable with immutable type in the called scope will not

change the value of the variable in the calling scope

58

Wrapping Up

• Data structures allow us to organize larger amounts of information
• Lists hold many values (ordered)

• May have same type or may have different types
• Each element has a unique integer index, starting from zero

• Dictionaries hold many values
• Each element consists of a key-value pair
• Items can be looked up by key
• Cannot insert into the middle of the collection

59

Wrapping Up

• Strings help us organize character data
• Provide mechanisms for searching and splitting strings

• Can be used to validate user input

• Lists, dictionaries and strings can be passed to and returned from
functions
• Strings are immutable
• Lists and dictionaries are mutable

60

Where Are We Going?

• Data structures allow us to manage larger amounts of data in a
reasonable way
• Larger amounts of data typically come from disk

• Too much to enter by hand
• How do we load data from files?
• How do we save data in files?
• How do we handle errors?

61

