Topic 7: Lists, Dictionaries and Strings

The human animal differs from the lesser primates in his passion for lists of "Ten Best"

- H. Allen Smith

Textbook

- Strongly Recommended Exercises
 - The Python Workbook, 2nd Edition:
 - Lists: 115, 116, 125 and 135
 - Dictionaries: 136, 137, and 146
 - Strings: 122, 123, 140, 141 and 143
- Recommended Exercises
 - The Python Workbook, 2nd Edition:
 - Lists: 111, 113, 114, 124, 126, and 128
 - Dictionaries: 147 and 148
 - Strings: 129, 130, 131, 132, 138, and 139
- Recommended Readings
 - Starting Out with Python, 2nd Edition: Chapters 5 and 6

Lists

- Consider the following problem
 - Write a program that reads the high and low temperature of each day for the past year
 - Once the data is read, compute
 - · Hottest day, coldest day
 - · Identify heat waves, extended cold periods
 - · Determine last day of frost in spring, first day of frost in fall
 - · Compute average and median temperature
 - · Graph the data

3

What is a List?

- A collection of values
 - Values
 - May all have the same type, or
 - · May have different types
 - Each item is referred to as an element
 - Each element has an index
 - Unique integer identifying its position in the list
 - A list is one type of data structure
 - · A mechanism for organizing related data

Creating a List

- Created like other variables
 - Values are comma separated inside square brackets
 - Examples:

```
low_temps = [1.4, -1.8, 0.7, 0.9, 1.2, -2.2, -0.3]
names = ["Ben"]
stuff = [1, "ICT", 3.14]
empty = []
```

5

Accessing Elements

- Each list element has a unique index
 - Values range from 0 to length of the list 1
- To access one element, use the name of the list, followed by the index of that element in square brackets
 - Use this one element just like any other variable

Changing Elements

 Individual elements in a list can be changed without impacting the rest of the list

```
stuff = [1, "ICT", 3.14]
stuff[1] = "Hello"
print(stuff)
stuff[2] = "World"
print(stuff)
```

7

Loops and Lists

- A for loop iterates over the values in a list
 - List can be created by the range function
 - List can be created by any other means
- Consider the following loop:

```
stuff = [1, "ICT", 3.14]
for item in stuff:
  print(item)
```

8

Length of a List

- When a list is initially created, we know its length
 - Adding / removing elements from the list will change its length
 - New length can be determined using the len function in the standard library
 - Examples:
 - len([0.69, 3.14, -16.0]) returns 3
 - len([]) returns 0

9

Loops and Lists

• Sometimes we need a loop where the control variable varies over the indices rather than the values

```
stuff = [1, "ICT", 3.14]
for i in range(0, len(stuff))
  print(stuff[i])
```

Adding Elements

- Several methods are defined on lists
 - · Use the name of the list you want to work with
 - Follow it by a dot
 - · Use the name of the method
 - Provide any required parameters
- Elements are added with append

```
stuff = [1,"ICT"]
stuff.append(3.14)
print(stuff)
```

11

Inserting New Elements

- Append allowed us to add an element to the end of a list
 - · What if we want to insert an item in the middle of the list?

Searching

- Use in to check if an item is present in a list
 - 2 in [1,2,3,4,5] evaluates to True
 - 8 in [1,2,3,4,5] evaluates to False
- Use index to determine where it is in the list
 - [11,12,13,14].index(12) evaluates to 1
 - [11,12,13,14].index(8) results in a Value Error

4.0

Removing

- How can we remove an item from a list?
 - Use the remove method
 - Removes the first occurrence of the item
 - · Subsequent identical items remain in the list
 - · Item must exist or a Value Error will occur

```
x = [1,2,1,3,4,2,1]

x.remove(1)

print(x)
```

Removing

• What if we want to remove all occurrences of an item from a list?

15

Removing

- What if we know the index of the item we want to remove?
 - Use pop
 - With no parameters: Removes last item
 - With one parameter: Removes item at the index specified
 - · Returns the item that is removed

Example

- Compute the median of a list of values entered by the user
 - User will enter an unknown number of values
 - A blank line will be used to indicate that no additional values will be entered
 - If the list has an odd number of elements
 - Median is the middle value
 - If the list has an even number of elements
 - Median is average of the two middle values

17

Design

Sorting

• How do we put things into order?

19

Selection Sort

Insertion Sort

21

Bubble Sort

Sorting

- Sorting is an important task
 - Needed when working with large data sets
 - Frequently occurs as part of other algorithms
- Sorting has been studied extensively
 - Many algorithms, some of which are quite complex
 - Selection Sort, Insertion Sort and Bubble Sort
 - · Relatively easy algorithms
 - · Poor performance for large data sets

23

Sorting in Python

- Python makes sorting a list easy
 - Use the sorted function
 - · Takes one parameter which is an unsorted list
 - Returns a new list sorted into increasing order
 - · Use the sort method
 - Invoked on a list using dot notation
 - · Does not require any parameters
 - · Modifies the list, sorting it into ascending order

Example

• Compute the median of a list of values entered by the user

25

Other List Operations

- Concatenation
 - Joins two lists
 - Performed using the + operator
- Slicing
 - Extracts a portion of a list
 - Performed using: operator
 - Forms
 - ListName[first:last]
 - ListName[first:last:increment]

More Dimensions

- All of the lists we have used so far have been one-dimensional
- We can add a second dimension by making each element in a list another list

```
myList = []
myList.append([1,2])
myList.append([3,4])
```

27

What Are 2D Lists Used For?

- Images
 - · Each element stores a color
- Tables / Spreadsheets
 - Each element stores a value
- Game boards
 - Each element in the list records the piece, if any, that occupies the space
 - Can be used to implement Tic Tac Toe, Chess, Checkers, Boggle, Scrabble, ...

Example: Boggle

- Generate a random board for Boggle
 - 4x4 board
 - Store the board in a 2D list
 - Each space on the board contains one randomly selected letter
 - Display the board
 - Sample Board:

S	Ν	K	0
٧	R	Е	R
ı	D	I	N
Ν	Е	G	U

30

Example: Boggle

Tuples

- Similar to lists, but
 - length cannot be changed
 - Items cannot be assigned individually
 - () empty tuple, (3,) length one tuple

```
aTuple = (1,"ICT",3.14)
```

32

From Lists to Dictionaries

- Consider the following problem
 - Many cities in Alberta
 - Want to have a list that contains the populations
 - Need to be able to look up population by city

Dictionaries

- Dictionary: A collection of values
 - Each element in a list has an index
 - A unique integer, starting from 0
 - Dictionaries allow us to extend this idea
 - Each value in the dictionary has a unique identifier associated to it
 - · Referred to as a key
 - Can be a string or a number
 - Starting in Python 3.7, the key-value pairs in a dictionary are always stored in the order in which they were inserted

3/

Dictionary Example

 Create a dictionary that describes the population of several Alberta cities

Adding to a Dictionary

• What if we want to add more cities to our dictionary later in the program?

36

Removing Items

- Remove one item
 - Use pop
 - Example: cities.pop("Calgary")
- Remove all items
 - Use clear method
 - Example: cities.clear()

Dictionary Methods

- Want a list of the keys in a dictionary?
 - Use dictionary_name.keys()
 - Example:

```
for i in cities.keys():
   print(cities[i], "people live in",i)
```

38

Dictionary Methods

- Want a list of values in a dictionary?
 - Use dictionary_name.values()
- Example: Compute the total population of all of the cities

Dictionaries Example

- Consider the following problem
 - We have a list of values
 - Want to determine the mode for the list
 - Mode is defined to be the most frequently occurring value
 - A list may have more than one mode

40

Dictionaries Example

Dictionaries Summary

- Dictionaries
 - · Hold a collection of values
 - Each element is a key value pair
 - · Easy to lookup the value associated with each key
 - · New key value pairs can only be added at the end
 - No ability to insert in the middle of the collection
 - · Key value pairs can be removed

42

Strings

- Strings
 - A collection of characters
 - Numerous methods available for manipulating strings
 - upper
 - lower
 - swapcase
 - rjust
 - ...

Strings

- Strings provide additional methods for searching, separating, etc.
 - Processing input from the user is challenging
 - · Anything could be entered
 - Generally want our program to handle this nicely
 - Common to expend significant effort processing input before it is passed to the rest of the program

44

Searching

• The find method searches a string for a substring

```
s = "Hello World!"
print(s.find("ll"))
print(s.find("o"))
print(s.find("o",5))
print(s.find("Wor",0,6))
```

Separating

- Use split
 - Returns a list of strings
 - Splits the string at each separator character that is encountered

```
s = "This is a test string"
list = s.split(" ")
for i in list:
    print(i)
```

46

Extracting Characters

- Characters in a string can be accessed by index
 - Enclose index of single character in square brackets
 - Use: to form a slice

```
s = "Hello World!"
print(s[3])
print(s[6:])
```

String Example: Validating a Password

- Write a function that determines if a password is (somewhat) secure
 - · Has at least 7 characters
 - · Contains at least one upper case letter
 - · Contains at least one lower case letter
 - · Contains at least one numeric digit

48

String Example: Validating a Password

Functions Involving Strings, Lists and Dictionaries

- Lists, Dictionaries & Strings
 - Can be passed as parameters
 - · Can be returned as results
- Care must be taken to avoid inadvertently modifying a list or dictionary (not string) inside a function

--

Functions Involving Lists and Dictionaries

Mutable vs. Immutable Types

- In Python, every variable is an object
 - · Consists of
 - a pointer to some memory
 - value(s) stored in that memory
 - The location that the pointer points to can change
 - For mutable types, the values stored in memory can also change
 - Values stored in memory can not change for immutable types

50

Mutable vs. Immutable Types

 What happens when a new value is assigned to a variable storing an immutable type?

Mutable vs. Immutable Types

 What happens when we change a value in a list (a mutable data type)?

5/

Mutable vs. Immutable Types

- Examples of Immutable Types
 - Integer, Float
 - String
 - Boolean
 - ...
- Examples of Mutable Types
 - Lists
 - Dictionaries
 - ...

Mutable vs. Immutable Types Review

- What happens when you change the value of a variable with immutable type?
- What happens when you change a variable with mutable type?

56

Mutable vs. Immutable Types Review

- Which types are immutable?
- Which types are mutable?
- Why are some types immutable and other types mutable?

Key Points

- Mutable vs. Immutable Types
 - · Memory at the end of the arrow doesn't change for immutable types
 - Changing the value of a variable with immutable type causes it to point to a different piece of memory
 - Changing a variable with immutable type in the called scope will not change the value of the variable in the calling scope

58

Wrapping Up

- Data structures allow us to organize larger amounts of information
 - Lists hold many values (ordered)
 - · May have same type or may have different types
 - Each element has a unique integer index, starting from zero
 - Dictionaries hold many values
 - · Each element consists of a key-value pair
 - Items can be looked up by key
 - · Cannot insert into the middle of the collection

Wrapping Up

- Strings help us organize character data
 - Provide mechanisms for searching and splitting strings
 - · Can be used to validate user input
- Lists, dictionaries and strings can be passed to and returned from functions
 - Strings are immutable
 - · Lists and dictionaries are mutable

60

Where Are We Going?

- Data structures allow us to manage larger amounts of data in a reasonable way
 - Larger amounts of data typically come from disk
 - · Too much to enter by hand
 - How do we load data from files?
 - How do we save data in files?
 - How do we handle errors?