Topic 7: Lists, Dictionaries
and Strings

The human animal differs from the lesser primates
in his passion for lists of “Ten Best”

— H. Allen Smith

Textbook

* Strongly Recommended Exercises

* The Python Workbook, 2" Edition:
e Lists: 115,116, 125and 135
* Dictionaries: 136, 137, and 146
e Strings: 122, 123, 140, 141 and 143

e Recommended Exercises

* The Python Workbook, 2" Edition:
e Lists: 111,113, 114, 124, 126, and 128
* Dictionaries: 147 and 148
e Strings: 129, 130, 131, 132, 138, and 139

* Recommended Readings
 Starting Out with Python, 2"9 Edition: Chapters 5 and 6

Lists

* Consider the following problem

* Write a program that reads the high and low temperature of each day for
the past year

* Once the datais read, compute
* Hottest day, coldest day
Identify heat waves, extended cold periods
Determine last day of frost in spring, first day of frost in fall
Compute average and median temperature
Graph the data

What is a List?

* A collection of values

* Values
* May all have the same type, or
* May have different types

 Each item is referred to as an element
* Each element has an index

* Unique integer identifying its position in the list
* Alistis one type of data structure

* A mechanism for organizing related data

Creating a List

 Created like other variables

* Values are comma separated inside square brackets
* Examples:

low temps =
[HBen" :|

names
stuff
empty

[1,
[]

[1.4,

"ICT" ,

-1.8,

3.14]

0.

1y

0.

9,

1

.2,

-2

.2,

-0.3]

Accessing Elements

* Each list element has a unique index
* Values range from 0 to length of the list - 1

* To access one element, use the name of the list, followed by the
Index of that element in square brackets

* Use this one element just like any other variable

Changing Elements

* Individual elements in a list can be changed without impacting the
rest of the list

stuftf = [1, "ICT", 3.14]

stuff[l] = "Hello"
print (stuff)
stuff[2] = "World"
print (stuff)

Loops and Lists

* Afor loop iterates over the values in a list
* List can be created by the range function
* List can be created by any other means

* Consider the following loop:

stuff = [1, "ICT", 3.14]
for 1tem 1in stuff:
print (1tem)

Length of a List

* When a list is initially created, we know its length
* Adding / removing elements from the list will change its length

* New length can be determined using the 1en function in the standard
library
* Examples:
* len([0.069, 3.14, -16.0]) returns 3
* len([]) returnsO

Loops and Lists

* Sometimes we need a loop where the control variable varies over
the indices rather than the values

stuff = [1, "ICT", 3.14]
for 1 1in range (0, len(stuff))
print (stuff[i])

10

Adding Elements

e Several methods are defined on lists

* Use the name of the list you want to work with
* Follow it by a dot

* Use the name of the method
* Provide any required parameters

* Elements are added with append

stuff = [1,"ICT"]
stuff.append(3.14)
print (stuff)

11

Inserting New Elements

* Append allowed us to add an element to the end of a list
* What if we want to insert an item in the middle of the list?

12

Searching

* Use intocheckifanitemis presentin a list
2 in [1,2,3,4,5] evaluatesto True
8 in [1,2,3,4,5] evaluatestoFalse

e Use index to determine where itis in the list
e [11,12,13,14] .index(12) evaluatestol
e [11,12,13,14] .index(8) resultsinaValue Error

13

Removing

e How can we remove an item from a list?

* Use the remove method
* Removes the first occurrence of the item
 Subsequentidentical items remain in the list
* [tem must exist or a Value Error will occur

x = 11,2,1,3,4,2,1]
X.remove (1)

print (x)

14

Removing

e What if we want to remove all occurrences of an item from a list?

15

Removing

* What if we know the index of the item we want to remove?
* Use pop
* With no parameters: Removes last item
* With one parameter: Removes item at the index specified
* Returns the item that is removed

16

Example

* Compute the median of a list of values entered by the user
* User will enter an unknown number of values

e Ablankline will be used to indicate that no additional values will be
entered

e [fthe list has an odd number of elements
e Medianis the middle value

* |f the list has an even number of elements
* Median is average of the two middle values

17

Design

Sorting

* How do we put things into order?

19

Selection Sort

Insertion Sort

21

Bubble Sort

Sorting

* Sorting is an important task
* Needed when working with large data sets
* Frequently occurs as part of other algorithms

* Sorting has been studied extensively
* Many algorithms, some of which are quite complex

e Selection Sort, Insertion Sort and Bubble Sort

* Relatively easy algorithms
* Poor performance for large data sets

23

Sorting in Python

* Python makes sorting a list easy

* Use the sorted function
* Takes one parameter which is an unsorted list
* Returns a new list sorted into increasing order
* Use the sort method
* |nvoked on a list using dot notation
* Does not require any parameters
* Modifies the list, sorting it into ascending order

24

Example

* Compute the median of a list of values entered by the user

25

Other List Operations

* Concatenation
* Joins two lists
* Performed using the + operator

* Slicing
* Extracts a portion of a list

* Performed using : operator

e Forms
e ListName[first:last]
e .istName[first:last:increment]

26

More Dimensions

* All of the lists we have used so far have been one-dimensional

* We can add a second dimension by making each elementin a list
another list

myList =[]
myList.append([1,2])

myList.append([3,4])

What Are 2D Lists Used For?

* Images

* Each element stores a color
* Tables / Spreadsheets

* Each element stores a value
* Game boards

* Each elementin the list records the piece, if any, that occupies the space

* Can be used toimplement Tic Tac Toe, Chess, Checkers, Boggle,
Scrabble, ...

28

Example: Boggle

* Generate a random board for Boggle
* 4x4 board
* Store the board in a 2D list
 Each space on the board contains one randomly selected letter
* Display the board
« Sample Board:

Zl—-|<|w»w
m(o|x|=z
Q|—|mM|X
c|Z|m|O

30

Example: Boggle

Tuples

e Similar to lists, but
- length cannot be changed
- Items cannot be assigned individually
- () empty tuple, (3,) length one tuple

aTuple = (1,"ICT",3.14)

32

From Lists to Dictionaries

* Consider the following problem
* Many cities in Alberta
 Want to have a list that contains the populations
* Need to be able to look up population by city

33

Dictionaries

* Dictionary: A collection of values

e Each elementin a list has an index
* Aunique integer, starting from 0

 Dictionaries allow us to extend this idea

* Eachvalue in the dictionary has a unique identifier associated to it
* Referredto as a key
 Can be a string or a number

» Starting in Python 3.7, the key-value pairs in a dictionary are always stored in the
order in which they were inserted

34

Dictionary Example

* Create a dictionary that describes the population of several
Alberta cities

35

Adding to a Dictionary

* What if we want to add more cities to our dictionary later in the
program?

36

Removing ltems

* Remove one item
* Use pop
* Example:cities.pop ("Calgary")
* Remove all items
* Use clear method
* Example:cities.clear ()

37

Dictionary Methods

* Want a list of the keys in a dictionary?
* Use dictionary_name.keys|)
* Example:

for 1 1n citiles.keys():

print (cities[1], "people live 1n",1)

38

Dictionary Methods

* Want a list of values in a dictionary?
* Use dictionary_name.values()

* Example: Compute the total population of all of the cities

39

Dictionaries Example

* Consider the following problem
* We have a list of values

* Want to determine the mode for the list
* Mode is defined to be the most frequently occurring value
* Alist may have more than one mode

40

Dictionaries Example

Dictionaries Summary

 Dictionaries
* Hold a collection of values

* Each elementis a key value pair
* Easyto lookup the value associated with each key

* New key value pairs can only be added at the end
* No ability to insert in the middle of the collection

* Key value pairs can be removed

42

Strings

* Strings
A collection of characters

* Numerous methods available for manipulating strings
* upper
* lower
* Swapcase
* rjust

Strings

* Strings provide additional methods for searching, separating, etc.
* Processing input from the user is challenging
* Anything could be entered
* Generally want our program to handle this nicely

* Common to expend significant effort processing input before it is passed to the rest
of the program

44

Searching

* The find method searches a string for a substring

s = "Hello World!"
print (s.find("11"))
print (s.find("o"))

((
print (s.find("o",5))
(s.find ("Wor",0, 0))

print

45

Separating

* Use split
* Returns a list of strings
* Splits the string at each separator character that is encountered

s = "This 1s a test string"
list = s.split (" ")
for 1 1in list:

print (1)

46

Extracting Characters

* Characters in a string can be accessed by index
* Enclose index of single character in square brackets
* Use:toform aslice

s = "Hello World!"
print (s[3])
print(s[6:])

47

String Example: Validating a Password

* Write a function that determines if a password is (somewhat)
secure
* Has at least 7 characters
* Contains at least one upper case letter
* Contains at least one lower case letter
* Contains at least one numeric digit

48

String Example: Validating a Password

Functions Involving Strings, Lists and
Dictionaries

* Lists, Dictionaries & Strings
 Can be passed as parameters
* Can bereturned as results

* Care must be taken to avoid inadvertently modifying a list or
dictionary (not string) inside a function

50

Functions Involving Lists and Dictionaries

Mutable vs. Immutable Types

* In Python, every variable is an object

* Consists of
* apointerto some memory
* value(s) stored in that memory

* The location that the pointer points to can change
* For mutable types, the values stored in memory can also change
* Values stored in memory can not change for immutable types

52

Mutable vs. Immutable Types

* What happens when a new value is assighed to a variable storing
an immutable type?

53

Mutable vs. Immutable Types

* What happens when we change a value in a list (a mutable data
type)?

54

Mutable vs. Immutable Types

* Examples of Immutable Types
* Integer, Float
e String
* Boolean

* Examples of Mutable Types
e Lists
* Dictionaries

55

Mutable vs. Immutable Types Review

* What happens when you change the value of a variable with
immutable type?

* What happens when you change a variable with mutable type?

56

Mutable vs. Immutable Types Review

* Which types are immutable?

* Which types are mutable?

* Why are some types immutable and other types mutable?

57

Key Points

* Mutable vs. Immutable Types
* Memory at the end of the arrow doesn’t change for immutable types

* Changing the value of a variable with immutable type causes it to point to
a different piece of memory

* Changing a variable with immutable type in the called scope will not
change the value of the variable in the calling scope

58

Wrapping Up

* Data structures allow us to organize larger amounts of information

* Lists hold many values (ordered)

* May have same type or may have different types

* Each element has a unique integer index, starting from zero
* Dictionaries hold many values

* Each element consists of a key-value pair

* |[tems can be looked up by key

* Cannotinsertinto the middle of the collection

59

Wrapping Up

* Strings help us organize character data
* Provide mechanisms for searching and splitting strings
* Can be used to validate user input

* Lists, dictionaries and strings can be passed to and returned from
functions

e Strings are immutable
e Lists and dictionaries are mutable

60

Where Are We Going?

* Data structures allow us to manage larger amounts of datain a
reasonable way

* Larger amounts of data typically come from disk
* Too much to enter by hand

* How do we load data from files?
* How do we save data in files?
* How do we handle errors?

61

	Topic 7: Lists, Dictionaries and Strings
	Textbook
	Lists
	What is a List?
	Creating a List
	Accessing Elements
	Changing Elements
	Loops and Lists
	Length of a List
	Loops and Lists
	Adding Elements
	Inserting New Elements
	Searching
	Removing
	Removing
	Removing
	Example
	Design
	Sorting
	Selection Sort
	Insertion Sort
	Bubble Sort
	Sorting
	Sorting in Python
	Example
	Other List Operations
	More Dimensions
	What Are 2D Lists Used For?
	Example: Boggle
	Example: Boggle
	Example: Boggle
	Tuples
	From Lists to Dictionaries
	Dictionaries
	Dictionary Example
	Adding to a Dictionary
	Removing Items
	Dictionary Methods
	Dictionary Methods
	Dictionaries Example
	Dictionaries Example
	Dictionaries Summary
	Strings
	Strings
	Searching
	Separating
	Extracting Characters
	String Example: Validating a Password
	String Example: Validating a Password
	Functions Involving Strings, Lists and Dictionaries
	Functions Involving Lists and Dictionaries
	Mutable vs. Immutable Types
	Mutable vs. Immutable Types
	Mutable vs. Immutable Types
	Mutable vs. Immutable Types
	Mutable vs. Immutable Types Review
	Mutable vs. Immutable Types Review
	Key Points
	Wrapping Up
	Wrapping Up
	Where Are We Going?

