
Topic 6: Functions
What’s a function?

How can we use functions to write
better software?

1

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 89, 90, 104, and 109

• Recommended Exercises
• The Python Workbook, 2nd Edition: 88, 94, 98, 99, 107, and 108

• Recommended Readings
• The Python Workbook, 2nd Edition: Chapter 4

2

What is a Function?

• What is a function?
• A named set of statements
• Perform some task

• Functions:
• May require parameters
• May return values

• What functions have you already used?

3

Motivation

• Ideally, a function should
• perform a clearly defined specific single purpose
• hide details from the caller
• be sufficiently small to be easily understood
• be well documented

4

Defining a Function

• Creates a function for later use
• The function does not execute until it is called
• Function may be called many times (from different places) after it has

been defined

• General form:
• def functionName(parameters):

 statement(s)

5

Example

• Create a function that draws a music note
• Head will be a solid oval, 20 pixels wide and 10 pixels high
• Stem will be 50 pixels tall on the right side
• Center the head of the note at 100, 100

6

Calling Our Function

• A function does not execute when it is defined
• It must be called

• Execution for the entire program begins at the first statement
outside of a function

7

Example

• What’s the problem with our function?

• How do we fix it?

8

Parameters

• Allow us to provide data to a function
• Values, called arguments, are placed in brackets after the function name

when the function is called
• Parameter variables appear in brackets after the function name in the

function definition
• Arguments are transferred to the parameter variables when the function

executes
• Arguments / parameters are positional

9

Terminology
• Argument (or Actual Parameter)

• The value placed in brackets after the function name when the function is
called

• Parameter (or Formal Parameter)
• The name of the parameter variable in the function definition

10

Example

• Extend our note drawing function so that it takes two parameters
that control the position of the note

11

Named Parameters

• Positional arguments assign arguments to parameter variables in
the order that they occur

• Named arguments allow us to assign arguments to parameters in
any order

• Allow for optional parameters / default values for some parameters
• May still be used in a positional manner

12

Example

• Extend the note drawing function so that it takes additional
parameters that specify the color of the note

13

Default Parameter Values

• Python permits default values for parameters
• If the function call does not supply a value then the default is used
• If the call includes a value for that parameter then the default value is

overridden

14

Functions Can Call Functions

• Create a second function for drawing a note
• Head will be a solid oval, 20 pixels wide and 10 pixels high
• Stem will be 50 pixels tall on the right side
• Flag will be a curve

15

Functions Can Call Functions

16

Functions Can Return a Result

• Returning a result allows a value to move from the function to the
location where it was called

• Accomplished using a return statement inside the function
• When the function is called it is often on the right side of an assignment

statement

17

Functions Can Return a Result

• Write a function that determines the number of real roots of an
equation of the form ax2 + bx + c = 0

18

Variables & Functions

• Variables can be defined inside functions
• A variable defined inside of a function can only be used inside that

function
• Behaves just like the variables we have used previously

19

Variables & Functions

• Variables can be defined outside of functions
• Referred to as global variables
• Can be read anywhere in the program after it is assigned a value
• All of the constants we have created are global variables that we choose

not to change
• Use of global variables (other than as constants) is strongly discouraged

20

Variables & Functions

• Changing global variables
• By default, an assignment statement inside of a function creates a new

variable within that function
• Even if a global variable with that name already exists

• Want to change a global variable?
• Include a global statement at the beginning of the function

21

Example

• Create a function that computes n-factorial

22

Returning Multiple Values

• What if we need to return more than one value from a function?
• Comma separated tuple of values in return statement
• Comma separated tuple of variables to the left of the equals sign

23

Scope

• Scope determines the portion of a program where a name can be
used

• Impacts functions, variables, …

• Functions
• Functions can’t be called before they have been defined
• Functions in other modules cannot be used until after the import

statement for that module

24

Scope

• Variables
• Cannot be read before they are given a value
• Can be used from the point where they are first assigned a value until the

end of the function
• Variables created inside a function are destroyed when the function

returns

25

Formal Parameters

• Formal parameter variables hold values passed to a function from
the calling scope

• Formal parameters are normally read
• It is also possible to store a new value into a formal parameter

• We don’t usually do this!
• Value of the variable will change in the called function
• For the types we have used so far, the value will not change in the main program

26

Why Functions are Useful

• Facilitate Code Reuse
• Write once, use many times

• Reduce Complexity
• Low level details are hidden
• Programmer can concentrate on higher level problems

• Ease Maintenance
• Bugs only need to be corrected once
• Functions can be tested separately

27

Comments

• Every function should begin with a comment
• Describe the action taken by the function
• Describe the arguments that need to be provided (if any)
• Describe the value returned by the function (if any)

28

Preconditions / Postconditions

• Function comments may also describe
• Preconditions:

• Conditions that must be true before the function executes
• If any precondition is not met, the function may not behave correctly

• Postconditions:
• Conditions that are guaranteed to be true after the function executes
• If the function doesn’t make a post-condition true then the function contains a bug

that must be fixed

29

Example

• Addition and multiplication practice:
• 10 random questions that involve adding or multiplying 2 integers

between 1 and 10

30

Example

31

Testing

• Test each function you write individually
• Errors are easier to find

• Generally only need to look inside the function being tested
• Only use the function in the rest of your program once you have tested it

thoroughly

32

Design

• How do functions relate to top down design?
• Use top down design to break the problem into smaller pieces
• Each smaller piece is a good candidate for a function
• Look at each function

• Is it too big?
• Does it contain repeated code?
• Should it call other functions?

33

Modules

• Functions can be placed in modules to promote reuse
• Place the functions in a different .py file
• Import it just like math or SimpleGraphics
• Add an if statement to prevent the main program from running in the

imported file

if __name__ == "__main__":
 main()

34

Wrapping Up

• Functions
• A named group of statements that perform a task
• Allow us to break our program into separate units that each have a

specific purpose
• Ease program creation and debugging

35

Where Are We Going?

• Now that we can write larger programs we want to be able to
manage more data

• How can we work with many values at the same time in a reasonable
way?

• How do we read and write values in files?

36

	Topic 6: Functions
	Textbook
	What is a Function?
	Motivation
	Defining a Function
	Example
	Calling Our Function
	Example
	Parameters
	Terminology
	Example
	Named Parameters
	Example
	Default Parameter Values
	Functions Can Call Functions
	Functions Can Call Functions
	Functions Can Return a Result
	Functions Can Return a Result
	Variables & Functions
	Variables & Functions
	Variables & Functions
	Example
	Returning Multiple Values
	Scope
	Scope
	Formal Parameters
	Why Functions are Useful
	Comments
	Preconditions / Postconditions
	Example
	Example
	Testing
	Design
	Modules
	Wrapping Up
	Where Are We Going?

