
Topic 5: Repetition
Are you saying that I am redundant?
That I repeat myself? That I say the

same thing over and over again?

1

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 66, 71, 77, and 83

• Recommended Exercises
• The Python Workbook, 2nd Edition: 64, 67, 79, 81, 82, and 84
• Course Website: Loop Exercises

• Recommended Readings
• The Python Workbook, 2nd Edition: Chapter 3

2

Repetition

• So far, we have learned…
• How to use variables
• Read values from the user
• Make decisions
• Compute a result
• Output a result

• What if we want to perform a task several times?

3

Types of Loops

• Python includes two types of loops
• While Loops

• For Loops

4

While Loops

• A while loop executes a statement as long as a condition is true
• while condition:
 statement(s)
• Statement may be simple or compound

• Typically compound
• Needs to change one of the values being tested in the condition

5

Example

• How do we compute the average of several numbers?

6

Example

7

While Loop Review

• Executes as long as some condition is true
• A pre-tested loop

• loop condition is tested before the loop executes the first time

• General form:
 while condition:

 statement(s)

8

Loop Terminology

• Body of the Loop:
• simple or compound statement that is repeated

• Loop Condition:
• a Boolean expression
• tested to determine if the loop will continue executing

9

Loop Terminology

• Initialization:
• the process of placing starting values in variables before the loop

• Termination:
• the end of execution for the loop

• Pre-tested Loop:
• any loop where the loop condition is checked before the loop executes

the first time

10

Loop Terminology

• Post-tested Loop:
• Any loop where the condition is not checked until the loop has executed

once

• Infinite Loop:
• A loop that never terminates

11

Another Example

• Using a while loop, compute n factorial

12

Common Errors

• Initialization Errors

• Termination Errors

• Other Logic Errors

13

Tracing

• Tracing code:
• Examine each statement in sequence
• Perform whatever tasks the statement requires, recording values of

interest
• Usually requires that the value of each variable is recorded

• Result of tracing could be the value of one or more variables, or the
output generated

14

Another Factorial?

n = int(input("Enter a value for n: "))

result = 1
term = 0

while (term <= n):
 term = term + 1
 result = result * term

print("n! is", result)

15

While Loop Review

• Executes as long as some condition is True
• Pre-tested

• Executes zero or more times
• Generally

• need to initialize variables used in conditions before the loop
• need to change the value of at least one of these variables in the loop body

16

For Loop

• A counting loop
• Typically used when we know how many times we need to perform a task

in advance
• A pre-tested loop
• General form:

for variable in list:
 body

17

Example

• Use a for loop to display the values from 3 up to and including 10
• For loop assigns a value from a list into a variable at the beginning of each

loop iteration
• Construct a list with the range function

18

How Does a For Loop Work?

• List is examined
• If every value has already been processed

• loop body does not execute
• control passes to statement after loop body

• If unprocessed values remain
• variable is assigned next item in the list
• body of the loop executes
• control returns to the top of the loop
• list is examined to see if the body should run again

19

Example

• Rewrite the factorial program using a for loop

20

Step Values

• Range is flexible
• With one parameter

• Counts from 0 to the number provided - 1
• With two parameters

• Counts from the first number to the second number (exclusive), increasing by one
each time

• Generates the empty list if the second number is less than or equal to the first
• With three parameters

• Counts from the first number to the second (exclusive), increasing by the third

21

Example

• Create a program that generates a smooth color gradient from
black to 255 192 64

22

For Loops vs. While Loops

• What kind of loop would you use if:
• You know how many times the loop will execute
• You want to loop until some event occurs

• Is it possible that the body of a for loop will never execute?
• Is it possible that the body of a while loop will never execute?

23

Nested Loops

• The body of a loop can be
• A simple statement
• A compound statement

• The body of the loop can contain another loop

24

Nested Loops

• Trace the output from the following program:

for i in range(1,6):
 print(i)
 j = i
 while j < 5:
 print(j)
 j = j + 1

25

Nested Loop Example

• Convert an image from color to grayscale

26

Break and Continue

• Allow a loop iteration to end prematurely
• break

• Entire loop ends immediately
• Execution continues at the first statement after the loop body

• continue
• Current iteration ends immediately
• Execution returns to the top of the loop

• In a for loop, the next item in the list is used

27

Bringing It All Together

• Write a simple number guessing game
• The computer will randomly choose a number between 1 and 100
• The user will be asked to guess a number
• The computer will let the user know if the guess was too high or too low
• Goal: guess the correct number in as few guesses as possible

28

Bringing It All Together

• Improving our program:
• Should try and protect the user from themselves

• Don’t let them guess a number smaller than the lowest remaining value
• Don’t let them guess a number larger than the largest remaining value
• Don’t count an out of range value as a guess

29

Wrapping Up

• Two types of loops available
• While loops
• For loops

• Both types are pre-tested
• Will execute zero or more times

• Loops can be nested, mixed with other statement types

30

Where Are We Going?

• Our number guessing game had a problem
• Many lines of code in one place
• Starting to become more difficult to enhance and debug
• Solution?

• Use functions to break our solution into pieces that each perform a specific task

31

