
1

Topic 2: Introduction to
Programming

2

Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 12, 13, 23, and 29

• Recommended Exercises
• The Python Workbook, 2nd Edition: 5, 7, 15, 21, 22 and 32

• Recommended Reading
• The Python Workbook, 2nd Edition: Chapter 1

3

Computer Programming

• Gain necessary knowledge of the problem domain
• Analyze the problem, breaking it into pieces

• Repeat as necessary

• Synthesize a solution
• Run the program
• Validate program results

• Correct problems that are identified

4

Programming Languages

• Many programming languages available
• Offer different features
• Each has its own strengths and weaknesses

• Common features
• Allow us to control the behaviour of a computer
• Defined syntactic and semantic rules

5

Levels of Abstraction

• Human Languages

• High Level Programming
Languages

• Low Level Programming
Languages

• Machine Language

6

Python

• A high-level general purpose programming language
• Reasonably simple, easy to learn
• Reasonably easy to find and fix program errors
• Available for many platforms
• Powerful enough to solve interesting problems
• Used in industry

7

Programming

• Computer programs are stored in source files
• Human readable / editable
• Can also be understood by a computer
• Typically have the extension .py

• Once the file is created, it is run using the python interpreter
 python myfile.py

8

A First Python Program

• Write a Python program that converts a pressure from kilopascals
into

• atmospheres
• pounds per square inch
• millimetres of mercury

9

A First Python Program

• What steps can we follow to reach this goal?

10

Variables

• Variable
• A named location in memory
• Holds a value
• The programmer can

• read the value of a variable without changing / destroying the value
• change the value of the variable
• change the type of information stored in the variable

11

Variable Names

• Variable names
• should be meaningful
• must begin with a letter or an underscore
• may contain a mixture of letters, numbers and underscores
• must not be a reserved word
• shouldn’t be a name already commonly used for another purpose
• shouldn’t be in all caps

12

Assignment

• A variable is created and given a value using an assignment
statement

• The variable that gets a value appears to the left of the assignment
operator

• An arbitrarily complex expression appears to the right of the assignment
operator

• Expression may include other variables

13

Getting Input

• Python includes a library of functions that perform useful tasks
• Our program can use these functions
• A function is “called” by using its name
• The function name is always followed by round brackets

• May include values inside the brackets that are used by the function
• Function result can be stored in a variable

14

Getting Input

• The input() function reads characters typed by the user as text
• It normally appears on the right side of an assignment statement
 name = input()

• If we want to treat the characters read by the user as a number, we must
perform a conversion

•

 num = float(input())

15

Generating Output

• Use a print statement
• It’s another function
• Can print numbers, text, variables, …
• Multiple items can be printed

• Separate each item with a comma

16

The Code

• In a file named pressure.py:

17

Running the Program

• CPU can only execute machine language instructions
• Can’t execute programming language statements directly
• Options:

• Compile the program into machine language instructions
• Use a Virtual Machine that reads your program and performs the tasks required to

run it

18

Comments

• Provide information to someone reading your code
• Completely ignored by the computer
• Should explain how or why
• Should add value

• A comment that says something that is immediately obvious from reading the code
is not particularly useful

19

Magic Numbers

• Magic Number: An unnamed and/or poorly documented numeric
constant without obvious meaning

• Should be avoided
• Program is difficult to understand
• Errors are difficult to detect
• If the value changes, it may need to be changed in many places

20

What Does this Program Do?

x = float(input())

y = 32.0 + x * 9.0/5.0

print(y)

• What’s wrong with this program?

21

Expressions

• Python supports arbitrarily complex mathematical expressions
• Integers / Floating Point Numbers / Parentheses
• Operators

• +: addition • //: integer division
• -: subtraction • %: remainder
• *: multiplication • **: exponentiation
• /: division

22

Precedence

• The order of evaluation is determined by operator precedence
• ()
• -x, x ** y
• x * y, x / y, x % y, x // y
• x + y, x - y
• =
• Evaluation is left to right at each level

23

Example

24

Math Functions

• Many additional math functions are available
• Located in the math module

• Import the math module
• Precede the name of the function with math.

• Examples:
• math.sqrt(x)
• math.floor(x)
• math.ceil(x)
• math.cos(x)

25

Types of Errors

• Three categories of errors:
• Syntax Errors
• Runtime Errors
• Logic Errors

26

Syntax Errors

• Identified as code is loaded
• No statements are executed

Create
Source File

somefile.py python
somefile.py

Error

27

Runtime Errors

• Identified as the program runs
• Program does not complete successfully

Create
Source File

somefile.py python
somefile.py

Error
partial
output

28

• Program runs to completion, but generates incorrect results

Logic Errors

Create
Source File

python
somefile.py

program
output

Create
Source File

somefile.py

29

Data Types

• Variables hold values
• Each value has a type

• Integer
• Float
• Boolean
• String
• …

30

Data Types

• Some operations are only well defined for certain types
• 1 + 2 =
• “Hello” + “ World” =
• 1 + “Hello” =
• 2 + “4” =
• 1 / 3 =
• 2.0 / 4 =

31

Type Conversions

• Python permits you to convert from one type to another
• "1.0" / "3.0" =
• float("1.0") / float("3.0") =
• float("asdf") =

• Other type conversions: int, bool, str

32

Example

• Consider getting a loan for a sports car
• Want to compare payments for different

• Amount borrowed
• Interest rate (percentage per year)
• Amortization period

• Write a program that
• Reads the amount borrowed, interest rate and amortization period
• Displays monthly payment and total borrowing cost

33

Example

• Useful Equation: P = i A / (1 – (1 + i)-N)

• P: Payment amount
• i: Interest rate per payment period as a decimal value

• 5% should be 0.05, but the user will enter 5
• A: Amount borrowed
• N: Total number of payments

34

Example

35

Formatting Output

• Sometimes print doesn’t display things the way we would like
• print(1 / 3.0) gives 0.333333333333

• What if we want 0.33?
• What if we want to center the result on the line?
• What if we want to right-justify the result?

36

Formatting Numbers

• The % operator can be used to format numbers
• Format specifier to its left

• A string that controls how the value will be formatted
• Expression that evaluates to a number on its right

• Example: “%.2f” % 3.14159265

37

Format Specifiers

• A string
• Format starts with a %
• Number(s) and optional decimal point control formatting
• Letter indicates type

• d to format an integer in decimal format
• f to format floating point numbers
• s to format strings
• x to format an integer in hexadecimal format

38

Wrapping Up

• Programming
• Process of converting an algorithm to a form that can be executed by a

computer

• A program
• Uses variables to hold values
• Evaluates expressions
• Calls functions to get input, perform mathematical operations
• Calls the print function to generate output

39

Where Are We Going

• What kinds of data can a computer manipulate?
• How does the computer represent data?

• Programs we can write are limited
• What if we want different behaviour depending on a value entered by the

user?
• What if we want to perform a task several times?

	Topic 2: Introduction to Programming
	Textbook
	Computer Programming
	Programming Languages
	Levels of Abstraction
	Python
	Programming
	A First Python Program
	A First Python Program
	Variables
	Variable Names
	Assignment
	Getting Input
	Getting Input
	Generating Output
	The Code
	Running the Program
	Comments
	Magic Numbers
	What Does this Program Do?
	Expressions
	Precedence
	Example
	Math Functions
	Types of Errors
	Syntax Errors
	Runtime Errors
	Logic Errors
	Data Types
	Data Types
	Type Conversions
	Example
	Example
	Example
	Formatting Output
	Formatting Numbers
	Format Specifiers
	Wrapping Up
	Where Are We Going

