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Topic 2: Introduction to 
Programming
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Textbook

• Strongly Recommended Exercises
• The Python Workbook, 2nd Edition: 12, 13, 23, and 29

• Recommended Exercises
• The Python Workbook, 2nd Edition: 5, 7, 15, 21, 22 and 32

• Recommended Reading
• The Python Workbook, 2nd Edition: Chapter 1
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Computer Programming

• Gain necessary knowledge of the problem domain
• Analyze the problem, breaking it into pieces

• Repeat as necessary

• Synthesize a solution
• Run the program
• Validate program results

• Correct problems that are identified
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Programming Languages

• Many programming languages available
• Offer different features
• Each has its own strengths and weaknesses

• Common features
• Allow us to control the behaviour of a computer
• Defined syntactic and semantic rules
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Levels of Abstraction

• Human Languages

• High Level Programming
Languages

• Low Level Programming
Languages

• Machine Language
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Python

• A high-level general purpose programming language
• Reasonably simple, easy to learn
• Reasonably easy to find and fix program errors
• Available for many platforms
• Powerful enough to solve interesting problems
• Used in industry
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Programming

• Computer programs are stored in source files
• Human readable / editable
• Can also be understood by a computer
• Typically have the extension .py

• Once the file is created, it is run using the python interpreter
  python myfile.py
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A First Python Program

• Write a Python program that converts a pressure from kilopascals 
into

• atmospheres
• pounds per square inch
• millimetres of mercury
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A First Python Program

• What steps can we follow to reach this goal?
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Variables

• Variable
• A named location in memory
• Holds a value
• The programmer can

• read the value of a variable without changing / destroying the value
• change the value of the variable
• change the type of information stored in the variable
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Variable Names

• Variable names
• should be meaningful
• must begin with a letter or an underscore
• may contain a mixture of letters, numbers and underscores
• must not be a reserved word
• shouldn’t be a name already commonly used for another purpose
• shouldn’t be in all caps
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Assignment

• A variable is created and given a value using an assignment 
statement

• The variable that gets a value appears to the left of the assignment 
operator

• An arbitrarily complex expression appears to the right of the assignment 
operator

• Expression may include other variables
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Getting Input

• Python includes a library of functions that perform useful tasks
• Our program can use these functions
• A function is “called” by using its name
• The function name is always followed by round brackets

• May include values inside the brackets that are used by the function
• Function result can be stored in a variable
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Getting Input

• The input() function reads characters typed by the user as text
• It normally appears on the right side of an assignment statement
    name = input()

• If we want to treat the characters read by the user as a number,  we must 
perform a conversion

•

    num = float(input())
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Generating Output

• Use a print statement
• It’s another function
• Can print numbers, text, variables, …
• Multiple items can be printed

• Separate each item with a comma
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The Code

• In a file named pressure.py:
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Running the Program

• CPU can only execute machine language instructions
• Can’t execute programming language statements directly
• Options:

• Compile the program into machine language instructions
• Use a Virtual Machine that reads your program and performs the tasks required to 

run it
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Comments

• Provide information to someone reading your code
• Completely ignored by the computer
• Should explain how or why
• Should add value

• A comment that says something that is immediately obvious from reading the code 
is not particularly useful
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Magic Numbers

• Magic Number: An unnamed and/or poorly documented numeric 
constant without obvious meaning

• Should be avoided
• Program is difficult to understand
• Errors are difficult to detect
• If the value changes, it may need to be changed in many places
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What Does this Program Do?

x = float(input())

y = 32.0 + x * 9.0/5.0

print(y)

• What’s wrong with this program?
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Expressions

• Python supports arbitrarily complex mathematical expressions
• Integers / Floating Point Numbers / Parentheses
• Operators

• +: addition    •  //: integer division
• -: subtraction    •  %: remainder
• *: multiplication   •  **: exponentiation
• /: division
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Precedence

• The order of evaluation is determined by operator precedence
• ()
• -x, x ** y
• x * y, x / y, x % y, x // y
• x + y, x - y
• =
• Evaluation is left to right at each level
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Example
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Math Functions

• Many additional math functions are available
• Located in the math module

• Import the math module
• Precede the name of the function with math.

• Examples:
• math.sqrt(x)
• math.floor(x)
• math.ceil(x)
• math.cos(x)
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Types of Errors

• Three categories of errors:
• Syntax Errors
• Runtime Errors
• Logic Errors
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Syntax Errors

• Identified as code is loaded
• No statements are executed

Create 
Source File

somefile.py python 
somefile.py

Error
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Runtime Errors

• Identified as the program runs
• Program does not complete successfully

Create 
Source File

somefile.py python 
somefile.py

Error
partial 
output
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• Program runs to completion, but generates incorrect results

Logic Errors

Create 
Source File

python 
somefile.py

program 
output

Create 
Source File

somefile.py
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Data Types

• Variables hold values
• Each value has a type

• Integer
• Float
• Boolean
• String
• …
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Data Types

• Some operations are only well defined for certain types
• 1 + 2 = 
• “Hello” + “ World” = 
• 1 + “Hello” = 
• 2 + “4” = 
• 1 / 3 = 
• 2.0 / 4 = 
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Type Conversions

• Python permits you to convert from one type to another
• "1.0" / "3.0" = 
• float("1.0") / float("3.0") = 
• float("asdf") = 

• Other type conversions: int, bool, str
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Example

• Consider getting a loan for a sports car
• Want to compare payments for different

• Amount borrowed
• Interest rate (percentage per year)
• Amortization period

• Write a program that 
• Reads the amount borrowed, interest rate and amortization period
• Displays monthly payment and total borrowing cost
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Example

• Useful Equation:  P = i A / (1 – (1 + i)-N)

• P: Payment amount
• i: Interest rate per payment period as a decimal value 

• 5% should be 0.05, but the user will enter 5
• A: Amount borrowed
• N: Total number of payments
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Example
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Formatting Output

• Sometimes print doesn’t display things the way we would like
• print(1 / 3.0) gives 0.333333333333

• What if we want 0.33?
• What if we want to center the result on the line?
• What if we want to right-justify the result?
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Formatting Numbers

• The % operator can be used to format numbers
• Format specifier to its left

• A string that controls how the value will be formatted
• Expression that evaluates to a number on its right

• Example: “%.2f” % 3.14159265
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Format Specifiers

• A string
• Format starts with a %
• Number(s) and optional decimal point control formatting
• Letter indicates type

• d to format an integer in decimal format 
• f to format floating point numbers
• s to format strings
• x to format an integer in hexadecimal format
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Wrapping Up

• Programming
• Process of converting an algorithm to a form that can be executed by a 

computer

• A program
• Uses variables to hold values
• Evaluates expressions
• Calls functions to get input, perform mathematical operations
• Calls the print function to generate output
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Where Are We Going

• What kinds of data can a computer manipulate?
• How does the computer represent data?

• Programs we can write are limited
• What if we want different behaviour depending on a value entered by the 

user?
• What if we want to perform a task several times?
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