
Reading
and Modifying
Code

John Aycock



Any trademarks used in the text are the property
of their respective owners. The code on pages 49
and 62 is used with permission of the IOCCC.

Copyright© 2008 John Aycock.
All rights reserved.
ISBN 978-0-9809555-0-7



For Cliff





Contents

Preface vii

1 Introduction 1

2 Reading Code 3

3 Modifying Code 19

4 Testing Modified Code 31

5 Debugging Modified Code 37

6 Writing Readable Code 45

7 Summary 57

Notes 59

Bibliography 65

Index 71

v





Preface

If you already know how to read and modify code,
this book is not for you. Go buy a good novel
instead.

This book is intended for people who already
know how to program, primarily at the univer-
sity level. Code reading and modification is not a
skill which is always taught, even in higher-level
computer science courses. There are few good re-
sources on this topic. In any case, pointing stu-
dents to some mighty tome is often counterpro-
ductive. This book is meant to fill the gap, by pro-
viding a language-independent, low-cost, easy-to-
carry guide, which can be used as a supplementary
course text for programming courses.

Thanks to Darcy Grant, Nigel Horspool, Shan-
non Jaeger, CliffMarcellus, Joe Newcomer, Craig
Schock, and Jim Uhl for reading and commenting
on various drafts. Rob Walker was the friendly
neighborhood authority on aspect-oriented pro-
gramming, and Margaret Nielsen pointed me to
some interesting references.

I hope you find the advice in here useful.

vii





1 q Introduction

To become a good writer, you practice writing. A
lot. You also read the works of great writers. And
study them – how is the plot developed? what
words are selected and why? You also read a lot of
work that isn’t so great, and figure out why, so you
don’t make the same mistakes. You edit works in
progress to improve their presentation.

Becoming a good programmer requires the
same process. You must practice programming.
You need to read and study the code of great pro-
grammers, as well as not-so-great programmers.
You must determine how to modify and improve
code.

Code is read many more times than it is writ-
ten, so it makes sense to look at ways to create
readable code. Maintenance programming is also
a mainstay of programming, for better or worse.

This book is a guide to reading code, modifying
code, testing and debugging modified code, and
writing readable code. It does not include much
code, on purpose. The ideas and advice in here are
largely independent of constantly-changing pro-
gramming languages and tools. For this reason,

1



generic terms are used where possible:

• “Subroutine” is used to mean a function,
procedure, or method.

• “Module” refers to some discrete program
unit, like a module, class, interface, or a file.

• “Name” means any identifier in a program.
This may include names of variables, sub-
routines, modules, or constants.

• “Input” is used in a general sense to include
all sources of input, like files, keyboards
and network connections, as well as event
sequences in a windowing environment.

• “Editor” includes both text editors and edit-
ing facilities in integrated development en-
vironments.

Only technical issues facing individual pro-
grammers are considered. Situations like pro-
gramming in groups also involve communication
and social issues which are outside the scope of
this book.

You won’t understand everything in this book
the first time through. This is intentional. As
you grow as a programmer, this book will grow
with you, and increasingly more of the advice will
make sense. Just like code, it is meant to be read
and re-read.

2



2 q Reading Code

Code is a specialized form of communication
from human to computer, but also from human to
human. Just like other types of specialized com-
munication – legal documents, recipes, patent ap-
plications – code takes practice and experience to
properly interpret.

2.1 Have a Purpose

When you read a book or magazine, you have a
specific goal in mind. This may include entertain-
ment, education, reference, or simply killing time.
Your goal determines what details you focus on
and retain while reading.

You should have a goal in mind when reading
code too, for the same reason. You may, for in-
stance, be interested in the flow of control in the
program, or you may be acutely interested in the
details of one particular subroutine.

Some common reasons for reading code are:

Testing. When testing, you’re interested in locat-
ing potential problem areas you need to test.

3



This is discussed further in Chapter 4.

Debugging. Reading code to track down a bug.
As a programmer, you have a “mental model”
of the code in your head, modeling what you
think the code should be doing. A bug may
indicate that your model is incorrect, and you
need to discover where the code diverges from
your model so that you can correct the code.
Another possibility is that both the code and
your mental model are correct by themselves,
but there are complicating external factors to
consider, like concurrency. When debugging,
you need to read the code exactly as the com-
puter would read it, which requires meticulous
attention to detail. Debugging is the subject of
Chapter 5.

Code review. Code review might imply some
amount of software engineering, such as read-
ing code to verify that a formal software spec-
ification is met. Less rigorously, a code review
may just involve your code being read by an-
other programmer as a secondary check against
bugs.

Security auditing. Security auditing is a very
specialized form of code reading. Roughly
speaking, a code review verifies that code is do-
ing what it’s supposed to. A security audit goes
beyond that to verify that code isn’t doing any-
thing it’s not supposed to,and that code can’t
be coerced by an attacker into doing anything
it’s not supposed to. This requires specialized
skills and is beyond the scope of this book.

4



Reverse engineering.Again requiring special-
ized skills, reverse engineering takes an exist-
ing piece of executable code and works back-
wards to reconstruct how it works. Reverse en-
gineering typically relies upon tools, like disas-
semblers and decompilers. It is somewhat of a
legal quagmire, because some software licenses
strictly prohibit reverse engineering, yet there
are often compelling reasons to do so.1

Design comprehension.Understanding code de-
sign means reading the code with a high-level
perspective; you want to discover how all the
different pieces of the code fit together and call
one another. Design comprehension is often a
prelude to other types of code reading. It can
also be used for “design recovery,” when deal-
ing with old, legacy code whose original design
has been lost or altered beyond recognition.

Documentation. Code may need to be read while
writing documentation in order to verify de-
tails of its operation. Internal documenta-
tion, like comments, tends to be closely linked
to the code; external documentation, on the
other hand, may require reading the code for
behavioral rather than implementation details.
For example, an external document describing
an API would probably omit implementation-
specific information.

Maintenance. Reading for code maintenance pur-
poses is done with a specific question in mind:
where do I need to change the code so that it
doesX? Maintenance may involve debugging
too: where do I need to change the code so that

5



it stops doingX? You need to read the code
to find the target location, as well as to under-
stand the target location’s context and connec-
tion with the rest of the code.

Some types of reading are naturally more neb-
ulous than others. The difference depends on
whether you’re looking for the known (e.g., a re-
producible bug) or the unknown (e.g., any poten-
tial bug).

2.2 Understanding the Design

Even if you’re not reading for design comprehen-
sion purposes, a basic understanding of the code’s
design will be of tremendous use.2 Generally, you
will be trying to identify three things:

Modules. You need to find the largest basic
“chunks” or building blocks in the code. This
is an initial level of abstraction when reading
code.

Dependencies.Once you’ve found the modules,
you must determine how they fit together. In
other words, how do modules use and interact
with one another? There are actually two types
of dependency: inter-module dependencies are
between modules; intra-module dependencies
are within a single module.

Key data structures. Discovering the type and
role of important data structures can allow the
code manipulating them to be abstracted away.3

For example, finding a table that encodes all
the commands a program understands probably

6



means that you don’t need to thoroughly read
the code that interprets that table.

Modules and their dependencies may be looked
for in a “directional” fashion: top-down, follow-
ing the way the code would be executed; bottom-
up, reading the code linearly and trying to piece it
together; middle-out, using a combination of top-
down and bottom-up reading.

In object-oriented code, you may also be look-
ing for:

Design patterns. A design pattern is just that: a
code design which can be applied in a specific
situation that matches the pattern.4 Recogniz-
ing such patterns in the code can quickly give
you a high-level view of the code’s design. In
theory, design patterns aren’t limited to object-
oriented code, but they have found their widest
usage there to date.

Class relationships.How are classes in the code
related to one another? For example, they may
be arranged in a hierarchy, and extend and be
extended by other classes in various ways. Un-
derstanding class relationships is critical to un-
derstanding an object-oriented design.

Less frequently, you may read code whose ac-
tual design cannot be expressed well using the
implementation language.5 The code author may
have made Herculean efforts to implement the de-
sign, and a deep understanding of the code can re-
quire abstracting away the excess implementation
details.

You may find it helpful to construct hypothe-
ses about the code design as you read through

7



the code. Understanding the design then becomes
a matter of looking for evidence that supports
or refutes your hypotheses.6 For example, for a
command-driven program, you might hypothesize
that each command is handled in a separate piece
of code; further, you might also hypothesize that
there is a dispatch mechanism to direct each com-
mand to the appropriate handler code. To test
these hypotheses, you might look for the pres-
ence of many small command-handling subrou-
tines, and find out where they are invoked from.

2.3 Tools

The difficulty of reading code increases with the
size of the program. A hundred lines of code usu-
ally presents no special challenge, but large bodies
of code, millions of lines long, are not unusual.
This can be overwhelming at first,7 but there is
one key observation:

You don’t need to understand all the
details of code that is designed and
written in a rational, logical way.

Given this, the problem of reading code becomes
a matter of discovering what you do need to pay
attention to. Tools play an important role in this
discovery process.

Improving Readability

Some code is formatted poorly – by any standard
– and is hard to read in its original form. You are

8



free to improve the readability of the code when
reading your own private copy. Ideally, you will
want to do this quickly, with little or no effort
on your part. Tools called “code formatters” or
“pretty printers” take code as input and reformat
it without changing its operation, by adding and
deleting whitespace. Good formatters are highly
configurable, and will permit you to tailor the
code style to one which you will find easy to read.

Editors are also tools that can assist with the
readability of code. “Syntax-highlighting” editors
will automatically highlight parts of the source
code, like comments and reserved words, using
color, brightness, and font changes. For code
with complicated nestings of braces, brackets, and
parentheses, editors can show how pairs of these
symbols match up.

Searching

Unlike normal prose, code is a very nonlinear
form of communication to read; it jumps around
from place to place. Fortunately, it usually does
so in a fairly controlled, logical fashion because
of how people tend to write code.

For this reason, search tools are the bread and
butter of the code reader. Most editors have some
search capability, but often you will want to search
for a word in the entire code body, not just the
files that happen to be currently open in the editor.
Some useful tools are:

Multi-file search tools. Tools to search through a
set of files for a specified term usually come
standard with an operating system,8 because

9



they are generally useful even to users who
don’t read code.

The primary distinguishing characteristic of
these search tools is how sophisticated a term
they will look for. Some will be limited to
fixed terms; others will support simple wild-
cards; still others will look for patterns speci-
fied using regular expressions. For comparison:

foo Fixed term, findsfoo only
f?o Simple wildcard, finds three-

letter sequences starting withf
and ending witho

ˆ(foo|bar) Regular expression, findsfoo
or bar when they appear at the
start of a line

A multi-file search tool that is able to search
files buried in subdirectories (a “recursive” di-
rectory traversal) is handy for code spread
across multiple directories.

Tags. A common task when reading code is to go
from the use of a name (like a subroutine) to the
name’s definition. Support for this task is given
by “tags” utilities – a tool is run over a body
of code which gathers up all definitions into a
database. Tag-savvy editors are able to search
this database, given a name used in the code,
and instantly jump to the appropriate definition.

Design visualization tools.At the heavyweight
end of the tool scale are design visualization
tools.9 These tools analyze the code automat-
ically, and may be used to display dependen-
cies within the code, name definitions and cor-

10



responding uses, and other potentially useful
information.

Finding the correct term to search for in code
is often a mixture of educated guesses, intuition,
and luck. Say, for example, you want to find the
joystick initialization code in an application. You
might try the following sequence:

1. Search all files forinit, being the com-
mon part of “init,” “initialize,” and “initial-
ization.” A case-insensitive search will also
find instances with different capitalizations,
like “doInit.”

2. Filter out extraneous results, if necessary.
A good way to do this is by searching the
search results themselves, but negating the
result – most search tools permit this. In
other words, search the results for every-
thingexceptsome term.

3. Expand the search to include logical syn-
onyms. In this case, you might also try
“start” and “main.”

4. Start looking through the code for clues.
Initialization code is usually called early on,
so you can start reading the code from the
place where it would normally start execut-
ing. The idea is to look for likely search
terms that you may have omitted – a call to
a “setup” subroutine, for instance, might be
the vital clue.

11



An alternative sequence:

1. Try to first narrow down the search to the
joystick-related code, by searching for “joy-
stick” in the code body or by simply look-
ing for files with “joystick” or some related
term in the filename.

2. Look at the volume of code you’ve discov-
ered. For relatively small amounts of code,
it can be faster to page through the code
manually, skimming it for subroutines of in-
terest. Otherwise, this (smaller) set of files
can be searched using the usual tools.

2.4 Vital Information

Obviously, when reading code, the code itself is
an excellent source of information. There is other
information to draw upon, however – some is ig-
nored by the computer, some is written in a short-
hand way, and some isn’t there at all.

Comments

Comments (and more generally, external docu-
mentation) appeal to humans reading code be-
cause the computer does not look at them.10 Com-
ments are an aside directed solely to humans.

Unfortunately, this is also the downfall of com-
ments. There is nothing to ensure that the com-
ments are correct and that they are in synch with
the code.11 Where comments are present, there

12



are four cases with respect to the correctness of
code:

code
incorrect

code
correct

comments
incorrect ✗ ✗

comments
correct ✗ ✓

You are, needless to say, only interested in the
case where both comments and code are correct.
The tricky part is deciding when that is. You
should use comments as a guide to your read-
ing, giving them the benefit of the doubt for effi-
ciency’s sake, but always remember that the com-
ments may be misleading.

Idioms

Programming languages have idioms just as hu-
man languages do. Recognizing an idiom when
reading code can give immediate understanding
about a piece of code and what it’s doing. Idioms
are learned through the process of reading and
writing code, and so require a certain amount of
expertise in a given language. Fortunately, unlike
human languages, the rigid nature of program-
ming language semantics permits the meaning of
a code idiom to be deciphered, even if the idiom
itself is not recognized12 – idioms are thus a code
reading shortcut for experts.13

For example, some languages idiomatically it-
erate over arrays of sizeN from element0 to el-
ementN-1. Recognizing this idiom immediately

13



conveys the higher-level understanding “the code
is iterating through the entire array.” Conversely, a
red flag is raised when the array is iterated through
using non-idiomatic bounds, say from1 to N-1,
indicating that something special is happening.

The Invisible

Some languages have magical side effects that
happen when executing. These side effects are im-
plicit, and not apparent from reading the code, so
the only way to know about them is by being fa-
miliar with the language.14 For example, variables
starting withI throughN in Fortran are normally
integers;15 in Perl, the statements/foo/bar/
uses and sets the variable$_;16 C++ is notorious
for quietly inserting default code into a program
which may or may not behave like the code author
intended. It’s sometimes helpful to write short test
programs to see the effect of magical statements.

Also, certain programming language features
result in programs which are hard to follow not be-
cause of implicit side effects, but because of sub-
tleties that make it hard to determine what name
is being referenced. For example:

Dynamic scoping. Most languages have “static
scoping,” which means that it’s always possi-
ble, given a name in the code, to decide what
that name refers to just by looking at the code.
With dynamic scoping, what a name refers to
may change depending on how the program
executes. In other words, determining what
a name refers to in a dynamically-scoped lan-
guage is undecidable.

14



Dynamic typing. In dynamically-typed program-
ming languages, the type of a name depends on
the type of what was last assigned to it as the
program executes. As with dynamic scoping,
it’s not always possible to determine the exact
type of a name.

Overloading. Some languages support overload-
ing of subroutines or operators. This means
that the exact code used in any given context
may be dependent on the types of variables in-
volved, and the number of arguments. For ex-
ample, if the+ operator is overloaded, the ex-
pressiona + b may adda andb together, or
it may post your credit card information to the
Internet. When reading code in the presence of
overloading, you must work out exactly what
code will be executed.

Inheritance. Object-oriented programming lan-
guages allow classes to inherit variables, con-
stants, and subroutines from one another. Like
overloading, reading code with inheritance
means that it can be difficult to determine what
code will be executed.

For both inheritance and overloading, code
is often spread across multiple files, com-
pounding the problem. Good tools, like class
browsers, can greatly assist with determining
the structure of such code.

Aspects. Aspect-oriented programming allows an
existing body of code to be extended without
directly modifying the original code. A pro-
grammer defines “aspects,” which are snippets
of code that are automatically executed when

15



the original code does certain specified things,
like return from a call to subroutinefoo, or
when subroutinesfoo and bar are called in
succession. To properly read aspect-oriented
code, you need to be aware of both the origi-
nal code as well as all the aspects.17

This should not be construed as a general condem-
nation of these features, as each has advantages
for solving certain types of programming prob-
lem. The tradeoff, however, is readability.

2.5 Complications

Code reading can be complicated because of pe-
culiarities of the the code design and implementa-
tion, and also because of what happens when the
code executes.

Spaghetti

A base assumption to make when reading code is
that the code has been designed and written in a
rational, logical way. Code can be extremely hard
to read if this assumption turns out to be false.

There are, unfortunately, some special cases
where this occurs:

Machine-generated code.Some code is auto-
matically generated by tools rather than being
written by humans.18 Usually such tools op-
erate from a high-level specification thatwas
written by humans; here, it is preferable to read
the specification instead of the generated code.

16



Obfuscation. A code author may wish to release
code (or an executable) in a form that is re-
sistant to reverse engineering. This is partic-
ularly the case for scripting languages where
the source code is executed directly, but there
are other languages (like Java) which are es-
pecially susceptible to decompilation. Code
may be transformed, or obfuscated, in such a
way that it makes reverse engineering difficult
– for example, changing all variables to look
like X00123.19 Obfuscation is usually done au-
tomatically with tools.

Spaghetti code.Human-written code that jumps
around from place to place in a seemingly arbi-
trary manner is referred to as “spaghetti code.”
While this might be done intentionally to try
and obfuscate the code, it is also considered the
hallmark of a bad programmer.

In the latter two cases, stubborn persistence is
needed to read the code. Taking notes may even
be necessary to keep track of what the code is do-
ing. It is worth taking extra time in advance, if
necessary, to home in on the spot to read.

Concurrency

Concurrent programs can be challenging to read
and write because of the interaction between dif-
ferent threads of execution. A good strategy when
reading concurrent code is to identify resources
shared between the threads, such as files, vari-
ables, and data structures. Code that manipulates
these shared resources will require special atten-

17



tion to fully understand what the code is doing in
relation to other threads. Apart from those trouble
spots, it’s safe to begin with the assumption that
the code you’re reading operates independently of
all other code, the assumption you would usually
make when reading code.

Interrupts

Code using interrupts – especially asynchronous
interrupts, which can happen at unpredictable
times – can also be difficult to read. Code in an
interrupt handler can cause the program state to
suddenly change in ways which are not obvious
from reading the rest of the code. It’s a good idea
to identify interrupt handlers when reading code,
to determine what they do and when they are trig-
gered.

2.6 Practice

Good code reading skills are developed only
through practice. A good way to start is by read-
ing code for design comprehension. Fortunately,
there is lots of source code readily available via
the Internet; you can pick some application of in-
terest to you and begin reading.

Different types of application and different pro-
gramming paradigms will read differently. Graph-
ical user interface code will be different from
operating system code; functional programs will
be different from imperative ones. A good code
reader will be experienced in them all to some de-
gree.

18



3 q Modifying Code

Good code modification is a disciplined, scientific
process, which can be approached in a step-by-
step manner. The basic assumption is that the code
has been designed and written in a logical, rational
way, in which case it isn’t necessary to fully un-
derstand the whole body of code in order to make
small, localized changes.

3.1 Good Practice

Take Notes

Good code modification is like conducting a sci-
entific experiment. Like scientists, it is advisable
to keep notes while making code modifications to
keep track of what you’ve done. Not all the things
you did and attempted will be reflected in the code
or its backups. For instance, the way you build
and install the code will not be there, nor will
any modification dead-ends that you backed out
of. Careful notetaking also allows you to record
the rationale for making certain coding choices;

19



this may be obvious at the time you’re immersed
in the code, but obscure later.

Time and interruptions cause details to vanish.
A good rule of thumb to start with is to write down
anything for which you think “oh, I’ll remember
that” or “I can figure that out again.”

Coding Style

When modifying code, you have informally joined
a pre-existing team. Part of being on a team is
conforming to certain team standards in prefer-
ence to individual ones,20 which in the case of
code modification means that you must abide by
the project’s coding styleeven if you don’t like it.
A project involving ten different programmers and
ten different coding styles is a maintenance night-
mare.21 Also, the chance of your changes being
adopted by the original code author diminish con-
siderably if you don’t adopt their coding style.

Tools immediately enter into coding style de-
bates. A common argument is that a particular
editor doesn’t support the code’s style by default;
the counterargument is that a professional should
learn how to operate and configure their tools.
Pretty printers can reformat code, and in theory
code can be written in any style, then automat-
ically reformatted to the project’s coding style.
Unfortunately, pretty printers are not always able
to perfectly reformat and may make a mess of
code in certain circumstances – it is safest not to
rely on them.

A related issue is coding consistency. Your
modified code should be consistent with the orig-

20



inal code in terms of the libraries and subroutines
it calls to perform specific tasks, and the idioms
it uses, for the same reasons that you follow the
project’s coding style.

Production vs. Test Systems

A production system is a system which is in-
stalled, running, and relied upon by people. Never
directly modify a production system. Instead, you
should set up a private test system which you can
modify with impunity without affecting anyone
else. The test system should mimic the production
system as closely as possible. Eventually, once
your changes have been made and tested, they can
become part of the production system. The pro-
duction system, unscathed by any code modifica-
tions, can also be thought of as a last-resort code
backup for your test system.

3.2 Before the Change

Like baking, sex, and brain surgery, code modifi-
cation requires some preparation to ensure a suc-
cessful outcome.

Back up the Code

It’s impossible to overstate the importance of
backing up the code. Before you make any modi-
fications, save a copy of the original as insurance.
It’s possible that your code modification may not
work as planned, and by the time you realize this,

21



you may have made a lot of changes to the code or,
worse, you may not remember what things you’ve
changed.

The same principle applies when you’re mak-
ing a series of modifications to code, too. Once
one part is functioning and stable, saving a snap-
shot leaves you with a fallback position in case of
trouble later on.

As a bonus, by comparing the current code and
a saved copy, you can easily determine what has
been changed. Tools are available that compare
files and directories and output a summary of the
changes.22 This is useful both for remembering
where you left off, but also for constructing source
code patches.

There are several ways of performing back-
ups. The crudest is to simply make a copy of
the code, file by file oren masseusing an archiv-
ing program. A more sophisticated way is to use
a revision control system to track changes; this
approach has a learning curve, but allows fine-
grained version tracking (even in the final exe-
cutable code) and, depending on the package, can
scale to permit multiple programmers to work on
the same body of code concurrently.

Build the Code

The next step is to figure out how to build the
code, converting it into some executable form.
This tends to be a very language- and operating
system-specific task, and in extreme cases may
require a great deal of arcane system administra-
tion knowledge. Ultimately the code must be run,

22



however, so this step is a necessary evil.
Some common problems at this stage include:

Different tools. Commonly-used tools for build-
ing programs include compilers, assemblers,
and linkers. It’s easy to recognize a tool which
is completely absent, but more subtle problems
can arise if the tools you have installed are not
the same as those used by the code’s author. For
example, a different version of a compiler may
accept a slightly different language or contain
different bugs. In extreme cases, building the
code may require installing a different version
of tools first.

Different environment. Your environment may
be different from that of the code’s author in
other ways besides the tools you have. Often
pathnames need to be changed or environment
variables need to be set. These are usually quite
easy to fix.

A much more difficult problem is where your
version of the operating system is different from
one the code supports. Obviously, due to the ef-
fort involved, it’s preferable to avoid changing
your operating system, but in some situations
it may be the only choice. With luck, the dif-
ference can be smoothed over with some mi-
nor code changes – essentially, this amounts to
porting the code. Often a good compiler is your
guide, its error messages pointing you to the
differences you need to patch.

Code dependencies.One piece of code may de-
pend upon some other code being built first.
Typically, the build instructions for code will

23



take this into account, but in case of build prob-
lems it is worthwhile to keep an eye out for this.

Missing pieces.As well as dependencies within
the code, there may be dependencies on exter-
nal things. Some code relies on third-party li-
braries and packages which must be installed to
complete the build.

Test the built code to make sure that it works.
Ideally, the code will come equipped with a test
suite which can be run to verify its correct oper-
ation. (Practically, such test suites are more the
exception than the rule.)

3.3 Making the Change

What constitutes a “change?” When modifying
code, you are making alogical change, such as
adding support for a new feature. Making this log-
ical change may require multiple lines of code in
multiple files to be added, changed, or deleted.

The process for modifying code emphasizes be-
ing careful and methodical. One change at a time
is made, using a scientific approach of forming
and testing a hypothesis.

One Change at a Time

Complex pieces of code can interact in complex
ways. When you make a change to code, you need
to ensure that it has the desired effect, and that any
change in the code’s behavior is due to the change

24



you just made in the code. If you make multi-
ple changes to the code, there is always the dan-
ger that the changes will interact in some unpre-
dictable and hard-to-debug fashion. Part of tak-
ing a scientific approach to code modification is
that you must understand exactly the effect of each
change.

Check Context

You should always be aware of the context in
which your modifications will take place. For ex-
ample, if you change the output format of a pro-
gram, and other programs rely on that format, then
you can break a lot of code in one fell swoop.23

No code exists in a vacuum.

X Marks the Spot

Code modification should be a precise operation.
Using your code reading skills, carefully pinpoint
the areas you must change to get the desired ef-
fect. Take your time. A carpenter is supposed
to measure twice and cut once; your advantage is
that, unlike the carpenter, your changes can almost
always be undone. The tradeoff is the amount
of time you spend thinking ahead of time versus
the amount of time you spend debugging after-
wards.24 For hard-to-understand code, it may be
helpful to use a debugger ahead of time to step
through the code and unravel its meaning.

When modifying code, you want to be a sur-
geon with a scalpel, not a monkey with three sizes
of hammer.

25



Form Hypothesis

What do you expect to happen? Before chang-
ing any code, mentally form a hypothesis stating
what you think will happen when you make your
change to the code. Phrase it in terms of some
observable, verifiable effect. For example:

When I add this “print” statement, I
will see the size of the list printed to
the screen just before the error mes-
sage box pops up.

Forming a hypothesis gives you a way to test
both your understanding of how the code operates,
and the efficacy of your code modification. It’s
important to do this before you make the change,
since it’s too tempting to fudge it after the fact
(“yeah, that’s what I thought would happen”).

Make and Mark

Now, make the modification to the code. It’s
good practice to mark the change with a comment
which briefly describes who made the change,
when it was made, and why it was made. If you
use your initials to record “who,” then it gives
you a mechanism to easily search for changes you
made to the code. Also, you can think of mark-
ing your modifications as a professional courtesy
to the original code author, so that they aren’t held
responsible for your modifications, and vice versa.
(Some code licenses may legally require changes
to be marked, too – always read the fine print.)

26



Test Hypothesis

Once the change is made, the code can be rebuilt.
Then, run the code to test your hypothesis. Did
you predict the outcome correctly? If you did, you
should proceed to test the changed code exten-
sively to ensure that you haven’t introduced any
bugs. If the code has a test suite, then it’s good
to add new test cases to it that exercise your code
modification.

The other case is where your hypothesis failed.
As part of the scientific process, you need to find
out why this happened. Remember that you’ve
modified a large piece of code which you may not
fully understand – always start by assuming that
the error is yours:

1. Examine your modified code for bugs.
Does it behave the way your hypothesis said
it should?

2. Re-read the code. Verify that you have cor-
rectly understood how the code you’re mod-
ifying interacts with other code. Is it possi-
ble that you have chosen the wrong spot to
modify?

Once these errors have been ruled out, you can
start expanding the search:

3. Look for bugs in the original code. Your
modification may be taxing the code in
some new way that reveals a previously-
hidden bug.

27



Finally:

4. Re-examine your hypothesis. If everything
else checks out, then you may simply have
incorrectly predicted the outcome of your
modification. It’s best to leave this possi-
bility until last, because it’s very easy to
be lazy and change your hypothesis out of
hand, potentially missing some problems.

At the very least, an inspection of this sort will
increase your confidence that the change has been
made properly.

3.4 After the Change

You’re not done yet. Modifying the code may
have opened up opportunities to restructure the
code and, of course, thorough testing is required.

Restructuring

The final code should appear to be cohesive and
well-structured, not a patchwork quilt of various
code modifications. Once your modification is
successfully made, you should examine the sur-
rounding code to see if there is a better way to
express it along with your changes. For example,
if the original code looked for a special case, and
your modification adds a check for a different spe-
cial case, there may be a way to generalize both
tests and end up with better code. Another exam-
ple is where a modification duplicates code to the
point where a subroutine is called for, a subroutine

28



which can be called from both the original and the
modified code. Code modifications which involve
copying code and altering it slightly are prone to
needing this type of restructuring.

When looking for opportunities to restructure,
pretend that you’re writing the code from scratch
– is the code’s current form the best way to express
it?25

Regression Test

Testing your modified code looks for bugs in the
code you’ve added. You also need to make sure
you haven’t introduced any new bugs in the whole
code, or re-introduced old bugs that had been
fixed. If the code has a test suite, especially one
containing examples of old bugs, then you can
perform a regression test to verify that you haven’t
inadvertently broken something. Regression tests
should ideally be automated and easy to run.

Some tests that previously succeeded may now
erroneously fail as a result of the modifications
you made. When a test fails, you need to care-
fully examine it to determine if it should indeed
be failing – a bug – or if the test suite is now in er-
ror in light of your modification. In the latter case,
you need to update the test suite appropriately.

3.5 Practice

Code modification becomes easier with practice.
It is possible, but not very interesting, to contrive
exercises that develop this skill: give a menu item

29



a blue background rather than grey, print “Hello,
world!” at a specific point. A good way to prac-
tice code modification is to find an application you
use (for which you can get the source code) and
modify it in one of two ways. First, you can fix
some irritating behavior that the program has; this
might be something as simple as a bad user inter-
face. Second, you can add some functionality that
you want. You may also want to consider sending
any generally useful changes back to the original
code author for incorporation into the project.

30



4 q Testing Modified
Code

The techniques for testing modified code are es-
sentially the same as those for testing an entire
program. The advantage when testing modified
code, however, is that there is a clear focus on the
modified code. You want to make sure that your
modified code works, and that you haven’t acci-
dentally broken anything. Obviously, existing test
suites will help ascertain the latter, as mentioned
before. The question is: how do you test the mod-
ified code?

4.1 Mindset

A good tester is malicious. Users will not neces-
sarily be gentle with a program, and you should
stress test code beyond anything a normal user
would do. Think evil thoughts, and ask yourself:

What is the worst possible thing I can
do to this code to make it crash?

31



4.2 Ways to Test

Black Box Testing

“Black box” testing is where the program is
treated as a box whose code cannot be examined.
Only the program’s input can be manipulated, and
its output can be checked to see if the program ap-
pears to be operating properly. This is of limited
value when trying to test a very targeted part of
code.

White Box Testing

Another approach to testing is called “white box”
testing. Unlike black box testing, you can exam-
ine the code to find potential trouble spots to test.

Ideally, you want to achieve 100% code cover-
age – every single line in the code should be exe-
cuted by at least one test. This is complicated by
the fact that certain code is only run under extreme
conditions, like error- and exception-handling
code. Some failures can be induced: necessary
files and database entries can be deleted; memory
allotments can be set artificially low. To reach the
ideal code coverage goal will take some creativity
and persistence, though.

Code located in hard-to-reach areas may be eas-
ier to test in isolation. A separate test harness can
be quickly constructed to exercise the modified
code thoroughly, before incorporating it into the
original code.

32



Boundary Conditions

A good place to test for problems is boundary
conditions. Boundary conditions are places in the
code where some kind of conditional test is made:
execute this code or that code? run the loop again
or not? is the buffer full? There are three possibil-
ities to test:

Within the boundary. This is the “normal” case,
where the code is running within acceptable
limits.

At the boundary. Testing should be done both
at, and close to, the boundary condition. Code
can contain “off-by-one” errors which only
manifest themselves close to the boundary.

Exceeding the boundary.Finally, look for ways
to go beyond the boundary to test. This may not
always be possible.

For large boundaries, like big buffer sizes, it may
be easiest to temporarily lower the bound for test-
ing. For example, a buffer size of 10 could be used
instead of 10,000.

Some boundary conditions are not explicit in
the code, but implicit in the semantics of the lan-
guage, such as fixed-size integers quietly wrap-
ping from their maximum positive value to their
minimum negative value upon an increment. Im-
plicit boundary conditions should be tested as
well.

33



Ask for Help

Have other people test your code. Other program-
mers as well as ordinary users are all valuable in
terms of testing, because they bring a fresh per-
spective which may be wildly different from your
own.26 It is also possible, as a programmer, to be-
come unable or unwilling to see obvious flaws in
code, especially where fixing the flaws is hard to
do.27

4.3 Test-Friendly Coding

Error Conditions

Many system calls and library subroutines return
an error status. You cannot properly test your code
unless it checks for errors,28 because otherwise
parts of your code may be failing silently. All er-
ror return values should be checked and handled
appropriately.

When an error is detected, a detailed, unique
diagnostic should be produced. Certain pro-
grams, especially concurrent programs and pro-
grams which interact with others in complicated
ways, may only produce an error under unusual
conditions which are hard to duplicate. The more
information available in these situations, the bet-
ter.

Determinism

Code being tested with the same inputs, in the
same environment, should do the same thing each

34



time it’s run. Unfortunately this is not always pos-
sible: concurrency, for instance, may be a nec-
essary part of a program’s design. If there are
sources of nondeterminism that can be disabled
temporarily, writing code to allow for it will sim-
plify both testing and debugging. For example,
imagine a program using a pseudo-random num-
ber generator, whose initial seed is the current
time. The program can have code allowing the
generator’s initial seed to be specified, yielding
the same pseudo-random sequence each time.

The Impossible

Some conditions simply “can’t happen” in code.
While the impossible is rather trying to test, it is
wise to at least guard such cases using assertions.
An assertion is a check placed in code that causes
it to fail in a controlled fashion should the con-
dition ever arise when the program is executing.
Program conditions thought impossible when the
code is written are known to arise occasionally as
a result of code modifications.29

4.4 Tools

Various tools exist to help with code testing.

Code coverage.Some code profiling tools can
dynamically determine code coverage when a
program executes.

Memory. Languages prone to memory problems
can benefit from testing with memory analy-
sis tools. Such tools may watch for allocated

35



memory areas being exceeded, look for mem-
ory leaks, or spot memory which goes unused
for suspicious amounts of time.

Noise generators.Often the best test input is not
a human-devised one. Noise generators pro-
duce long, random program inputs which can
be fed to programs to watch their behavior un-
der unusual circumstances.30 More sophisti-
cated methods being researched also include
learning algorithms to automatically develop
and learn input sequences that cause program
malfunctions.31

Debuggers.The primary purpose of debuggers is
debugging, obviously. However, their ability to
stop an executing program at a specific spot and
modify its state can be used to force code into
places which are otherwise hard or impossible
to reach.

36



5 q Debugging
Modified Code

Debugging modified code is like testing modified
code: the techniques for modified code are much
the same as you would use for a whole program.

The base assumption when debugging modified
code is that new changes are responsible for new
behavior. Your code modifications are likely sus-
pects for any new deviant behavior, using the be-
havior of the unmodified code as a basis for com-
parison. If you’ve made only one change at a time,
this further narrows down the culprit. A bug may
be deceptive, though – it may not manifest itself
directly in the modified code, but may cause other
code to break.

5.1 Vital Information

To debug effectively, you need information about
the state of the code and the internal state of the
executing program.

37



Know What has Changed

You should ensure that you know exactly what
code has been changed, since any of the changes
may be contributing to the problem. In some
cases, the changed code will be obvious, but in
others it may be scattered throughout the body
of code. The differences between your modified
code and the original code can be found automat-
ically using tools, by comparing the current code
against a backup copy.

Internal State Information

It is essential when debugging to have information
about the internal state of an executing program.
There are several ways to gather this information:

Output. Any visible form of output can be used
to relay state information from a program. This
includes print statements and log messages, as
well as low-bandwidth outputs like LEDs and
foreground/background colors – all these can
be used to convey information.

The idea is to add debugging code into the
program in places where you want to query
its state. Debugging code is often “quick and
dirty” code added in haste, but care should be
taken:

• The program’s normal operation must
not be changed by adding the debugging
code.

• Double-check that the state information
being output is in fact the information you
think is being output.

38



• Make sure that potential error conditions
in the debugging code are handled.

Carelessly-written debugging code can waste
lots of time with wild goose chases.

It’s good practice to flag debugging code (us-
ing specially-marked comments, or by outdent-
ing it) or conditionally compile it in, so that it
can be found and removed easily once the bug
is fixed.

Debuggers.A good debugger is an invaluable
tool. Among other things, it allows program ex-
ecution to be stopped at specified breakpoints,
internal state to be easily queried and modified,
and execution to be stepped through with fine
granularity. The time invested learning how to
use a debugger will be repaid many times over.
The only caveat is that a debugger focuses at-
tention on a very small area of code, and it’s
easy to not see the forest for the trees.

Core dumps. Some systems take a snapshot of a
program’s memory when it fails in some un-
recoverable way; for historical reasons, these
are often called core dumps. A good debugger
can take a program’s core dump and effectively
reconstruct the program’s state at the point at
which it malfunctioned. Using the debugger,
you can gather a lot of useful information which
often leads right to the bug: where exactly did
the program fail? what values did its variables
have? what sequence of subroutine calls led to
the failure?

Tracing tools. Sometimes tools are available that
are able to track a program’s interaction with

39



another part of the system. For example, a tool
may print out all the system calls or API calls a
program makes as it executes. This doesn’t give
a fine-grained look inside the program, but may
give enough insight to help pinpoint a problem.

5.2 The Debugging Process

Collecting debugging information is only part of
debugging. The debugging process involves us-
ing debugging information, along with a variety
of other techniques, to track down bugs.

Take Notes

Debugging is a methodical, scientific process. As
with code modification, it’s a good idea to record
your work. This helps avoid duplicating work by
keeping track of what you’ve done throughout a
complicated debugging session; it also leaves a
record which can be referred to later if a similar
bug arises (“how did I fix that before?”).32

Reproduce the Problem

If you can’t observe a problem, you can’t fix it.
The first step when debugging is to reproduce the
problem. This may also be the hardest step; some
bugs only crop up under unusual circumstances,
like high loads or complex interactions with other
programs. If you’re not able to reproduce the
problem, then you’re reduced to blindly reading

40



the code for bugs.
Ideally, you want to not just reproduce the prob-

lem, but reproduce it in the simplest, shortest way.
Any inputs should be pared down to the bare min-
imum necessary; this reduces the amount of code
to wade through before reaching the suspect parts.

Sometimes, spurious bugs may be reproduced
by stress testing, repeatedly testing the suspect
area of code until a failure occurs.33

The Obvious

Always start debugging by looking for obvious
problems. Although it may seem silly, it’s pos-
sible to waste a great deal of time looking for a
complicated answer to a problem when a simple
one suffices.34

One obvious thing to verify is whether or not
you’re actually seeing a bug. Sometimes, the code
is correct, and the error legitimately lies in the
input or an incorrect interpretation of the output.
Double-check inputs and outputs, keeping in mind
that some things (e.g., whitespace, control char-
acters, nul characters) may not be visible to the
naked eye. Tools that overtly “dump,” or print, in-
put and output may be helpful; such tools can be
quickly constructed if they are not readily avail-
able.

Another thing to check is the resources that the
program needs. Is any required hardware attached
and operational? Is there enough disk space, and
are file permissions set correctly? Is the program
executing in the correct environment and loca-
tion?

41



Hypothesize and Test

Internal state information is used to probe the state
of a malfunctioning program. A scientific ap-
proach can be taken, just like the one used when
modifying code.35 Make a specific hypothesis
about the program’s state that can be verified by
gathering internal state information. For example,
“at line 452, the pointer variablep should point
to an element of the arrayA.” Then, gather infor-
mation to test your hypothesis. If the hypothesis
is wrong, then you are on the trail of the bug, or
your understanding of the code is incorrect (but
arguably, you’re still on the trail of the bug).

Instead of probing a specific point, another
approach is to hypothesize how the program’s
state should be changing as it executes.36 Here,
you would form preconditions and postconditions
about parts of the code:

Before subroutinefoo is called, p
must not beNULL; afterfoo returns,
p will be NULL andcount will have
incremented by one.

Both these conditions could then be verified with
internal state information.37

Divide and Conquer

The way that you look up a word in a dictionary
or a name in a phone book – a binary search –
is a very effective way to track down bugs. The
idea is to disable approximately half of the suspect
code, usually by commenting it out.38 Then you

42



begin an iterative search process: if the bug is still
present, disable another half of the code, and keep
doing so until the bug vanishes. The last piece of
the code to be disabled is likely responsible for the
problem, at least in part.

A strict divide-and-conquer approach can re-
duce code’s functionality to the point where it can
no longer be executed. This problem can some-
times be ameliorated by replacing the code to be
disabled with trivial stubs that fake values, for de-
bugging purposes.

Undo

The logical limit of divide-and-conquer is to dis-
able the modified code completely. Remember
that the base assumption was that the original code
was working, and that your modifications some-
how introduced a bug. If the bug doesn’t appear
to be the result of the modified code, then this as-
sumption should be challenged. It could be the
case that the original code was flawed to begin
with, but the flaw hadn’t been exposed through
testing yet.

Ask for Help

Programmers tend to see what they think the code
is doing. This is a natural side effect of abstrac-
tion. Unfortunately, debugging requires that you
see what the computer is actually doing.

How can you see this? The cause of stubborn
bugs may be immediately apparent to another per-
son, or may become apparent in the process of ex-

43



plaining the problem.39 Another approach is to
simply take a break from the computer, or get a
printout of the troublesome code and analyze it
instead.

5.3 The Impossible

“Eliminate all other factors, and the
one which remains must be the truth.”

– Sherlock Holmes40

Very rarely, bugs will have exotic causes. There
are some things which you normally assume to
be correct when debugging: the operating sys-
tem, system libraries, output from the compiler,
the hardware. It is possible, albeit very unlikely,
for these assumptions to be wrong. You should
consider this possibility only as a last resort, af-
ter all normal causes have been ruled out; even
then, such a claim (“my code doesn’t work be-
cause the compiler is broken”) should be backed
up with convincing evidence. The debugging task
then becomes a search for a way to work around
or fix this new problem.

There are also bugs – called “Heisenbugs” –
that disappear when you look for them.41 The
mere act of adding output statements or running
the code in a debugger changes the program just
enough to make the problem go away. This does
not, however, mean that the bug has been fixed.
Until the cause of a bug has been determined, de-
bugging should continue.

44



6 q Writing Readable
Code

The coding style of an existing body of code
should be adhered to when making changes. But
suppose you’re writing brand-new code. How can
you write it so that it’s readable?

6.1 Remember Your Audience

A standard piece of advice for any communication
– verbal, written, or otherwise – is to remember
your audience. The same is doubly true for com-
puter code. With code, you not only have to ex-
press yourself precisely to the computer, but you
also must leave something understandable for hu-
mans.

There are almost always multiple ways to write
a piece of code. Making your code readable for
your human audience should help guide your cod-
ing choices. How much should you document?
What should you document? How densely should
the code be written? What obscure language id-
ioms can you use?

45



Sometimes it’s useful to use yourself as a ref-
erence point. Ask yourself, will I understand this
code in a year’s time? You are your own audience,
too.

6.2 Design

Code design is something which is best taught by
experience.42 Reading and modifying someone
else’s code is instructive, although the exact les-
son depends on whether the code has a good or
a bad design. Similarly, implementing and using
your own code design is valuable, especially when
you make mistakes – there is nothing to cement a
design lesson like working with a flawed design
of your own making.

There are some standard approaches to good
design which are worth considering:

Isolating dependent code.Ideally, any code that
is dependent upon something else should be
separated out. Code can be dependent on many
things: target architecture, operating system,
windowing system, specific libraries. Identi-
fying and isolating this dependent code helps
abstract your design away from minute details,
and makes your code more portable.

Directional design. There are three “directional”
design methods. A top-down approach starts
from a very high level and progressively breaks
the programming task down into smaller and
smaller pieces. Bottom-up design starts with
the low-level building blocks of a program

46



which actually do the work, piecing them to-
gether until the program is complete. Finally, a
middle-out design strikes a balance between the
two approaches, building and breaking down.

The design method may vary with the pro-
gramming task. Creating a good set of building
blocks for a bottom-up design comes through
experience. Top-down designs are useful for
prototyping, where you may not yet know how
to construct the building blocks; it is also use-
ful for undesirable programming tasks, because
it allows the “real” work to be deferred as long
as possible.

Coupling and cohesion.The parts of a good de-
sign – call them modules – should exhibit a
high degree of cohesion and a low degree of
coupling. High cohesion means that a module
does one specific task, like implementing a data
structure, and everything in that module is used
toward that end. Low coupling means that a
module is not intimately connected with the in-
ner workings of another module.

Design patterns. Object-oriented designs have a
wealth of “design patterns” to draw upon. Ef-
fectively, this creates a shorthand vocabulary
for describing certain designs. The drawback is
that a person reading the code must understand
this same vocabulary for the shorthand commu-
nication to be useful. At the very least, design
pattern bestiaries can act as a helpful source of
design inspiration.

Ultimately, good code design is a black art. As
a heuristic, try and imagine if your design will

47



make the code easy to read and modify using the
approach of the last few chapters – in other words,
is your design rational and logical?

6.3 Code

Name Your Poison

The programming language you write your code
in will undoubtedly bring coding style constraints
with it. Some constraints are more subtle than oth-
ers.

Write-only languages. Some languages are re-
ferred to as “write-only” languages, because
code is fully understood only once, when it is
written, and it is next to impossible to read
afterwards. Perl is the current frontrunner
in this category; past winners have included
PostScript, Forth, and APL.

This is a somewhat unfair designation for a
programming language, for three reasons.

1. Code written in such a language is quite
meaningful to an expert who is regularly
immersed in the intricacies of the lan-
guage. Such experts are not the norm,
however.

2. Some languages require different ways of
thinking about programs. Going from one
language paradigm to another, for exam-
ple, is not necessarily an easy task.

3. It’s possible to write bad code in any lan-
guage. There are even contests to write

48



bad and/or obfuscated code; here is one
prize-winner for a C obfuscation con-
test:43

#include <ctype.h>

#include <stdio.h>

#define _ define

#_ A putchar

#_ B return

#_ C index

char*r,c[300001],*d=">=<=!===||&&->++-->><<",*i,*l,*j,

*m,*k,*n,*h,*y;e,u=1,v,w,f=1,p,s,x;main(a,b)char**b;{p

=a>1?atoi(b[1]):79;r=c+read(0,j=l=i=c,300000);v=g(j,&m

);for(k=m;v!=2;j=k,m=n,v=w,k=m){w=g(k,&n);if(v==1&&m-j

==1&&*j==35)e&&A(10),e=f=0;if(!f&&v==3&&(char*)C(j,10)

<m)A(10),e=0,f=1;else if(v>2&&(u||w)&&(f||u)&&(l-i>1||

*i!=61||n-k>1||!C("-*&",*k)))continue;else if(v==3)if(

f&&e+1+n-k>p&&e)A(10),e=0;else A(32),e++;else{if(f&&e+

m-j>p&&e)A(10),e=0;e+=m-j;k=j;while(k<m)A(*k++);}i=j;l

=m;u=v;}e&&A(10);}g(j,m)char*j,**m;{if(j>=r)B*m=j,2;s=

isdigit(*j)||*j==46&&isdigit(j[1]);for(h=j;h<r;h++)if(

!isalnum(*h)&&*h!=95&&(!s||*h!=46)&&(!s||h[-1]!=101&&h

[-1]!=69||!C("+-",*h)))break;if(h>j)B*m=h,0;x=1;for(h=

j;h<r&&C(" \t\n",*h);h++);if(h>j)h--,x=3;if(*j==34||*j

==39)for(h=j+1;h<r&&*h!=*j;h++)if(*h==92)h++;for(y=d;*

y&&strncmp(y,j,2);y+=2);if(*y)h=j+1;if(!strncmp("/*",j

,2)){h=j+2;while(*++h!=42||*++h!=47);x=4;}*m=h+1;B x;}

Hard style guidelines. Although more the ex-
ception than the rule, some programming lan-
guages enforce certain style guidelines. Python,
for instance, groups statements together using
indentation.

There may be other constraints which are not
fixed, but may be difficult or time-consuming
to work around. Some programming tools, like
editors, may support a specific code layout by
default which may not be ideal. However, es-
pecially when working with a group of people,
there may be a tradeoff involved between the
perfect layout and having everyone reconfigure
their tools.

Soft style guidelines.Established languages are
likely to have established coding style guide-
lines. (More likely, they will have several com-
peting guidelines!) If you devise a “better” cod-

49



ing style, you run the risk of rendering your
code unreadable by others, simply by virtue of
being different. Another tradeoff to consider.

Idioms. Experienced code readers will be expect-
ing language-specific idioms to be present and
used appropriately in the code. Using code
idioms can impart a lot of information very
quickly.

Spacing and Indentation

Youwillprobablyfindthissentencehardtoread.
Spacing plays the same role in code as it does

in prose. Or imagine your favorite music, played
without any rests. In music, when you don’t play
is as important as when you do play, and the same
concept is true for readable code.

There is no advantage to writing reams of code
with insufficient space.44 Your code doesn’t run
any faster, and you don’t save any substantial
amount of disk space. As a concrete example,
for many languages you can indent code with
tabs, where a tab is eight spaces, and use spaces
liberally elsewhere. Visually, your code should
look like it has “elbow room” – it shouldn’t look
cramped.

Having said this, the need for too many levels
of indentation may indicate a design flaw. The
code may need restructuring with subroutines, or
perhaps there are an excessive number of special
cases that can be generalized.

50



Line Length

Line length is obviously tied in with code spacing
and indentation. It may seem like a holdover from
the dark ages of computing, from punched cards
and character-only video displays, and to a certain
extent it is. However, there are some good reasons
to strictly adhere to a certain fixed line length –
typically, 80 columns is advisable.

First, a relatively short line length improves
readability. Newspapers, for instance, still use
narrow columns to allow a good reader to simply
read down the column with no wasted eye move-
ment.45 The same principle applies to computer
code. A long line, or worse, a long line wrapped
around the screen or a printout, means extra work
for a reader to put all the pieces together.

Second, when combined with good spacing and
indentation, a fixed line length is a good heuristic
measure of code complexity. If you can’t express
a line of code in 80 columns using tabs for inden-
tation, then it’s a strong indicator that you should
examine what you’re doing. A subroutine may be
needed, or it may suggest that the code needs re-
structuring or a completely different approach. If
the code is hard to write, it will likely be hard to
read too.

Cut and Paste

“Cut and paste” coding is the derogatory term
used to describe copying code from one place to
another in a body of code, possibly making a small
number of changes to the copied code. This sends

51



a strong signal that code restructuring opportuni-
ties are present. It also makes code less maintain-
able, because bugs are also copied – fixing a bug
fully means tracking down all similar copies of the
buggy code.

From the readability point of view, copying
code burdens the code reader by forcing them to
read the same code again and again. It also makes
a reader laboriously figure out what differences, if
any, exist between various copies of the code.

Laziness

Give a reader less code to read: sometimes the
best code is no code at all. A keen sense of lazi-
ness, the desire to avoid writing lots of code, is key
to identifying and exploiting self-similar struc-
ture. Factor out the dissimilar parts of otherwise
similar code into a table, and have one piece of
code do the job of many pieces by simply indexing
into the table. In more complicated cases, the ta-
ble may require a little code “engine” to interpret
it properly, but even the combination of code plus
table can be much shorter than the naı̈ve, brute-
force code.

Or, give a reader simpler code. Be lazy and
solve a problem in multiple simple steps rather
than one complex step. There are also times when
it’s easier to write code to do something poorly
and then write code to fix up the result. For ex-
ample, writing a compiler that produces good out-
put in one step would be next to impossible. The
code would be far too complicated. It’s far easier
for a compiler to generate bad but correct output,

52



then apply multiple simple transformations to fix
up the bad output.

6.4 Documentation

Part of documentation is in the code itself. Using
meaningful variable names, constant names, and
subroutine names are all important cues to some-
one reading code.46 The use of “magic values,”
numbers and other literal values that are used in
code whose meaning is not immediately apparent,
should be avoided.

Beyond the code, you can have external docu-
mentation, like user manuals or manual pages, or
code comments. There is always the danger of the
code, comments, and external documentation get-
ting out of synch, and there are a variety of ways
to manage this:

Ignore the problem. Maintain the code, com-
ments, and external documentation separately.

Embedded documentation.Some systems per-
mit external documentation to be embedded in
the code, marked using specially-denoted com-
ments. This documentation is then automati-
cally extracted to create the external documen-
tation. Currently, the Javadoc system for Java is
the prime example of this technique. The the-
ory is that, by merging code and documentation
in this way, programmers will find it easier to
write and update documentation.

Embedded code.Another approach is called “lit-
erate programming.”47 A literate program has

53



the code embedded in the documentation; here,
the code is extracted automatically from the
documentation.

What should be documented? Again, remem-
ber your audience. It is safe to assume a cer-
tain base level of programming knowledge. Thus,
comments like:

x = x + 1; /* add one to x */

supply as much useful information as:

x = x + 1; /* x is the 24th letter

of the alphabet */

Comments of this sort should always be avoided.
Instead, describe your code from a high-level
point of view – the details are in the code if
needed. Having said that, be sure to document any
tricky or non-obvious details too. The interface to
your code should be documented as well. When
in doubt, err on the side of documentation quality
rather than quantity.48

You should always give credit where it is due.
If your code is based on (or blatantly stolen from)
some other code, document the source. Failure to
do this in the academic world would be plagia-
rism; in industry, it would be grounds for intellec-
tual property lawsuits. Some code, while freely-
available, has licensing restrictions which requires
users to note its usage in any documentation – al-
ways check the fine print.

54



Problem Areas

It’s important to document what your code does,
but it’s also important to document what it doesn’t
do. Depending on the sort of documentation you
are producing, this information can go in either
the user documentation or in code comments.

Bugs. It’s unlikely that you’ll know what all the
bugs are in your code, but it is likely that you
may know about several when writing the code.
Even if you don’t fix the bugs, you can at least
leave warnings about them.

Limitations. Limitations are not bugsper se, and
do not cause incorrect execution, but impose
constraints of some form. A typical example
of a limitation would be the use of a fixed-size
input buffer as opposed to a dynamically-sized
one.

Tunable parameters. Situations where arbitrary
values are used in code should be noted. These
values, while correct, may present later oppor-
tunities for tuning and optimization.

Better algorithms. Better choices for algorithms
may come to mind when writing code, like the
possibility of using a binary search instead of a
linear search, but you may not have the chance
to implement them. It’s always a good idea to
add a note about what algorithm should be used
– at the very least, it tells people reading your
code that you did know what you were doing!

When writing about such problem areas in
comments, it’s good practice to mark them so that

55



they may be easily searched for later. The strings
“XXX” and “TODO” are often used for this pur-
pose:

/* XXX - find an algorithm to see

if this code terminates */

6.5 Practice

Coding and design skills improve with practice.
It’s wise to start small, with coding problems
you can finish in one sitting. Programming lan-
guage textbooks often have short exercises in
them which are suitable, or use problems from
programming competitions. For larger projects,
choose something you’re interested in, or a pro-
gram you need that doesn’t exist. If you don’t
want to start coding from scratch, there are a
seemingly infinite number of open-source projects
which are both available and in dire need of major
coding contributions.

56



7 q Summary

The three most important things in real estate are
location, location, and location. In code reading,
writing, and modifying, the three most important
things are practice, practice, and practice. The ad-
vice in this book doesn’t magically help, unfor-
tunately; it’s only a starting point for developing
your skills.

Happy reading!

57





Notes

1 For example, anti-virus researchers may need to partially
reconstruct legitimate code when determining how malicious
code operates.

2 Understanding the design when reading code has some
overlap with the design of new code (Section 6.2). What sepa-
rates the two is that, when reading code, you’re looking at the
end product, not the means used to get there.

3 There is a famous quote by Brooks [1995, page 102]:

Show me your flowcharts and conceal your ta-
bles, and I shall continue to be mystified. Show
me your tables, and I won’t usually need your
flowcharts; they’ll be obvious.

4 The standard design pattern reference is Gamma et al.
[1995], known as the “Gang of Four” or “GoF” book.

5 The BSD filesystem code, for example, is an object-
oriented design trapped in a body of C code. See Vahalia
[1996, page 236] and McKusick et al. [1996, page 205].

6 Brooks [1983] theorizes that programmers understand
programs using a top-down approach, making and refining hy-
potheses. He suggests that evidence for hypotheses is gathered
by looking for “beacons” in the code whose presence signals
certain data structures or operations. Wiedenbeck [1986] gives
some experimental evidence for the existence of beacons.

7 It can be overwhelming at second, too.
8 For example, Microsoft Windows includesFIND, and

Unix systems have thegrep family of tools. Some visual pro-
gramming environments have multi-file search tools as well.

9 For example, see Rigi and SHriMP: Wong [1998] and Wu

59



and Storey [2000].
10 Specially-marked compiler directives and JCL notwith-

standing.
11 Archaeologists take note: incorrect comments may indi-

cate the original intent of code which has since evolved.
12 The same isn’t true in human languages. No amount of

training in English will help decipher “Bob’s your uncle.”
13 Humans naturally group, or “chunk,” related information

together [Miller, 1956]. McKeithen et al. [1981] and Shnei-
derman [1976] have verified experimentally that programmers
chunk program code, and that experts are better at doing this
than novices. Idioms may play a role in the effectiveness of
chunking.

14 The Story of Melis an epic programming tale which bril-
liantly takes advantage of implicit side effects. It can be found
online [Raymond, 2003]. Also, not just languages have invisi-
ble side effects. Sometimes the library subroutines called from
a language have them too.

15 Ellis [1982, page 15].
16 Wall et al. [1996, page 72].
17 A number of introductory articles on aspect-oriented pro-

gramming can be found in the October 2001 issue ofCommu-
nications of the ACM. A more critical look is provided by Con-
stantinides et al. [2004].

18 For example, the Lex and Yacc compiler tools: Levine
et al. [1992].

19 For a more complete list, see Collberg et al. [1997].
20 As immortalized by the slogan “There is no ‘I’ in ‘team’.”

There is no ‘I’ in ‘moose’ either, but this is probably coinci-
dence.

21 Mohan and Gold [2004] have done a study of how code
style changes over time with maintenance programming, i.e.,
code modification.

22 Like diff on Unix systems.
23 A graduate student at the author’s university did this in the

early 1980s; he changed the output of the “ls” program which
caused a backup script to quietly fail; the problem was not
discovered for several months afterwards, when a file needed
to be restored.

24 Littman et al. [1986] studies two strategies used by pro-
grammers for a code maintenance task: systematic, where the
programmer would study the code extensively before making
changes; as-needed, where the programmer would take a lazy

60



approach to studying the code. In their study, only systematic
programmers were successful. They point out, however, that
the key is constructing a strong mental model of what’s hap-
pening in the code.

25 The “best” way to design and implement code often de-
pends on the context. For instance, engineering tradeoffs are
commonly made between simplicity and efficiency, or between
time and space.

26 This idea is nicely captured by the aphorism “Each
new user of a new system uncovers a new class of bugs.”
(Kernighan, as quoted in Bentley [1988, page 60].)

27 Brooks [1995, page 55] and Myers [1976, page 191] make
the argument that testing is an inherently destructive process,
and the creator of some code isn’t really going to want to de-
stroy it, especially when finding flaws in the code may reflect
on the skill and ego of the programmer.

28 Or handles an error in some other way, like catching an
exception.

29 Some programmers use assertions only for testing and de-
bugging, then disable them in the production version of a pro-
gram. Whether or not this is wise can be debated at length.

30 For example, a noise generator has been used to give
Unix utilities a workout [Miller et al., 1990]. This technique
is also referred to as “Monte Carlo” debugging [Bell, 1983],
“fuzzing” [Sutton et al., 2007] or, touchingly, Gremlins [Maas,
2003].

31 Chan et al. [2004] describes such a system being used to
test a commercial computer game, for instance.

32 This record can also be analyzed to gain insight into pro-
gram design, bugs, and debugging. Knuth [1989], for instance,
dissects the log book he kept for ten years’ worth of TeX de-
velopment.

33 One spurious bug in a program was found by running the
program repeatedly with a script. The bug, on average, showed
up once every 100 times the program was executed.

34 The author once found a computer whose monitor wasn’t
displaying anything. He spent a great deal of time searching
for the problem – logging in to the computer remotely to make
sure it was working, checking the cables, fiddling with the con-
trast and brightness knobs, to no avail. The problem was that
the monitor had been turned off.

35 Gould [1975] theorizes that people debug programs by
iteratively generating and testing hypotheses until a clue to the

61



bug is discovered; this approach is used by both novices and
experts [Gugerty and Olson, 1986].

36 Yet another approach would hypothesize how the pro-
gram’s stateshouldn’tbe changing, or program invariants.

37 Pre/postconditions and invariants can be part of code test-
ing and code design, too. The latter is referred to as “design
by contract.” See Meyer [1997, Chapter 11].

38 Depending on the language, other methods may be avail-
able. A return statement may be inserted prematurely to
avoid executing certain code, or a preprocessor may be used (in
C, with#if 0. . .#endif) to quickly block out chunks of code.
A common mistake, especially for languages that have match-
ing comment delimiters, is to forget to end a comment and dis-
able much more code than you intended. Syntax-highlighting
(a.k.a. colorizing) editors help catch this mistake.

39 Some labs and help desks have resident stuffed animals,
whom you have to explain your problem to first. Apparently a
number of problems are solved this way.

40 Okay, Sir Arthur Conan Doylereally wrote it, but it’s still
a good quote. FromThe Sign of the Four.

41 Bourne [2004].
42 Jeffries et al. [1981] examines the role experience plays in

design, and how experts and novices differ in their approach to
code design.

43 In case it’s not immediately obvious, the code breaks long
input lines. This was Paul Heckbert’s 1987 winner in the Inter-
national Obfuscated C Code Contest. Don Dodson’s English
to Pig Latin translator was an artistic 1995 contest winner:

#define X

#define XX

#define XXX

#define XXXX

#define XXXXX

#define XXXXXX

#define XXXXXXX

#define orfa for

#define XXXXXXXXX

#define archa char

#define ainma main

#define etcharga getchar

#define utcharpa putchar

X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X X X

X XX X X XX X

X XXX X XXXXXXXXX X XXX X

X XXX X XXXX XXXX X XXX X

X XXXX X XX ainma(){ archa XX X XXXX X

X XXXX X oink[9],*igpa, X XXXX X

X XXXXXX atinla=etcharga(),iocccwa XXXXXX X

X XXXX ,apca=’A’,owla=’a’,umna=26 XXXX X

X XXX ; orfa(; (atinla+1)&&(!((( XXX X

X XX atinla-apca)*(apca+umna-atinla) XX X

X X >=0)+((atinla-owla)*(owla+umna- X X

X atinla)>=0))); utcharpa(atinla), X

X X atinla=etcharga()); orfa(; atinla+1; X X

X X ){ orfa( igpa=oink ,iocccwa=( X X

X X (atinla- XXX apca)*( XXX apca+umna- X X

X atinla)>=0) XXX XXX ; (((( X

X atinla-apca XXXXX XXXXXXX XXXXX )*(apca+ X

X umna-atinla XXXXXX )>=0) XXXXXX +((atinla- X

X owla)*(owla+ XXXX umna- XXXX atinla)>=0)) X

X &&"-Pig-" XX "Lat-in" XX "COb-fus" X

X "ca-tion!!"[ X (((atinla- X apca)*(apca+ X

X umna-atinla) X >=0)?atinla- X apca+owla: X

X atinla)-owla X ]-’-’)||((igpa== X oink)&&!(*( X

X igpa++)=’w’) X )||! X (*( X igpa X ++)=owla); * X

X (igpa++)=(( X ( XXX XXX X atinla-apca X

X )*(apca+ X umna XXX - XXX X atinla)>=0) X

X ?atinla- X apca XXX + XXX owla X :atinla), X

X atinla= X X X X etcharga()) X

X ; orfa( X atinla=iocccwa?(( X (atinla- X

X owla)*(owla+ X umna-atinla)>=0 X )?atinla- X

X owla+apca: X atinla): X atinla; ((( X

X atinla-apca)* X (apca+umna- X atinla)>=0)+( X

X (atinla-owla)* X (owla+ X umna-atinla)>= X

X 0)); utcharpa( XX XX atinla),atinla X

X =etcharga()); XXXXXXX orfa(*igpa=0, X

X igpa=oink; * igpa; utcharpa( X

X *(igpa++))); orfa(; (atinla+1)&&(!((( X

X atinla-apca )*(apca+ X

X umna- XXXXX XXXXX atinla)>=0 X

X )+(( XXXXX atinla- X

XX owla)*( owla+umna- XX

XX atinla)>=0))); utcharpa XX

XX (atinla),atinla= XX

XX etcharga()); } XX

XXXX } XXXX

XXXXXXXXX

62



44 Unfortunately, as summarized by Oman and Cook [1990],
formal studies of indentation effects have produced mixed re-
sults.

45 The optimum line length for readability is one and a
half times the length of the lowercase alphabet (Arnold, 1981,
pages 33–34; Turnbull and Baird, 1975, page 67). Assum-
ing a monospace font, which is commonly used for code, the
optimum line length for code would be 39 characters (not in-
cluding leading whitespace).

46 “Meaningful” names do not imply excessively long
names, however.

47 An idea first proposed by Knuth [1984].
48 Studies indicate that adding comments of any sort, even

good comments, decrease the readability of code [Brooks,
1995, page 224].

63





Bibliography

E. C. Arnold. Designing the Total Newspaper.
Harper & Row, 1981.

R. C. Bell. Monte Carlo debugging: a brief tuto-
rial. Communications of the ACM, 26(2):126–
127, February 1983.

J. Bentley.More Programming Pearls. Addison-
Wesley, 1988.

S. Bourne. A conversation with Bruce Lindsay.
ACM Queue, 2(8):22–33, 2004.

F. P. Brooks, Jr.The Mythical Man-Month: Essays
on Software Engineering, Anniversary Edition.
Addison-Wesley, 1995.

R. Brooks. Towards a theory of the compre-
hension of computer programs.International
Journal of Man-Machine Studies, 18:543–554,
1983.

B. Chan, J. Denzinger, D. Gates, K. Loose, and
J. Buchanan. Evolutionary behavior testing of
commercial computer games. InProceedings

65



of the 2004 Congress on Evolutionary Compu-
tation, pages 125–132, 2004.

C. Collberg, C. Thomborson, and D. Low. A tax-
onomy of obfuscating transformations. Tech-
nical Report 148, University of Auckland, De-
partment of Computer Science, 1997.

C. Constantinides, T. Skotiniotis, and M. Stoerzer.
AOP considered harmful. InEuropean Inter-
active Workshop on Aspects in Software, 2004.
Position paper for panel session.

T. M. R. Ellis. A Structured Approach to FOR-
TRAN 77 Programming. Addison-Wesley,
1982.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

J. D. Gould. Some psychological evidence on
how people debug computer programs.Inter-
national Journal of Man-Machine Studies, 7:
151–182, 1975.

L. Gugerty and G. M. Olson. Comprehension
differences in debugging by skilled and novice
programmers. In Soloway and Iyengar [1986],
pages 13–27.

R. Jeffries, A. A. Turner, P. G. Polson, and M. E.
Atwood. The processes involved in designing
software. In J. R. Anderson, editor,Cognitive
Skills and Their Acquisition, pages 255–283.
Lawrence Erlbaum Associates, 1981.

66



D. E. Knuth. Literate programming.The Com-
puter Journal, 27(2):97–111, May 1984.

D. E. Knuth. The errors of TeX.Software – Prac-
tice and Experience, 19(7):607–685, July 1989.

J. R. Levine, T. Mason, and D. Brown.lex& yacc.
O’Reilly, second edition, 1992.

D. C. Littman, J. Pinto, S. Letovsky, and
E. Soloway. Mental models and software main-
tenance. In Soloway and Iyengar [1986], pages
80–98.

B. Maas.Using Palm OS Emulator. PalmSource,
2003.

K. B. McKeithen, J. D. Reitman, H. H. Rueter, and
S. C. Hirtle. Knowledge organization and skill
differences in computer programmers.Cogni-
tive Psychology, 13:307–325, 1981.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman.The Design and Implementation
of the 4.4 BSD Operating System. Addison-
Wesley, 1996.

B. Meyer. Object-Oriented Software Construc-
tion. Prentice Hall, second edition, 1997.

B. P. Miller, L. Fredriksen, and B. So. An em-
pirical study of the reliability of UNIX utili-
ties. Communications of the ACM, 33(12):32–
44, December 1990.

G. A. Miller. The magical number seven, plus
or minus two: Some limits on our capacity for

67



processing information.The Psychological Re-
view, 63(2):81–97, March 1956.

A. Mohan and N. Gold. Programming style
changes in evolving source code. InProceed-
ings of the 12th IEEE International Workshop
on Program Comprehension, pages 236–240,
2004.

G. J. Myers.Software Reliability: Principles and
Practices. Wiley, 1976.

P. W. Oman and C. R. Cook. Typographic style
is more than cosmetic.Communications of the
ACM, 33(5):506–520, May 1990.

E. Raymond, editor.Jargon File (version 4.4.7).
2003. http://www.catb.org/ esr/jargon.

B. Shneiderman. Exploratory experiments in pro-
grammer behavior. International Journal of
Computer and Information Sciences, 5(2):123–
143, 1976.

E. Soloway and S. Iyengar, editors.Empirical
Studies of Programmers, 1986. Ablex Publish-
ing Corporation.

M. Sutton, A. Greene, and P. Amini.Fuzzing:
Brute Force Vulnerability Discovery. Addison-
Wesley, 2007.

A. T. Turnbull and R. N. Baird.The Graphics of
Communication. Holt, Rinehart, and Winston,
third edition, 1975.

U. Vahalia. UNIX Internals: The New Frontier.
Prentice Hall, 1996.

68



L. Wall, T. Christiansen, and R. L. Schwartz.Pro-
gramming Perl. O’Reilly, second edition, 1996.

S. Wiedenbeck. Processes in computer pro-
gram comprehension. In Soloway and Iyengar
[1986], pages 48–53.

K. Wong. Rigi User’s Manual (version 5.4.4).
University of Victoria, 1998.

J. Wu and M.-A. D. Storey. A multi-perspective
software visualization environment. InCAS-
CON 2000 Proceedings, pages 41–50, 2000.

69





Index

API, 5, 40
APL, 48
application programming

interface,
seeAPI

aspect-oriented, 15–16
assertion, 35

backup copy, 21–22, 38
black box testing, 32
bottom-up, 7

design, 46–47
boundary condition, 33
breakpoint, 39

C, 49
C++, 14
class, 7, 15,

see alsomodule
code

complexity, 51
coverage, 32, 35
dependency, 6, 7, 10, 15,

23–24, 46
formatter, 9,

see alsopretty printer
machine generated, 16
maintenance, 5–6, 20,

52, 53
obfuscated, 17, 49
profiling, 35

restructuring, 28–29,
50–52

review, 4
style, 9, 20–21, 45,

48–50
cohesion, 47
comment, 5, 9, 12–13, 26,

39, 42, 53–55
concurrent program, 4,

17–18, 34, 35
constant, 15, 53,

see alsoname
core dump, 39
coupling, 47
cut and paste, 51–52

data structure, 6, 17, 47
debugger, 25, 36, 39, 44
debugging, 4, 5, 25, 35,

37–44
design

bottom-up,
seebottom-up design

comprehension, 5, 6, 18
middle-out,

seemiddle-out design
pattern, 7, 47
recovery, 5
top-down,

seetop-down design
visualization, 10

71



determinism, 34–35
divide and conquer, 42–43
documentation, 5, 12, 45,

53–56
dynamic

scope, 14, 15
typing, 15

editor, 9, 10, 20, 49
defined, 2

error checking, 34, 39

file, 9–12, 15, 22, 24,
see alsomodule
input, 17, 32,

see alsoinput
Forth, 48
Fortran, 14
function,

seesubroutine

Heisenbug, 44

idiom, 13–14, 21, 45, 50
indentation, 49–51
inheritance, 15
input

defined, 2
integrated development

environment,
seeeditor

interface,
seemodule

interrupt, 18

Java, 17, 53
Javadoc, 53

license, 5, 26, 54
open source, 56

line length, 51
literate programming,

53–54

mental model, 4
method,

seesubroutine
middle-out, 7

design, 47
module, 6, 7, 47

defined, 2

name
defined, 2

noise generator, 36

object-oriented, 7, 15
off-by-one error, 33
overloading, 15

patch, 22, 23
Perl, 14, 48
postcondition, 42
PostScript, 48
precondition, 42
pretty printer, 9, 20
procedure,

seesubroutine
production system, 21
Python, 49

regression test, 29
regular expression, 10
reverse engineering, 5, 17
revision control system, 22

searching, 9–12, 26, 43, 56
security auditing, 4
Sherlock Holmes, 44
side effect, 14, 43
spaghetti code, 17
static scope, 14
stress test, 31, 41
stub, 43
subroutine

defined, 2
syntax highlighting, 9

72



tags, 10
test

harness, 32
program, 14
suite, 24, 27, 29, 31
system, 21

testing, 3, 24, 27, 28,
31–36, 43,
see alsoregression test,
see alsostress test

top-down, 7
design, 46, 47

tracing, 39–40

variable, 14, 15, 17, 39, 42,
53,
see alsoname

white box testing, 32

73




