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Take-home message

Drinfeld modules are to function fields what
elliptic curves are to number fields

Zero characteristic Positive characteristic
Z Fq[T ]
Q Fq(T )
R R∞ = Fq(( 1

T ))
C C∞ = completion of R∞

Elliptic curves Drinfeld modules
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Why Drinfeld modules?
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Computing of a group action from class field theory
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Why are elliptic curves useful?

Double nature:
◦ arithmetic
◦ geometric

P

Q P + Q
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Applications to cryptography

Classical cryptography
ECDH:

◦ Used all the time

Post-quantum cryptograph
SQIsign:

◦ Still in the NIST competition
◦ Very active research (e.g. IACR ePrint: 2025/271 and 2025/379)
◦ Short signature sizes
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Applications to computer algebra
Primality testing
ECPP method:

◦ By Goldwasser-Killian, refined by Altkin and Morain
◦ Las-Vegas algorithm
◦ Output includes a primality certificate

Integer factorization
ECM method:

◦ By Hendrik Lenstra
◦ Las-Vegas algorithm
◦ Before Number Field Sieve methods, used to be the best
◦ Still fastest for 64 bits integers; used in CADO-NFS implementation
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Theoretical applications
Class field theory
Aims at describing abelian extensions of a given field. The Hilbert class field
(maximal abelian unramified extension) of a number field is K is the extension
generated by j-invariants of elliptic curves that have complex multiplication in K.

Fermat’s last theorem
Proved using a subcase of the modularity theorem, which states that all elliptic
curves over Q come from a modular form.

Conjectures on elliptic curves
◦ BSD conjecture
◦ ABC conjecture
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From number fields to function fields
Use geometrical tools for analogous problems.

Proved theorems in function fields
◦ GRH
◦ Langlands program for GLn(K), K a function field

Algorithmic blocks
◦ Polynomial derivation
◦ Polynomial factorization
◦ Ore polynomials & Anderson motives (see thereafter)
◦ More unconditional algorithms
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Broader questions

Elliptic curves vs Drinfeld modules

Integers vs Polynomials
Number fields vs Function fields

Zero characteristic vs Positive characteristic
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◦ First examples of Drinfeld modules: Carlitz, 1935
◦ Formalization of Drinfeld modules: Drinfeld, 1974
◦ Roots in the Kronecker Jugendtraum, and class field theory
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Cryptography:
2001 Scanlon (construction, cryptanalysis)
2003 Gillard, Leprévost, Panchishkin, Roblot (construction)
2006 Blackburn, Cid, Galbraith (cryptanalysis)
2019 Joux, Narayanan (construction, cryptanalysis)
2022 L., Spaenlehauer (construction)
2022 Wesolowski (cryptanalysis)

Reduction of problems:
2022 Bombar, Couvreur, Debris-Alazard

Coding theory:
2024 Bastioni, Darwish, Micheli
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Algorithms:
2016 Kuhn, Pink
2019 Musleh, Schost
2020 Caranay, Greenberg, Scheidler
2020 Garai, Papikian
2023 Musleh, Schost
2025 Caruso, Gazda

Implementations:
2023 Ayotte, Caruso, L., Musleh

Computer algebra:
2021 Doliskani, Narayanan, Schost

PhD theses:
2018 Caranay
2023 Ayotte
2023 Musleh
2024 L.
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Ingredients

◦ Extensions of finite fields
◦ Polynomials in Fq[T ]
◦ Ore polynomials
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Ore polynomials
Fix fields

Fq ↪→ K ↪→ K

Fix the Frobenius
τ : K → K

x 7→ xq

Let

K{τ} =
{

n∑
i=0

aiτ
i, n ∈ Z>0, a0, . . . , an ∈ K

}
.

Definition
K{τ} is the ring (for addition and composition) of Ore polynomials with
coefficients in K.
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Drinfeld modules

An Fq[T ]-Drinfeld module over K with rank r is (almost!) an Fq-algebra
morphism:

φ : Fq[T ] → K{τ}
a 7→ φa := a(φT ),

where
φT =

r∑
i=0

giτ
i, g0, . . . , gr ∈ K,

and r > 0.
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The action of a Drinfeld module

Fq[T ] acts on K via φ:
Fq[T ] ×K → K

(a, z) 7→ φa(z)

Drinfeld module version of the Z-module of points of an elliptic curve
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Morphisms of Drinfeld modules

A morphism of Drinfeld modules u : φ → ψ is an Ore polynomial

u =
n∑

i=0
uiτ

i ∈ K{τ}

such that
uφT = ψTu.

Two important facts:
1. Drinfeld modules are not sets
2. K{τ} is noncommutative, but right-euclidean for the τ -degree
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Two invariants

Consider the rank 2 Drinfeld module φ given by φT = g0 + g1τ + g2τ
2. Its

j-invariant is:

j(φ) = gq+1
1
g2

.

Two Drinfeld modules are K-isomorphic iff they have the same j-invariant.

An isogeny is a nonzero morphism.

If K is finite, two Drinfeld modules are K-isogenous iff they have the same
characteristic polynomial of the Frobenius endomorphism.
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Co-author

Joint-work with Xavier Caruso. To appear in Mathematics of Computation.
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Frobenius endomorphism

Assume K is finite, fix d = [K : Fq].

The Frobenius endomorphism of φ is τd ∈ K{τ}.

The characteristic polynomial of φ is a polynomial χ ∈ Fq[T ][X], monic with
degree r, such that:

χ
(
φT , τ

d
)

= 0.

25 / 44



Frobenius endomorphism

Assume K is finite, fix d = [K : Fq].

The Frobenius endomorphism of φ is τd ∈ K{τ}.

The characteristic polynomial of φ is a polynomial χ ∈ Fq[T ][X], monic with
degree r, such that:

χ
(
φT , τ

d
)

= 0.

25 / 44



Theoretical definition of χ

1. Make Fq[T ] act on K via φ.
2. Consider the action of τd on (almost all) the `-torsion submodules, ` ∈ Fq[T ].
3. Show that these are free with rank r on Fq[T ]/(`).
4. Show that the characteristic polynomial of the action of τd on these modules

lifts to a single polynomial χ ∈ Fq[T ][X].
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State of the art
2008 Gekeler Frobenius, r = 2 generalized to r by Musleh
2019 Musleh, Schost Frobenius, r = 2
2020 Garai, Papikian Frobenius, r = 2
2023 Musleh, Schost Any endomorphism, any r
2024 Musleh Any endomorphism, any r

Caruso, L., 2023
◦ any endomorphism
◦ any r
◦ any K
◦ any function ring
◦ extends to isogeny norms
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Anderson motives

K[T ] acts on K{τ} via φ:

K[T ] ×K{τ} → K{τ}(∑
i λiT

i, f(τ)
)

7→
∑

i λif(τ)φi
T

Definition
This is the Anderson motive of φ, denoted by M(φ)

M(φ) is free with rank r, and canonical basis (1, τ, . . . , τ r−1).

Recursive process, using Ore Euclidean division:

f(τ) = Q(τ)φT +R(τ), degτ (R) < r.
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
Fq = F2

K = F4 = {0, 1, i, i+ 1}
φT = i+ τ + τ2

τd = τ2

The action of τ2 on M(φ) is given by:(
T + i i
T + i T + i

)
.

The characteristic polynomial is:

X2 + T 2 + T + 1,

hence
(τ2)2 + φ2

T + φT + 1 = 0.
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sage: Fq = GF(2)

sage: A.<T> = Fq[]

sage: K.<i> = Fq.extension(2)

sage: phi = DrinfeldModule(A, [i, 1, 1])

sage: matrix = phi.frobenius_endomorphism()._motive_matrix()

sage: matrix

[-T - i -1]

[-T - i -T - i]

sage: matrix.charpoly()

-x^2 - T^2 - T - 1

sage: t = phi.ore_variable()

sage: - (t^2)^2 - phi(T)^2 - phi(T) - 1

0
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Cost of computing χ

Las Vegas algorithm, cost in bit operations:
◦ [F-MFF] O (̃d log2 q) + (SM>1(d, d) + d2r + drω) log q)1+o(1),
◦ [F-MKU] O (̃d log2 q) + ((d2rω−1 + drω) log q)1+o(1),
◦ [F-CSA] O (̃d log2 q) + (rdω log q)1+o(1).

d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]
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log r
log d

log m
log d

0

1

11
5−ω

2
5−ω

ω+3
10ω−2ω2

Musleh-Schost

F-MKU

F-MFF F-CSA
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For general endomorphisms

Deterministic algorithm:
◦ · O (̃n2 + (n+ r)rΩ−1) operations in K

· O(n2 + r2) q-exponentiations in K

If K is finite, Las Vegas algorithm (cost in binary operations):
◦ O (̃d log2 q) + ((SM>1(n, d) + ndr + (n+ d)rω) log q)1+o(1).

n = τ -degree of the endomorphism
d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field
Ω = feasible exponent for characteristic polynomial computation in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]
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For isogeny norms

Deterministic algorithm:
◦ · O (̃n2 + nrω−1 + rω) operations in K

· O(n2 + r2) q-exponentiations in K

If K is finite, Las Vegas algorithm (cost in bit operations):
◦ O (̃d log2 q) + ((SM>1(n, d) + ndr + nmin(d, r)rω−1 + drω) log q)1+o(1).

n = τ -degree of the isogeny
d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field
Ω = feasible exponent for characteristic polynomial computation in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]
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What these computations highlight

◦ New and better state of the art in many parameters.
◦ High level of generality thanks to Anderson motives.
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Co-author

Joint-work with Pierre-Jean Spaenlehauer. Journal of Symbolic Computation 125
(2024).
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Building up on χ

χ determines many properties of φ:
1. Its isogeny class
2. Its endomorphism ring (to some extent)
3. Whether it is ordinary, supersingular, or in between

Assumptions:
◦ K is finite
◦ φ has rank 2
◦ χ ∈ Fq[T ][X] defines an imaginary hyperelliptic curve H
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Description of End(φ)

Consider the coordinates ring of H:

Fq[H] = Fq[T ][X]/〈χ〉.

Fq[H] embeds in End(φ) via

Fq[H] → End(φ)
P (T,X) 7→ P (φT , τ

d).

Under the right assumptions:
◦ End(φ) ' Fq[H]
◦ Fq[H] is a Dedekind ring
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A group action

If I is an ideal of End(φ), then

ι = rgcd({f : f ∈ I}) ∈ K{τ}

is an isogeny to some Drinfeld module ψ:

ι : φ → ψ.

Fixing
I ∗ φ = ψ,

one defines a group action of Cl(End(φ)) on the set of j-invariants.
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Efficient representation
H being an imaginary hyperelliptic curve, one has an isomorphism

Pic0(H) ' Cl(End(φ)).

Elements of Cl(End(φ)) are represented by Mumford coordinates (u, v) ∈ Fq[T ]2:

Pic0(H) → Cl(End(φ))
(u, v) 7→ (φu, τd − φv).

Computing the group action comes down to computing

ι = rgcd(φu, τ
d − φv).
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Comparison with elliptic curves

For ellliptic curves, the action is described in terms of kernels.
It is very important in post-quantum isogeny-based cryptography: crs protocol
[Couveignes, 1999; Rostovtsev, Stolbunov, 2006].

Its computation is slow (involves torsion points in large extensions) [de Feo,
Kieffer, Smith, 2018].
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For cryptography

Our algorithms gives a candidate for a key-exchange protocol.

crs Classical −→ ∼ 10 min
crs Drinfeld −→ ∼ 400 ms

The security would be based on the hardness of computing isogenies ...which is
easy for Drinfeld modules [Wesolowski, 2022].
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What these computations highlight

◦ We made explicit some very theoretical results.
◦ One can manipulate kernels by manipulating Ore polynomials directly.
◦ We directly used function field tools and the geometrical object defined by χ.
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