Elliptic curves, Drinfeld modules, and computations

Antoine Leudière

Algebra and Number Theory seminar

March 13th, 2025

Take-home message

Drinfeld modules are to function fields what elliptic curves are to number fields

Zero characteristic	Positive characteristic
Z	$\mathbb{F}_q[T]$
Q	$\mathbb{F}_q(T)$
\mathbb{R}	$\mathbb{R}_{\infty} = \mathbb{F}_q((\frac{1}{T}))$
C	$\mathbb{C}_{\infty} = \text{completion of } \overline{\mathbb{R}_{\infty}}$
Elliptic curves	Drinfeld modules

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

Why are elliptic curves useful?

Double nature:

- $\circ~{\rm arithmetic}$
- \circ geometric

Applications to cryptography

Classical cryptography **ECDH:**

 $\circ~$ Used all the time

Post-quantum cryptograph

SQIsign:

- Still in the NIST competition
- Very active research (e.g. IACR ePrint: 2025/271 and 2025/379)
- Short signature sizes

Applications to cryptography

Classical cryptography **ECDH:**

 $\circ~$ Used all the time

 $Post-quantum\ cryptograph$

SQIsign:

- $\circ~$ Still in the NIST competition
- $\circ~Very$ active research (e.g. IACR ePrint: 2025/271 and 2025/379)
- $\circ~$ Short signature sizes

Applications to computer algebra

Primality testing

ECPP method:

- $\circ~$ By Goldwasser-Killian, refined by Altkin and Morain
- Las-Vegas algorithm
- $\circ~$ Output includes a primality certificate

Integer factorization

ECM method:

- By Hendrik Lenstra
- Las-Vegas algorithm
- $\circ~$ Before Number Field Sieve methods, used to be the best
- $\circ~$ Still fastest for 64 bits integers; used in CADO-NFS implementation

Applications to computer algebra

Primality testing

ECPP method:

- $\circ~$ By Goldwasser-Killian, refined by Altkin and Morain
- Las-Vegas algorithm
- Output includes a primality certificate

Integer factorization

ECM method:

- By Hendrik Lenstra
- $\circ~$ Las-Vegas algorithm
- $\circ~$ Before Number Field Sieve methods, used to be the best
- $\circ~$ Still fastest for 64 bits integers; used in CADO-NFS implementation

Theoretical applications

Class field theory

Aims at describing abelian extensions of a given field. The *Hilbert class field* (maximal abelian unramified extension) of a number field is K is the extension generated by j-invariants of elliptic curves that have complex multiplication in K.

Fermat's last theorem

Proved using a subcase of the *modularity theorem*, which states that all elliptic curves over \mathbb{Q} come from a modular form.

Conjectures on elliptic curves

- BSD conjecture
- ABC conjecture

Theoretical applications

Class field theory

Aims at describing abelian extensions of a given field. The *Hilbert class field* (maximal abelian unramified extension) of a number field is K is the extension generated by j-invariants of elliptic curves that have complex multiplication in K.

Fermat's last theorem

Proved using a subcase of the *modularity theorem*, which states that all elliptic curves over \mathbb{Q} come from a modular form.

Conjectures on elliptic curves

- BSD conjecture
- ABC conjecture

Theoretical applications

Class field theory

Aims at describing abelian extensions of a given field. The *Hilbert class field* (maximal abelian unramified extension) of a number field is K is the extension generated by j-invariants of elliptic curves that have complex multiplication in K.

Fermat's last theorem

Proved using a subcase of the *modularity theorem*, which states that all elliptic curves over \mathbb{Q} come from a modular form.

Conjectures on elliptic curves

- BSD conjecture
- ABC conjecture

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

From number fields to function fields

Use geometrical tools for analogous problems.

Proved theorems in function fields

• GRH

• Langlands program for $\operatorname{GL}_n(K)$, K a function field

Algorithmic blocks

- Polynomial derivation
- Polynomial factorization
- Ore polynomials & Anderson motives (see thereafter)
- More unconditional algorithms

From number fields to function fields

Use geometrical tools for analogous problems.

Proved theorems in function fields

- \circ GRH
- $\,\circ\,$ Langlands program for $\mathrm{GL}_n(K),\,K$ a function field

Algorithmic blocks

- Polynomial derivation
- Polynomial factorization
- Ore polynomials & Anderson motives (see thereafter)
- More unconditional algorithms

From number fields to function fields

Use geometrical tools for analogous problems.

Proved theorems in function fields

- \circ GRH
- $\,\circ\,$ Langlands program for $\mathrm{GL}_n(K),\,K$ a function field

Algorithmic blocks

- Polynomial derivation
- Polynomial factorization
- $\circ~$ Ore polynomials & Anderson motives (see the reafter)
- $\circ~$ More unconditional algorithms

Broader questions

Integers	vs	Polynomials
Number fields	vs	Function fields
Zero characteristic	vs	Positive characteristic

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

- $\circ~$ First examples of Drinfeld modules: Carlitz, 1935
- $\circ\,$ Formalization of Drinfeld modules: Drinfeld, 1974
- $\circ~$ Roots in the Kronecker Jugendtraum, and class field theory

Cryptography:

- 2001 Scanlon (construction, cryptanalysis)
- 2003 Gillard, Leprévost, Panchishkin, Roblot (construction)
- 2006 Blackburn, Cid, Galbraith (cryptanalysis)
- 2019 Joux, Narayanan (construction, cryptanalysis)
- 2022 L., Spaenlehauer (construction)
- 2022 Wesolowski (cryptanalysis)

Reduction of problems:

2022 Bombar, Couvreur, Debris-Alazard

Coding theory:

2024 Bastioni, Darwish, Micheli

Algorithms:

- 2016 Kuhn, Pink
- 2019 Musleh, Schost
- 2020 Caranay, Greenberg, Scheidler
- 2020 Garai, Papikian
- 2023 Musleh, Schost
- 2025 Caruso, Gazda

Implementations:

2023 Ayotte, Caruso, L., Musleh

Computer algebra:

2021 Doliskani, Narayanan, Schost

PhD theses:

- 2018 Caranay
- 2023 Ayotte
- 2023 Musleh
- 2024 L.

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

Ingredients

- $\circ~$ Extensions of finite fields
- $\circ~$ Polynomials in $\mathbb{F}_q[T]$
- $\circ~$ Ore polynomials

Ore polynomials

Fix fields

$$\mathbb{F}_q \hookrightarrow K \hookrightarrow \overline{K}$$

Fix the Frobenius

$$\begin{array}{rcccc} \tau : & \overline{K} & \to & \overline{K} \\ & x & \mapsto & x^q \end{array}$$

Let

$$K\{\tau\} = \left\{\sum_{i=0}^{n} a_i \tau^i, \quad n \in \mathbb{Z}_{\geq 0}, \quad a_0, \dots, a_n \in K\right\}$$

Definition

 $K\{\tau\}$ is the ring (for addition and composition) of *Ore polynomials* with coefficients in K.

Ore polynomials

Fix fields

$$\mathbb{F}_q \hookrightarrow K \hookrightarrow \overline{K}$$

Fix the Frobenius

$$\begin{array}{rcccc} \tau : & \overline{K} & \to & \overline{K} \\ & x & \mapsto & x^q \end{array}$$

Let

$$K\{\tau\} = \left\{\sum_{i=0}^{n} a_i \tau^i, \quad n \in \mathbb{Z}_{\geq 0}, \quad a_0, \dots, a_n \in K\right\}.$$

Definition

 $K\{\tau\}$ is the ring (for addition and composition) of $Ore\ polynomials$ with coefficients in K.

Drinfeld modules

An $\mathbb{F}_q[T]$ -Drinfeld module over K with rank r is (almost!) an \mathbb{F}_q -algebra morphism:

$$\begin{aligned} \phi &: \quad \mathbb{F}_q[T] \quad \to \quad K\{\tau\} \\ a \quad \mapsto \quad \phi_a \coloneqq a(\phi_T), \end{aligned}$$

where

$$\phi_T = \sum_{i=0}^r g_i \tau^i, \quad g_0, \dots, g_r \in K,$$

and r > 0.

The action of a Drinfeld module

 $\mathbb{F}_q[T]$ acts on \overline{K} via ϕ : $\mathbb{F}_q[T] \times \overline{K} \to \overline{K}$ $(a, z) \mapsto \phi_a(z)$

Drinfeld module version of the Z-module of points of an elliptic curve

Morphisms of Drinfeld modules

A morphism of Drinfeld modules $u: \phi \to \psi$ is an Ore polynomial

$$u = \sum_{i=0}^{n} u_i \tau^i \in K\{\tau\}$$

such that

$$u\phi_T = \psi_T u.$$

Two important facts:

- 1. Drinfeld modules are not sets
- 2. $K{\tau}$ is noncommutative, but right-euclidean for the τ -degree

Morphisms of Drinfeld modules

A morphism of Drinfeld modules $u: \phi \to \psi$ is an Ore polynomial

$$u = \sum_{i=0}^{n} u_i \tau^i \in K\{\tau\}$$

such that

$$u\phi_T = \psi_T u.$$

Two important facts:

- 1. Drinfeld modules are not sets
- 2. $K\{\tau\}$ is noncommutative, but right-euclidean for the τ -degree

Two invariants

Consider the rank 2 Drinfeld module ϕ given by $\phi_T = g_0 + g_1 \tau + g_2 \tau^2$. Its *j*-invariant is:

$$\mathbf{j}(\phi) = \frac{g_1^{q+1}}{g_2}.$$

Two Drinfeld modules are \overline{K} -isomorphic iff they have the same *j*-invariant.

An *isogeny* is a nonzero morphism.

If K is finite, two Drinfeld modules are K-isogenous iff they have the same characteristic polynomial of the Frobenius endomorphism.

Two invariants

Consider the rank 2 Drinfeld module ϕ given by $\phi_T = g_0 + g_1 \tau + g_2 \tau^2$. Its *j*-invariant is:

$$\mathbf{j}(\phi) = \frac{g_1^{q+1}}{g_2}$$

Two Drinfeld modules are \overline{K} -isomorphic iff they have the same *j*-invariant.

An *isogeny* is a nonzero morphism.

If K is finite, two Drinfeld modules are K-isogenous iff they have the same characteristic polynomial of the Frobenius endomorphism.

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms Computing of a group action from class field theory

Co-author

Joint-work with Xavier Caruso. To appear in Mathematics of Computation.

Frobenius endomorphism

Assume K is finite, fix $d = [K : \mathbb{F}_q]$.

The Frobenius endomorphism of ϕ is $\tau^d \in K\{\tau\}$.

The characteristic polynomial of ϕ is a polynomial $\chi \in \mathbb{F}_q[T][X]$, monic with degree r, such that:

 $\chi\left(\phi_T,\tau^d\right) = 0.$

Frobenius endomorphism

Assume K is finite, fix $d = [K : \mathbb{F}_q]$.

The Frobenius endomorphism of ϕ is $\tau^d \in K\{\tau\}$.

The characteristic polynomial of ϕ is a polynomial $\chi \in \mathbb{F}_q[T][X]$, monic with degree r, such that:

$$\chi\left(\phi_T,\tau^d\right) = 0.$$

Theoretical definition of χ

- 1. Make $\mathbb{F}_q[T]$ act on \overline{K} via ϕ .
- 2. Consider the action of τ^d on (almost all) the ℓ -torsion submodules, $\ell \in \mathbb{F}_q[T]$.
- 3. Show that these are free with rank r on $\mathbb{F}_q[T]/(\ell)$.
- 4. Show that the characteristic polynomial of the action of τ^d on these modules lifts to a single polynomial $\chi \in \mathbb{F}_q[T][X]$.

State of the art

2008	Gekeler	Frobenius, $r = 2$ generalized to r by Musleh
2019	Musleh, Schost	Frobenius, $r = 2$
2020	Garai, Papikian	Frobenius, $r = 2$
2023	Musleh, Schost	Any endomorphism, any r
2024	Musleh	Any endomorphism, any r

Caruso, L., 2023

- any endomorphism
- \circ any r
- \circ any K
- \circ any function ring
- extends to isogeny norms

State of the art

2008	Gekeler	Frobenius, $r = 2$ generalized to r by Musleh
2019	Musleh, Schost	Frobenius, $r = 2$
2020	Garai, Papikian	Frobenius, $r = 2$
2023	Musleh, Schost	Any endomorphism, any r
2024	Musleh	Any endomorphism, any r

Caruso, L., 2023

- $\circ~$ any endomorphism
- \circ any r
- $\circ~$ any K
- $\circ~$ any function ring
- $\circ~$ extends to isogeny norms

Anderson motives

K[T] acts on $K\{\tau\}$ via ϕ :

$$\begin{array}{rcl} K[T] \times K\{\tau\} & \to & K\{\tau\} \\ \left(\sum_i \lambda_i T^i, f(\tau)\right) & \mapsto & \sum_i \lambda_i f(\tau) \phi_T^i \end{array}$$

Definition

This is the Anderson motive of ϕ , denoted by $\mathbb{M}(\phi)$

 $\mathbb{M}(\phi)$ is free with rank r, and canonical basis $(1, \tau, \dots, \tau^{r-1})$.

Recursive process, using Ore Euclidean division:

 $f(\tau) = Q(\tau)\phi_T + R(\tau), \quad \deg_{\tau}(R) < r.$

Anderson motives

K[T] acts on $K\{\tau\}$ via ϕ :

$$\begin{array}{rcl} K[T] \times K\{\tau\} & \to & K\{\tau\} \\ \left(\sum_{i} \lambda_{i} T^{i}, f(\tau)\right) & \mapsto & \sum_{i} \lambda_{i} f(\tau) \phi_{T}^{i} \end{array}$$

Definition

This is the Anderson motive of ϕ , denoted by $\mathbb{M}(\phi)$

 $\mathbb{M}(\phi)$ is free with rank r, and canonical basis $(1, \tau, \dots, \tau^{r-1})$.

Recursive process, using Ore Euclidean division:

$$f(\tau) = Q(\tau)\phi_T + R(\tau), \quad \deg_{\tau}(R) < r.$$

$$\begin{cases} \mathbb{F}_q = \mathbb{F}_2\\ K = \mathbb{F}_4 = \{0, 1, i, i+1\}\\ \phi_T = i + \tau + \tau^2\\ \tau^d = \tau^2 \end{cases}$$

The action of τ^2 on $\mathbb{M}(\phi)$ is given by:

$$\begin{pmatrix} T+i & i \\ T+i & T+i \end{pmatrix}.$$

The characteristic polynomial is:

$$X^2 + T^2 + T + 1,$$

hence

$$(\tau^2)^2 + \phi_T^2 + \phi_T + 1 = 0.$$

```
sage: Fq = GF(2)
sage: A.<T> = Fq[]
sage: K.<i> = Fq.extension(2)
sage: phi = DrinfeldModule(A, [i, 1, 1])
```

```
sage: matrix = phi.frobenius_endomorphism()._motive_matrix()
sage: matrix
[-T - i -1]
[-T - i -T - i]
```

```
sage: matrix.charpoly()
-x^2 - T^2 - T - 1
sage: t = phi.ore_variable()
sage: - (t^2)^2 - phi(T)^2 - phi(T) - 1
0
```

Cost of computing χ

Las Vegas algorithm, cost in bit operations:

 $\circ \ [\mathsf{F}-\mathsf{MFF}] \quad O\tilde{\ } (d\log^2 q) + (\mathrm{SM}^{\geqslant 1}(d,d) + d^2r + dr^\omega)\log q)^{1+o(1)},$

$$\circ \ [{\rm F-MKU}] \quad O\,\tilde{}\,(d\log^2 q) + ((d^2r^{\omega-1} + dr^\omega)\log q)^{1+o(1)},$$

$$\circ \ [\mathrm{F-CSA}] \quad O~(d\log^2 q) + (rd^{\omega}\log q)^{1+o(1)}$$

$$d = [K : \mathbb{F}_q]$$

$$r = \operatorname{rank} \operatorname{of} \phi$$

- ω = feasible exponent for matrix multiplication in a field
- $SM^{\geq 1}$ = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]

For general endomorphisms

Deterministic algorithm:

 $\circ \qquad \cdot O^{\tilde{}}(n^2 + (n+r)r^{\Omega-1}) \text{ operations in } K$ $\cdot O(n^2 + r^2) \text{ q-exponentiations in K}$

If K is finite, Las Vegas algorithm (cost in binary operations): $\circ O^{\tilde{}}(d \log^2 q) + ((SM^{\geq 1}(n,d) + ndr + (n+d)r^{\omega}) \log q)^{1+o(1)}.$

- $n = \tau$ -degree of the endomorphism
- $d = [K:\mathbb{F}_q]$
- $r = \operatorname{rank} \operatorname{of} \phi$
- ω = feasible exponent for matrix multiplication in a field
- Ω = feasible exponent for characteristic polynomial computation in a field
- $\mathrm{SM}^{\geq 1}$ = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]

For isogeny norms

Deterministic algorithm:

 $\circ \qquad \cdot O^{\tilde{}}(n^2 + nr^{\omega - 1} + r^{\omega}) \text{ operations in } K$ $\cdot O(n^2 + r^2) \text{ q-exponentiations in K}$

If K is finite, Las Vegas algorithm (cost in bit operations): $\circ O^{\sim}(d\log^2 q) + ((SM^{\geq 1}(n,d) + ndr + n\min(d,r)r^{\omega-1} + dr^{\omega})\log q)^{1+o(1)}.$

- $n = \tau$ -degree of the isogeny
- $d = [K:\mathbb{F}_q]$
- $r = \operatorname{rank} \operatorname{of} \phi$
- $\omega \quad = \quad \text{feasible exponent for matrix multiplication in a field}$
- Ω = feasible exponent for characteristic polynomial computation in a field
- $SM^{\geq 1}$ = related to fast multiplication of Ore polynomials [Caruso, Le Borgne, 2017]

What these computations highlight

- $\,\circ\,$ New and better state of the art in many parameters.
- High level of generality thanks to Anderson motives.

Elliptic curves

Why Drinfeld modules?

State of the art

Drinfeld modules basics

Computing characteristic polynomials and norms

Computing of a group action from class field theory

Co-author

Joint-work with Pierre-Jean Spaenlehauer. *Journal of Symbolic Computation* 125 (2024).

Building up on χ

 χ determines many properties of $\phi {:}$

- 1. Its isogeny class
- 2. Its endomorphism ring (to some extent)
- 3. Whether it is ordinary, supersingular, or in between

Assumptions:

- $\circ K$ is finite
- $\circ~\phi$ has rank 2

• $\chi \in \mathbb{F}_q[T][X]$ defines an imaginary hyperelliptic curve \mathcal{H}

Building up on χ

 χ determines many properties of ϕ :

- 1. Its isogeny class
- 2. Its endomorphism ring (to some extent)
- 3. Whether it is ordinary, supersingular, or in between

Assumptions:

- $\circ K$ is finite
- $\circ~\phi$ has rank 2

 $\circ \ \chi \in \mathbb{F}_q[T][X]$ defines an imaginary hyperelliptic curve $\mathcal H$

Description of $End(\phi)$

Consider the *coordinates ring of* \mathcal{H} :

 $\mathbb{F}_q[\mathcal{H}] = \mathbb{F}_q[T][X]/\langle \chi \rangle.$

 $\mathbb{F}_q[\mathcal{H}]$ embeds in $\operatorname{End}(\phi)$ via

 $\begin{array}{rcl} \mathbb{F}_q[\mathcal{H}] & \to & \mathrm{End}(\phi) \\ P(T,X) & \mapsto & P(\phi_T,\tau^d). \end{array}$

Under the right assumptions:

- $\circ \operatorname{End}(\phi) \simeq \mathbb{F}_q[\mathcal{H}]$
- $\circ \mathbb{F}_q[\mathcal{H}]$ is a Dedekind ring

Description of $End(\phi)$

Consider the *coordinates ring of* \mathcal{H} :

 $\mathbb{F}_q[\mathcal{H}] = \mathbb{F}_q[T][X]/\langle \chi \rangle.$

 $\mathbb{F}_q[\mathcal{H}]$ embeds in $\operatorname{End}(\phi)$ via

$$\mathbb{F}_{q}[\mathcal{H}] \to \operatorname{End}(\phi)
P(T, X) \mapsto P(\phi_{T}, \tau^{d}).$$

Under the right assumptions:

- $\circ \operatorname{End}(\phi) \simeq \mathbb{F}_q[\mathcal{H}]$
- $\circ \mathbb{F}_q[\mathcal{H}]$ is a Dedekind ring

A group action

If I is an ideal of $\operatorname{End}(\phi)$, then

$$\iota = \operatorname{rgcd}(\{f : f \in I\}) \in K\{\tau\}$$

is an isogeny to some Drinfeld module $\psi :$

 $\iota:\phi\to\psi.$

Fixing

$$I*\phi=\psi,$$

one defines a group action of $Cl(End(\phi))$ on the set of *j*-invariants.

A group action

If I is an ideal of $\operatorname{End}(\phi)$, then

$$\iota = \operatorname{rgcd}(\{f : f \in I\}) \in K\{\tau\}$$

is an isogeny to some Drinfeld module ψ :

 $\iota:\phi\to\psi.$

Fixing

$$I * \phi = \psi,$$

one defines a group action of $\operatorname{Cl}(\operatorname{End}(\phi))$ on the set of *j*-invariants.

Efficient representation

${\mathcal H}$ being an imaginary hyperelliptic curve, one has an isomorphism

 $\operatorname{Pic}^{0}(\mathcal{H}) \simeq \operatorname{Cl}(\operatorname{End}(\phi)).$

Elements of $\operatorname{Cl}(\operatorname{End}(\phi))$ are represented by Mumford coordinates $(u, v) \in \mathbb{F}_q[T]^2$:

$$\begin{array}{rcl} \operatorname{Pic}^{0}(\mathcal{H}) & \to & \underline{\operatorname{Cl}(\operatorname{End}(\phi))}\\ (u,v) & \mapsto & \overline{(\phi_{u},\tau^{d}-\phi_{v})}. \end{array}$$

Computing the group action comes down to computing

$$\iota = \operatorname{rgcd}(\phi_u, \tau^d - \phi_v).$$

Efficient representation

 ${\mathcal H}$ being an imaginary hyperelliptic curve, one has an isomorphism

 $\operatorname{Pic}^{0}(\mathcal{H}) \simeq \operatorname{Cl}(\operatorname{End}(\phi)).$

Elements of $\operatorname{Cl}(\operatorname{End}(\phi))$ are represented by Mumford coordinates $(u, v) \in \mathbb{F}_q[T]^2$:

$$\begin{array}{rcl} \operatorname{Pic}^{0}(\mathcal{H}) & \to & \operatorname{Cl}(\operatorname{End}(\phi)) \\ (u,v) & \mapsto & \overline{(\phi_{u},\tau^{d}-\phi_{v})}. \end{array}$$

Computing the group action comes down to computing

$$\iota = \operatorname{rgcd}(\phi_u, \tau^d - \phi_v).$$

Efficient representation

 ${\mathcal H}$ being an imaginary hyperelliptic curve, one has an isomorphism

 $\operatorname{Pic}^{0}(\mathcal{H}) \simeq \operatorname{Cl}(\operatorname{End}(\phi)).$

Elements of $\operatorname{Cl}(\operatorname{End}(\phi))$ are represented by Mumford coordinates $(u, v) \in \mathbb{F}_q[T]^2$:

$$\begin{array}{rcl} \operatorname{Pic}^{0}(\mathcal{H}) & \to & \operatorname{Cl}(\operatorname{End}(\phi)) \\ (u,v) & \mapsto & \overline{(\phi_{u},\tau^{d}-\phi_{v})}. \end{array}$$

Computing the group action comes down to computing

$$\iota = \operatorname{rgcd}(\phi_u, \tau^d - \phi_v).$$

Comparison with elliptic curves

For elliptic curves, the action is described in terms of kernels. It is very important in *post-quantum isogeny-based cryptography*: CRS protocol [Couveignes, 1999; Rostovtsev, Stolbunov, 2006].

Its computation is slow (involves torsion points in large extensions) [de Feo, Kieffer, Smith, 2018].

Comparison with elliptic curves

For elliptic curves, the action is described in terms of kernels. It is very important in *post-quantum isogeny-based cryptography*: CRS protocol [Couveignes, 1999; Rostovtsev, Stolbunov, 2006].

Its computation is slow (involves torsion points in large extensions) [de Feo, Kieffer, Smith, 2018].

For cryptography

Our algorithms gives a candidate for a key-exchange protocol.

 $\begin{array}{rcl} {\rm CRS} \ {\rm Classical} & \longrightarrow & \sim 10 \ {\rm min} \\ {\rm CRS} \ {\rm Drinfeld} & \longrightarrow & \sim 400 \ {\rm ms} \end{array}$

The security would be based on the hardness of computing isogenies ...which is easy for Drinfeld modules [Wesolowski, 2022].

For cryptography

Our algorithms gives a candidate for a key-exchange protocol.

 $\begin{array}{rcl} {\rm CRS} \ {\rm Classical} & \longrightarrow & \sim 10 \ {\rm min} \\ {\rm CRS} \ {\rm Drinfeld} & \longrightarrow & \sim 400 \ {\rm ms} \end{array}$

The security would be based on the hardness of computing isogenies ...which is easy for Drinfeld modules [Wesolowski, 2022].

What these computations highlight

- $\circ~$ We made explicit some very theoretical results.
- $\circ~$ One can manipulate kernels by manipulating Ore polynomials directly.
- $\circ~$ We directly used function field tools and the geometrical object defined by $\chi.$