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What is point counting?

Naive approach
Counting solutions to an equation.

For algebraic varieties on a finite field: hard algorithmic problem.

Consider algebraic objects: elliptic curves, abelian varieties.
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Algebraic structure
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Changing the rules
Let E be an elliptic curve. As an abelian group,

E(Fq) ' Z/d1Z× · · · × Z/dnZ.

So
#E(Fq) = |d1 · · · dn|.

Let R be a PID, M be a finite R-module. There are m1, . . . ,m` ∈ R s.t.:

M ' R/m1R× · · · ×R/m`R.

R-cardinality
Define the R-cardinality of M as

m1 · · ·m`.
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An alternative to Z

Consider replacing Z by R = Fq[T ]!

Both Euclidean rings:

◦ Z: number fields;
◦ Fq[T ]: function fields.

Advantages of function fields
◦ Unconditional results (e.g. GRH).
◦ Faster algorithms (e.g. factorization).
◦ Geometrical properties of function fields.
◦ And others: Fq-linearity, non-Archimedean analysis, etc.
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What are elliptic curves for R = Fq[T ]?

Module structure
Z-module Fq[T ]-module

Torsion
(Z/nZ)2, p - n (Fq[T ]/aFq[T ])2, p - a

Endomorphism ring
Z, order in Q(

√
−d), order in Bp,∞ Same, over the function field Fq(T )

What objects play give this? Drinfeld modules!
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Analogies

Z Fq[T ]
Q Fq(T )

Number fields (finite ext.) Function fields (finite ext.)
R R∞ = Fq(( 1

T ))
C C∞ = completion of R∞

Elliptic curves Drinfeld modules

Mantra
Our integers are polynomials.
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Applications of Drinfeld modules
Introduced by Drinfeld (elliptic modules) in 1977. First works by Carlitz.

Function field arithmetics
◦ Explicit class field theory and theory of complex multiplication.
◦ Geometric Langlands program.
◦ Others: exponential and logarithm functions, Drinfeld modular forms, etc.

Computer algebra
State-of-the art factorization in Fq[T ], by computing Hasse invariants
(Doliskani-Narayanan-Schost, 2021).

Cryptography

Drinfeld module analogues of standard elliptic curve schemes: (Fq-linearity).

Highlights both similarities and fundamental differences with elliptic curves.
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Broader questions

Elliptic curves vs Drinfeld modules

Integers vs Polynomials
Number fields vs Function fields

Zero characteristic vs Positive characteristic
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Ore polynomials
Fix K/Fq, and

τn : K → K
x 7→ xqn

.

Definition of K{τ}
Finite K-linear combinations of τn’; ring for addition and composition.

Properties
◦ Representation as polynomials: K{τ} = {

∑n
i=0 xiτ

i, n ∈ Z>0, xi ∈ K}.
◦ Notion of τ -degree.
◦ Noncommutative: for λ ∈ K, τnλ = λqn

τn.
◦ Left-euclidean: for any A,B ∈ K{τ}, there exist Q,R ∈ K{τ} such that:

A = QB +R, degτ (R) < degτ (B).

16 / 31



Representing Drinfeld modules
(Almost) Definition (Drinfeld, 1977)
A Drinfeld Fq[T ]-module over K is a morphism of Fq[T ]-algebras

φ : Fq[T ] → K{τ}
a 7→ φa.

Representation
φ is represented by φT . The rank of φ is degτ (φT ).

Morphisms
A morphism u : φ→ ψ is an Ore polynomial u ∈ K{τ} such that

∀a ∈ Fq[T ], uφa = ψau.
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The points of a Drinfeld module
For an elliptic curve, the points form a Z-module.

Geometric points
φ acts on K via

Fq[T ]×K → K
(a, z) 7→ φa(z).

Fq[T ]-module denoted by φ(K).

K-rational points
Write

φ(K) := φ(K) ∩K.

The underlying set of φ(K) is always K.
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The number of points
For an elliptic curve,

E(Fq) ' Z/(d1)× · · · × Z/(dn),

and
(#E(Fq)) ' (d1 · · · dn)

Assume K is finite. Decompose

φ(K) ' Fq[T ]/(d1)× · · · × Fq[T ]/(dn).

The “number of K-rational points of φ” (Fq[T ]-cardinality) is

(|φ(K)|) = (d1 · · · dn).

Often referred to as the Euler-Poincaré characteristic or Fitting ideal of φ(K).
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The elliptic curve case
First deterministic polynomial time: birthday boy Schoof, 1985.

Number of points via the Frobenius endomorphism
1. An elliptic curve E/Fq has a Frobenius endomorphism π : (x, y) 7→ (xq, yq).
2. π has a characteristic polynomial

χ = X2 − tX + q ∈ Z[X]

such that
χ(π) = π2 − tπ + q = 0.

3. We have
|E(Fq)| = χ(1).

Important invariant.
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The Drinfeld module case

1. Assume K is finite. A Drinfeld module φ over K has a Frobenius
endomorphism π = τ [K:Fq ] ∈ K{τ}.

2. π has a characteristic polynomial

χ = Xr + ar−1(T )Xr−1 + · · ·+ a1(T )X + a0(T ) ∈ Fq[T ][X]

such that
χ(π) = πr + φar−1π

r−1 + · · ·+ φa1π + φa0 = 0.

3. We have (Gekeler, 1991)
(|φ(K)|) = (χ(1))

Important invariant.
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Abstract definition of χ

Tate module
For a prime q distinct from p and n > 1, the qn-torsion, denoted by φ[qn], is
isomorphic to (Fq[T ]/qFq[T ])r.
The q-adic Tate module of φ is

Tq(φ) = lim←−
n>1

φ[qn].

Definition of χ via Tate modules
The characteristic polynomial of the action of π on Tq(φ) has coefficients in A that
do not depend on q.
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Anderson motives
Definition
M(φ) is the K[T ]-module

K[T ]×K{τ} → K{τ}(∑
i λiT

i, f(τ)
)
7→

∑
i λif(τ)φi

T

Canonical basis
M(φ) is free with rank r (the rank of φ) with basis

(1, τ, . . . , τ r−1).

Recursive process via Ore Euclidean division:

f(τ) = Q(τ)φT +R(τ), degτ (R) < r.
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Morphisms as matrices

Any morphisms u : φ→ ψ gives a morphism on the Anderson motives

M(u) : M(ψ) → M(φ)
f 7→ fu.

To compute the matrix of M(u), compute the coordinates of

f, τf, · · · , τ r−1f.
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Demo!
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Our contribution (with Xavier Caruso)

Caruso, L., 2023
◦ Any endomorphism.
◦ Any r.
◦ Any K.
◦ Extends to isogeny norms.
◦ Any function ring.
◦ SageMath implementation in the standard library.

2008 Gekeler Frobenius, r = 2 generalized to r ∈ Z>0 by Musleh
2019 Musleh, Schost Frobenius, r = 2
2020 Garai, Papikian Frobenius, r = 2
2023 Musleh, Schost Any endomorphism, any r
2024 Musleh Any endomorphism, any r
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Cost of computing χ

Las Vegas algorithm, cost in bit operations:
◦ [F-MFF] O (̃d log2 q) + (SM>1(d, d) + d2r + drω) log q)1+o(1),
◦ [F-MKU] O (̃d log2 q) + ((d2rω−1 + drω) log q)1+o(1),
◦ [F-CSA] O (̃d log2 q) + (rdω log q)1+o(1).

d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]
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For general endomorphisms

Deterministic algorithm:
◦ ◦ O (̃n2 + (n+ r)rΩ−1) operations in K

◦ O(n2 + r2) q-exponentiations in K

If K is finite, Las Vegas algorithm (cost in binary operations):
◦ O (̃d log2 q) + ((SM>1(n, d) + ndr + (n+ d)rω) log q)1+o(1).

n = τ -degree of the endomorphism
d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field
Ω = feasible exponent for characteristic polynomial computation in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]

30 / 31



For isogeny norms

Deterministic algorithm:
◦ ◦ O (̃n2 + nrω−1 + rω) operations in K

◦ O(n2 + r2) q-exponentiations in K

If K is finite, Las Vegas algorithm (cost in bit operations):
◦ O (̃d log2 q) + ((SM>1(n, d) + ndr + nmin(d, r)rω−1 + drω) log q)1+o(1).

n = τ -degree of the isogeny
d = [K : Fq ]
r = rank of φ
ω = feasible exponent for matrix multiplication in a field
Ω = feasible exponent for characteristic polynomial computation in a field

SM>1 = related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]
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