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Kronecker-Weber theorem

Every abelian number field lies in a cyclotomic field Qn.

Qn is generated by the n-th roots of unity.

Alternative construction
Consider the Z-module

Z×Q∗ → Q∗

(n, z) 7→ zn

The n-th roots of unity are the n-torsion of this Z-module.
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Class Field Theory
Class Field Theory
Given a number field K/Q, what can I say about the abelian extensions of K,
using only objects defined in K?

Very important object
Hilbert class field (maximal unramified abelian extension).

Some explicit results:
◦ Kronecker-Weber.
◦ The case of quadratic imaginary number fields (Q(

√
−d), where d < 0).

The Hilbert class field of Q(
√
−d) is generated by isomorphism classes of elliptic

curves with complex multiplication in Q(
√
−d).
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An alternative framework
Common point between the results:
◦ Number fields (characteristic 0).
◦ Z-modules.

Can we change these?

Zero characteristic Positive characteristic
Z Fq[T ]
Q Fq(T )

Number fields (finite ext.) Function fields (finite ext.)
R R∞ = Fq((1/T ))
C C∞ = completion of R∞

Roots of unity Drinfeld modules
Elliptic curves Drinfeld modules
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Advantages of function fields

◦ Geometrical interpretation.
◦ Non-Archimedean valuations.
◦ Faster algorithms (polynomial derivation and factorization).
◦ Some unconditional results (GRH).
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Broader questions

Elliptic curves vs Drinfeld modules

Integers vs Polynomials
Number fields vs Function fields

Zero characteristic vs Positive characteristic
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Ore polynomials K{τ}
Consider an extension K/Fq and the Frobenius endomorphisms

τn : K → K
x 7→ xqn

.

Finite K-linear combinations of τn’: ring K{τ} for addition and composition.

Properties
◦ Representation as polynomials: K{τ} = {

∑n
i=0 xiτ

i, n ∈ Z>0, xi ∈ K}.
◦ Notion of τ -degree.
◦ Noncommutative: for λ ∈ K, τnλ = λqn

τn.
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Euclidean divisions

K{τ} is left-euclidean
For all A(τ), B(τ) ∈ K{τ}, there exist Q(τ), R(τ) ∈ K{τ} such that:{

A(τ) = Q(τ)B(τ) + R(τ),
degτ (R(τ)) < degτ (B(τ)).
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Kernels and Ore polynomials

A bijection

{
Ore polynomials f ∈ K{τ}

with constant term 1

}
→

{
finite dimensional Fq-linear subspaces

V ⊂ Ksep stable by Gal(Ksep/K)

}
f 7→ ker f.

f1 ←→ V1
f2 ←→ V2

rgcd(f1, f2) ←→ V1 ∩ V2
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Representing Drinfeld modules

Drinfeld modules φ and their morphisms are represented as Ore polynomials.

Representation
For a ∈ Fq[T ], the endomorphism of multiplication by a is represented by an Ore
polynomial φa ∈ K{τ}.

From now on, K is finite with [K : Fq] = d.

Frobenius endomorphism
One extra endomorphism: Frob = τd ∈ K{τ}.
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The module of a Drinfeld module

A Drinfeld module is not a module!

Let φ be a Drinfeld module.

We have an Fq[T ]-module law on K:

Fq[T ]×K → K
(a, x) 7→ φa(x).

Drinfeld module analogue of the Z-module coming from an elliptic curve!

The notion of point is ambiguous.
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Joint-work with P.-J. Spaenlehauer.

Computing a group action from the class field theory of imaginary hyperelliptic
function fields.

Journal of symbolic computation, 2024.
https://doi.org/10.1016/j.jsc.2024.102311.
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Cryptography with group actions
Fix and assume:
◦ A free-transitive action of an abelian group G on a set X.
◦ For all g ∈ G, computing g from x and g · x is hard.

Alice

gA·x

gB ·x

Bob

Hard Homogeneous Spaces (Couveignes, 1997)
Alice and Bob can use (gAgB) · x = gA · (gB · x) = gB · (gA · x) as their secret key.
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Isogeny-based cryptography
◦ Quadratic imaginary number field Q(

√
−d).

◦ Its ring of integers O, and the class group Cl(O).
◦ The set XO isomorphism classes of elliptic curves with endomorphism ring O.

Fix an ideal a ⊂ O and an elliptic curve E. There is a curve Ea and morphism
E → Ea with kernel ⋂

f∈a

ker f.

We define
a ∗ E = Ea.

Free and transitive group action of Cl(O) on XO.

Too slow for cryptography (de Feo-Kieffer-Smith, 2018)!
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The Drinfeld module analogue

Same action for Drinfeld modules!

◦ Order O in an imaginary quadratic number field.
◦ Elliptic curves E such that End(E) ' O.
◦ Ideal a of End(E).
◦ Compute

⋂
f∈a ker f .

◦ Order O in an imaginary quadratic function field.
◦ Drinfeld modules φ such that End(φ) ' O.
◦ Ideal a of End(φ).
◦ Compute

⋂
f∈a ker f .
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The hyperelliptic case
Imaginary hyperelliptic curve H defined by χ ∈ Fq[T ][X], and its coordinate ring

Fq[H] = Fq[T ][X]/(χ).

Mumford coordinates
Elements of Cl(Fq[H]) are represented by couples (u, v) ∈ Fq[T ]2 with:

(u, v)
(
u(T ), X − v(T )

)

For a Drinfeld module φ such that End(φ) = Fq[H], we have an isomorphism

Fq[H] → End(φ)
P (T , X) 7→ P (φT , Frob).
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Practical computation

We rely on:
◦ Mumford coordinates.
◦ The correspondence between kernels and Ore polynomials.

Computing the action essentially goes down to computing

rgcd (φu, Frob− φv) .

Computation time on cryptographic sizes goes from ∼ 10 min. to 400 ms.
Highly insecure though! (Wesolowski)
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Conclusive remarks

Applications of Drinfeld modules
◦ Geometric Langlands program, Class Field Theory of function fields, GRH for

function fields.
◦ State of the art polynomial factorization (Doliskani-Narayanan-Schost, 2018).

Tools for Drinfeld modules
◦ Inspiration from elliptic curves.
◦ Function fields arithmetics.
◦ Ore polynomial arithmetics.
◦ Anderson motives.
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