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About me

PIMS PDF at UCalgary, under Renate Scheidler.

Usual research
o Algorithmic number theory (Drinfeld modules).
o Applications to:

o cryptography,
o coding theory,
o computer algebra.

o SageMath developer.

Typical algorithmic number theory problem

Compute the number of points of an elliptic curve over a finite field.
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Rethinking Number Theory

We believe that number theory should be not only accessible, but enjoyable to
everyone. Join us for a joyful collaborative research experience, where people are
valued and uplifted. Help us rethink the graduate school and postdoc experience,
research seminars, hiring process, conferences, grant applications, and other

aspects of our profession.

With J. Bajpai, S. Das, K. S. Kedlaya, N. H. Le, M. Lee and J. Mello.

o https://arxiv.org/abs/2510.20435
o https://github.com/castle-gray-rnt6/cassels
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Main results

o Complete classification of cyclotomic integers with castle < 5.01.

o As a corollary, complete classification of cyclotomic integers with castle < 2.

(First conjecture stated by Robinson in 1965.)

Cyclotomic integers are highly important in number theory, class field theory,
coding theory...

4/30



Main results

o Complete classification of cyclotomic integers with castle < 5.01.

o As a corollary, complete classification of cyclotomic integers with castle < 2.
(First conjecture stated by Robinson in 1965.)

Cyclotomic integers are highly important in number theory, class field theory,
coding theory...

Sounds made up?

o Part of a research program started in 1965.

o At the moment, best we can do?
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Main results

o Complete classification of cyclotomic integers with castle < 5.01.

o As a corollary, complete classification of cyclotomic integers with castle < 2.

(First conjecture stated by Robinson in 1965.)

Cyclotomic integers are highly important in number theory, class field theory,
coding theory...

Sounds made up?
o Part of a research program started in 1965.

o At the moment, best we can do?

Today: focus on computations.
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Stating the problem
The Robinson program
Our approach
Our implementation

Rethinking Number Theory
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Stating the problem
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Algebraic integers

In algebra, we want exact representations and operations... but we also need
complex numbers.

Combining exact representations and complex numbers

An algebraic integer o € C is any root of a monic integer polynomial.
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Algebraic integers

In algebra, we want exact representations and operations... but we also need
complex numbers.

Combining exact representations and complex numbers

An algebraic integer o € C is any root of a monic integer polynomial.

Algebraic integers are almost like integers

o Algebraic integers contain: Z; roots of unity; v/2, /3, etc.
o Algebraic integers form a ring.

o Excellent factorization properties (Dedekind rings).
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Algebraic integers

In algebra, we want exact representations and operations... but we also need
complex numbers.

Combining exact representations and complex numbers

An algebraic integer o € C is any root of a monic integer polynomial.

Algebraic integers are almost like integers
o Algebraic integers contain: 7Z; roots of unity; v/2, v/3, etc.
o Algebraic integers form a ring.

o Excellent factorization properties (Dedekind rings).

Algebraic integers come in families: algebraic integers with same minimal
polynomial are called algebraic conjugates.
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A theorem of Kronecker

General question
For any ¢ > 0, who are the algebraic integers o whose algebraic conjugates 3 all
verify || < ¢?

Kronecker, 1857

If ¢ =1, then « is zero or a root of unity.
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The house and castle of an algebraic integer
Definition

o The house of an algebraic integer « is |a| = TN worsfiais o (5o

o The castle is the square of the house.
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The house and castle of an algebraic integer

Definition
o The house of an algebraic integer « is |a| = WESEE) ot of @ (0] -

o The castle is the square of the house.

The house is invariant under:
o algebraic conjugation,

o multiplying by a root of unity.

Equivalence of algebraic numbers

Two algebraic numbers are declared equivalent if one is a root of unity times an
algebraic conjugate of the other.
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Cyclotomic integers

Towards a general result?

In full generality, not much hope to classify algebraic integers a (up to
equivalence) with [a] < c.

Robinson suggested (1965) one could get stronger results for cyclotomic integers:

Definition

A cyclotomic integer is an algebraic integer that is a sum of roots of unity.

Example:
0 1,2=14+1,3=1+1+1,...;
o e for any IV;

o 2cos (2:;)
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The Robinson program
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The Robinson program

Two problems, five conjectures.

o Qualitative problems; answers given by Loxton.

o The conjectures are quantitative versions.

Problem 1. How can we tell whether there is any cyclotomic integer with a
given absolute value? More generally, how can we find all the cyclotomic integers
with this absolute value? Does it ever happen that there are infinitely many in-
equivalent cyclotomic integers with the same absolute value?

Problem 2. How can we tell whether a given cyclotomic integer can be expressed
as a sum of a prescribed number of roots of unity?
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Conjectures 3 & 4

Conjecture 3. The numbers 1 + 2¢ cos =/N and /5 cos 7/N + ¢ sin #/N are
equivalent only for N = 2, 10, 30.

Proved by Schinzel in 1966; see also McKee and Smyth in 2021.

Conjecture 4. If o is a cyclotomic integer with || & || £ /5, then either || & || has
one of the forms

2 cos /N, V(1 + 4 cos’ n/N),
where N is a positive integer, or else is equal to one of the two numbers

/‘/5+\/13 VT 4+ V3
2 ’ 2 )

Enhanced and proved by Robinson and Wurz in 20183.
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Conjecture 5

Conjecture 5. The only cyclotomic integers satisfying || e || < +/5 which are
expressible as sums of three roots of unity are those equivalent to numbers of the
forms ’

2 cos /N, 1 4+ 2¢cos /N,
where N is a positive integer, or to one of the five numbers

1+ /7 V5 + iv3 1+ /3
2 ’ 2 ’ 2 ’

1+ 6213713 + e81i/13’ 1 + lez'/ZA + 61411'/24.

2T
2 cos 'l +

Proved by Jones in 1968.
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Conjecture 2—Cassels’ theorem

Conjecture 2. There are only a finite number of inequivalent cyclotomic integers
with || @ || £ +/5 which are not equivalent to a number of one of the following forms,
where N is a positive integer:

2cosw/N, 1 + 2icosn/N, ~/5cosw/N + ¢sinn/N.
Enhanced to v/5.01 (suggestion of Jones) and proved by Cassels in 1969.

Definition

Exceptional cyclotomic integers in Cassels’ theorem are Cassels exceptions.

Compute all Cassels exceptions!
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The Cassels exceptions

N [ Cassels exception N [ Cassels exception

N1+ C+C+CT =+ 1-¢F—¢0—¢®

19 1+<+C4+C7+<8+C9+<10+<12+C14 1+<+<2+<5

20 | 14+¢+¢% - ¢ I+ +C)2=C++¢* =8
24 | 1+C+¢5 (8 I+ +¢r+¢)

31 1+C+<3+<8+<12+<18 17<27457C87<117C207<32
51 1+C3_<10+415+§21 +<24+C30+C33+C39 1_<_<1ﬁ+<22_c26_<31 _CBG
84 1_(4_(13_4—16_,’_(19_1_4-21+<22+<31 (1+1)(1_<15+<11§)

OL | 147 4 (1 = (17 4 (21 4 (42 — (69 4 (70 — (82 (L+ G+ -5 +¢12)

33 | 14¢5— ¢+ ¢ 1—¢—¢'3

28 | 14¢—¢% - ¢! L+ ¢+ ¢+t +(7

33 1+C6_C7_C10 1+<+<3+C9

21 1_(_45_’_418 1_<+<7_<-11_<16

28 | 1+¢-¢3+¢* 1+¢+¢?

21 | 1—¢+¢5+¢18

2
On each row { = e N .
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Conjecture 1—Fhe-last-open-econjeeture

Conjecture 1. Any cyclotomic integer a with || a || < 2 is either the sum of two
roots of unity, is equivalent to a number of the form (v/a + ?4/b)/2, wherea and
b are positive integers, or is equivalent to one of the following three numbers:

34 VI3 +iv(26—6v13) | L 5+ 1 1 + 4v3
4 ’ L) 2

2
) 2cos-—7I+

We proved it!

Apply Cassels’ theorem and look in the Cassels exceptions.
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Our approach
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An unfeasible computation

Cassels’ observation

All Cassels exceptions lie in the subring of algebraic integers Z-generated by

2im
n

en , with n = 4692838820715366441120.

The Cassels exceptions live in a finite set (intersection of a disk and a discrete).

...But finding a short vector in a lattice is computationally hard.
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An unfeasible computation

Cassels’ observation

All Cassels exceptions lie in the subring of algebraic integers Z-generated by

2im
n

en , with n = 4692838820715366441120.

The Cassels exceptions live in a finite set (intersection of a disk and a discrete).

...But finding a short vector in a lattice is computationally hard.

How do we go from an unfeasible computation to a feasible computation?
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Measuring cyclotomic integers

For a cyclotomic integer a:

CASSELSHEIGHT («)
MINIMALWEIGHT ()

MINIMALLEVEL(«)

average of |3|? for algebraic conjugates 3 of o
smallest number of roots of unity whose sum is «;

minimal N such that « € Q(ez%).
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Measuring cyclotomic integers

For a cyclotomic integer a:

CASSELSHEIGHT(a) = average of |3|? for algebraic conjugates 3 of a;
MINIMALWEIGHT(a) = smallest number of roots of unity whose sum is o
MINIMALLEVEL(«r) = minimal N such that a € Q(e%).

o CASSELSHEIGHT () is entirely determined by [af?.

o CASSELSHEIGHT(a)? < [aP < MINIMALWEIGHT(q).
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Measuring cyclotomic integers

For a cyclotomic integer a:

CASSELSHEIGHT(a) = average of |3|? for algebraic conjugates 3 of a;
MINIMALWEIGHT(a) = smallest number of roots of unity whose sum is o
MINIMALLEVEL(«r) = minimal N such that a € Q(e%).

o CASSELSHEIGHT () is entirely determined by [af?.

o CASSELSHEIGHT(a)? < [aP < MINIMALWEIGHT(q).

Loxton

“For a given castle, the minimal weight cannot be so large.”
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The partial result of Robinson and Wurz

The rule of the game

Control all these measures.
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The partial result of Robinson and Wurz

The rule of the game

Control all these measures.

Robinson-Wurz, 2013
Let a be a cyclotomic integer with [a? < 5.01. Then one of the following holds:
o CASSELSHEIGHT(«) < 3%, which implies CASSELSHEIGHT () < 31.

o (WQ,CASSELSHEIGHT(a)) €

{(1 + 4 cos? 1”—5,31) , (1 + 4 cos? ﬁ,3%) , (1 + 4 cos? 1”—0,3%)}.
o [af? = CassELSHEIGHT (o) = 4.
o [af? = CassELSHEIGHT (o)) = 5.
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Outline of the work

1. Theoretical work to eliminate as much possibilities for Cassels exceptions as
possible.
o Carefully re-read Robinson-Wurz; track and enhance their bounds.
o Combinatorial analysis of decomposition patterns of candidates a as sums of
roots of unity.
o Use results from algebraic number theory to analyze the factorization patterns of
candidates o embedded in higher number fields.
2. “Smart exhaustive search” to create a list of Cassels exceptions.
o Exact algebra in SageMath.
o Lower level computations in Rust.
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Outline of the work

Theoretical work to eliminate as much possibilities for Cassels exceptions as
possible.
o Carefully re-read Robinson-Wurz; track and enhance their bounds.
o Combinatorial analysis of decomposition patterns of candidates a as sums of
roots of unity.
o Use results from algebraic number theory to analyze the factorization patterns of
candidates o embedded in higher number fields.
“Smart exhaustive search” to create a list of Cassels exceptions.
o Exact algebra in SageMath.
o Lower level computations in Rust.
. For each case of Robinson-Wurz, prove that the cyclotomic integer is either
covered by Cassels’ theorem, or a Cassels exception.
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Our implementation
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Choice of languages

‘ SageMath ‘ Rust

Foss

Widely used
Math Not yet

Speed X

Memory safety X
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Generating the exceptions

Representation

For any (n,N) and (0 < j1,...,jn < N), we have a cyclotomic integer o with

aP = max ((zn: cos (2z;je>>2 . <£:zn£ " (2ij7\rfjg)>z) |

ged(k,N)=1 (=1
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Generating the exceptions

Representation

For any (n,N) and (0 < j1,...,jn < N), we have a cyclotomic integer o with

aP = max ((zn: cos (2z;je>>2 . (g " (2ij7\rfjg)>z) |

ged(k,N)=1 (=1

Steps

1. Create a table of cosines and sines (floats) using Rust.
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Generating the exceptions

Representation

For any (n,N) and (0 < j1,...,jn < N), we have a cyclotomic integer o with

n . 2 n .. 2
29 . [ 2imgy
2 _ § : § :
T osken (<e=1COS( - >> +<£lem< B )> )

ged(k,N)=1

Steps
1. Create a table of cosines and sines (floats) using Rust.

2. Use Rust to generate some* tuples (0 < j1,...,jn < N), and discard those
representing elements a with castle [af? > 5.01.
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Generating the exceptions

Representation

For any (n,N) and (0 < j1,...,jn < N), we have a cyclotomic integer o with

n . 2 n .. 2
29 . [ 2imgy
2 _ § : § :
T osken (<e=1COS( - >> +<£lem< B )> )

ged(k,N)=1

Steps
1. Create a table of cosines and sines (floats) using Rust.

2. Use Rust to generate some* tuples (0 < j1,...,jn < N), and discard those
representing elements a with castle [af? > 5.01.

3. For each tuple, use SageMath to check if it is covered by Cassels’ theorem, or
if it is a Cassels exception.
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A
T
- 4
Set N/ = lem(2, N); we can write a = n | §?\}", with n/ = MINIMALWEIGHT (o) < n for some 0 < j1, .. . RS N’. As the
i=

claim is apparent when « is equivalent to an element of Z, we may assume that the j; are not all equal. We may also
assume that n’ > 3, as otherwise « is covered. Without loss of generality, we may make some further assumptions on the
indices j;:

o

o

o

o

71 = 0 (by multiplying o by a root of unity);

gcd(Gi, N') > ged(ja, N') for i = 3,...,n’ (by relabeling);

j2 = d is a proper divisor of N’ (by applying a field automorphism and using that the j; are not all equal);

3 < -+ < dyp (by relabeling);

N’ —j,./ > j3 — j2 (by applying j; — d — j; (mod N’) if needed);

there are no indices i < i’ with j,/ — j; a nonzero multiple of N’/2 or N’/3 (as otherwise n/ > MINIMALWEIGHT(cv));
there are no indices i < i’ < i’ with Jir — Ji»Jgrr — Jyr nonzero multiples of N’/5 (as otherwise

n’ > MINIMALWEIGHT () );

R . . . 1
there are no indices 1 < i’ < i/ < i’/

n’ > MINIMALWEIGHT () );

with j;» — 33,3, — 340533001 — 3317 nonzero multiples of N'’/7 (as otherwise

if n = 3, then there is no permutation ki, k2, k3 of j1, j2, j3 such that k1 + ko = 2k3 + N’ /2 (as otherwise « is
covered;

if n/ =4 and 5 | N, then there is no permutation ki, kg, k3, kg of j1,j2, 73, ja such that k1 — ko, ks — kg =0
(mod N’/5) and k1 — ko + k3 — kg, k1 — ko — k3 + kg Z 0 (mod N’) (as otherwise « is covered.
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Conclusion

Timing
Generating indices costs one hour on Intel Core Ultra 5 135U, 14 cores @4.4GHz
with parallelization.
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Conclusion

Timing
Generating indices costs one hour on Intel Core Ultra 5 135U, 14 cores @4.4GHz
with parallelization.

Controlling accuracy
Control accuracy with SageMath interval arithmetic and Rust being
IEEE-compliant.
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Rethinking Number Theory
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Rethinking Number Theory

What is Rethinking Number Theory?

o Workshop, started in 2020, on the model of AMS’s Mathematical Research
Communities or Women in Numbers.

o Every year, the RNT organizers recruit around six project leaders.

o Participants are recruited among students and post-docs.

Objective
o Work on open problems with joy, respect and open-mindness.

o Rethink our profession.
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Rethinking Number Theory

Organization
o Two weeks remote full time (if possible). Then it’s up to the participants!

o Rethinking sessions. In 2025:

o Building and supporting research collaborations.
o Adapting to a changing world.
o Activism and organization in academia.

o It works very well.
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https://sites.google.com/view/rethinkingnumbertheory/

Rethinking Number Theory

Organization
o Two weeks remote full time (if possible). Then it’s up to the participants!

o Rethinking sessions. In 2025:

o Building and supporting research collaborations.
o Adapting to a changing world.
o Activism and organization in academia.

o It works very well.

Thank you Allechar Serrano Lépez, Heidi Goodson and Jen Berg!

https://sites.google.com/view/rethinkingnumbertheory/
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