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About me
PIMS PDF at UCalgary, under Renate Scheidler.

Usual research
◦ Algorithmic number theory (Drinfeld modules).
◦ Applications to:

◦ cryptography,
◦ coding theory,
◦ computer algebra.

◦ SageMath developer.

Typical algorithmic number theory problem
Compute the number of points of an elliptic curve over a finite field.
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Rethinking Number Theory

We believe that number theory should be not only accessible, but enjoyable to
everyone. Join us for a joyful collaborative research experience, where people are
valued and uplifted. Help us rethink the graduate school and postdoc experience,
research seminars, hiring process, conferences, grant applications, and other
aspects of our profession.

With J. Bajpai, S. Das, K. S. Kedlaya, N. H. Le, M. Lee and J. Mello.
◦ https://arxiv.org/abs/2510.20435
◦ https://github.com/castle-gray-rnt6/cassels
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Main results

◦ Complete classification of cyclotomic integers with castle 6 5.01.
◦ As a corollary, complete classification of cyclotomic integers with castle < 2.

(First conjecture stated by Robinson in 1965.)

Cyclotomic integers are highly important in number theory, class field theory,
coding theory...

Sounds made up?
◦ Part of a research program started in 1965.
◦ At the moment, best we can do?

Today: focus on computations.
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Algebraic integers
In algebra, we want exact representations and operations... but we also need
complex numbers.

Combining exact representations and complex numbers
An algebraic integer α ∈ C is any root of a monic integer polynomial.

Algebraic integers are almost like integers
◦ Algebraic integers contain: Z; roots of unity;

√
2,

√
3, etc.

◦ Algebraic integers form a ring.
◦ Excellent factorization properties (Dedekind rings).

Algebraic integers come in families: algebraic integers with same minimal
polynomial are called algebraic conjugates.
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A theorem of Kronecker

General question
For any c > 0, who are the algebraic integers α whose algebraic conjugates β all
verify |β| 6 c?

Kronecker, 1857
If c = 1, then α is zero or a root of unity.
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The house and castle of an algebraic integer

Definition
◦ The house of an algebraic integer α is α = maxβ conjugate of α |β|.
◦ The castle is the square of the house.

The house is invariant under:
◦ algebraic conjugation,
◦ multiplying by a root of unity.

Equivalence of algebraic numbers
Two algebraic numbers are declared equivalent if one is a root of unity times an
algebraic conjugate of the other.
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Cyclotomic integers
Towards a general result?
In full generality, not much hope to classify algebraic integers α (up to
equivalence) with α 6 c.

Robinson suggested (1965) one could get stronger results for cyclotomic integers:

Definition
A cyclotomic integer is an algebraic integer that is a sum of roots of unity.

Example:
◦ 1, 2 = 1 + 1, 3 = 1 + 1 + 1, . . . ;
◦ e

2iπ
N for any N ;

◦ 2 cos
(

2π
3

)
.
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The Robinson program
Two problems, five conjectures.

◦ Qualitative problems; answers given by Loxton.
◦ The conjectures are quantitative versions.
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Conjectures 3 & 4

Proved by Schinzel in 1966; see also McKee and Smyth in 2021.

Enhanced and proved by Robinson and Wurz in 2013.
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Conjecture 5

Proved by Jones in 1968.
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Conjecture 2—Cassels’ theorem

Enhanced to
√

5.01 (suggestion of Jones) and proved by Cassels in 1969.

Definition
Exceptional cyclotomic integers in Cassels’ theorem are Cassels exceptions.

Our result
Compute all Cassels exceptions!
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The Cassels exceptions

N Cassels exception
11 1 + ζ + ζ2 + ζ4 − ζ5 + ζ7

19 1 + ζ + ζ4 + ζ7 + ζ8 + ζ9 + ζ10 + ζ12 + ζ14

20 1 + ζ + ζ3 − ζ4

24 1 + ζ + ζ5 − ζ6

31 1 + ζ + ζ3 + ζ8 + ζ12 + ζ18

51 1 + ζ3 − ζ10 + ζ15 + ζ21 + ζ24 + ζ30 + ζ33 + ζ39

84 1 − ζ4 − ζ13 − ζ16 + ζ19 + ζ21 + ζ22 + ζ31

91 1 + ζ7 + ζ14 − ζ17 + ζ21 + ζ42 − ζ69 + ζ70 − ζ82

33 1 + ζ6 − ζ8 + ζ21

28 1 + ζ − ζ3 − ζ11

33 1 + ζ6 − ζ7 − ζ10

21 1 − ζ − ζ5 + ζ18

28 1 + ζ − ζ3 + ζ4

21 1 − ζ + ζ6 + ζ18

N Cassels exception
60 1 − ζ3 − ζ6 − ζ8

11 1 + ζ + ζ2 + ζ5

7 (1 + ζ7 + ζ3
7 )2 = ζ + ζ3 + ζ4 − ζ5

28 (1 + i)(1 + ζ7 + ζ3
7 )

39 1 − ζ2 − ζ5 − ζ8 − ζ11 − ζ20 − ζ32

55 1 − ζ − ζ16 + ζ22 − ζ26 − ζ31 − ζ36

60 (1 + i)(1 − ζ15 + ζ12
15 )

105 (1 + ζ7 + ζ3
7 )(1 − ζ15 + ζ12

15 )
21 1 − ζ − ζ13

11 1 + ζ + ζ2 + ζ4 + ζ7

13 1 + ζ + ζ3 + ζ9

35 1 − ζ + ζ7 − ζ11 − ζ16

7 1 + ζ + ζ3

On each row ζ = e
2iπ
N .
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Conjecture 1—The last open conjecture

We proved it!

Proof
Apply Cassels’ theorem and look in the Cassels exceptions.
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An unfeasible computation

Cassels’ observation
All Cassels exceptions lie in the subring of algebraic integers Z-generated by

e
2iπ
n , with n = 4692838820715366441120.

The Cassels exceptions live in a finite set (intersection of a disk and a discrete).
...But finding a short vector in a lattice is computationally hard.

How do we go from an unfeasible computation to a feasible computation?
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Measuring cyclotomic integers

For a cyclotomic integer α:

CasselsHeight(α) = average of |β|2 for algebraic conjugates β of α;
MinimalWeight(α) = smallest number of roots of unity whose sum is α;

MinimalLevel(α) = minimal N such that α ∈ Q(e
2iπ
N ).

◦ CasselsHeight(α) is entirely determined by α 2.
◦ CasselsHeight(α)

1
2 6 α 2 6 MinimalWeight(α).

Loxton
“For a given castle, the minimal weight cannot be so large.”
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The partial result of Robinson and Wurz

The rule of the game
Control all these measures.

Robinson-Wurz, 2013
Let α be a cyclotomic integer with α 2 < 5.01. Then one of the following holds:

◦ CasselsHeight(α) < 31
4 , which implies CasselsHeight(α) 6 31

5 .

◦
(

α 2, CasselsHeight(α)
)

∈{(
1 + 4 cos2 π

15 , 31
4

)
,
(
1 + 4 cos2 π

14 , 31
3

)
,
(
1 + 4 cos2 π

10 , 31
2

)}
.

◦ α 2 = CasselsHeight(α) = 4.
◦ α 2 = CasselsHeight(α) = 5.
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Outline of the work

1. Theoretical work to eliminate as much possibilities for Cassels exceptions as
possible.

◦ Carefully re-read Robinson-Wurz; track and enhance their bounds.
◦ Combinatorial analysis of decomposition patterns of candidates α as sums of

roots of unity.
◦ Use results from algebraic number theory to analyze the factorization patterns of

candidates α embedded in higher number fields.
2. “Smart exhaustive search” to create a list of Cassels exceptions.

◦ Exact algebra in SageMath.
◦ Lower level computations in Rust.

3. For each case of Robinson-Wurz, prove that the cyclotomic integer is either
covered by Cassels’ theorem, or a Cassels exception.
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Choice of languages

SageMath Rust
Foss

Widely used
Math Not yet
Speed

Memory safety
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Generating the exceptions
Representation
For any (n, N) and (0 < j1, . . . , jn < N), we have a cyclotomic integer α with

α 2 = max
06k6N

gcd(k,N)=1

( n∑
`=1

cos
(2iπj`

N

))2

+
(

n∑
`=1

sin
(2iπj`

N

))2
 .

Steps
1. Create a table of cosines and sines (floats) using Rust.
2. Use Rust to generate some∗ tuples (0 < j1, . . . , jn < N), and discard those

representing elements α with castle α 2 > 5.01.
3. For each tuple, use SageMath to check if it is covered by Cassels’ theorem, or

if it is a Cassels exception.
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Set N′ = lcm(2, N); we can write α =
∑n′

i=1
ζ

ji
N′ with n′ = MinimalWeight(α) 6 n for some 0 6 j1, . . . , jn′ < N′. As the

claim is apparent when α is equivalent to an element of Z, we may assume that the ji are not all equal. We may also
assume that n′ > 3, as otherwise α is covered. Without loss of generality, we may make some further assumptions on the
indices ji:

◦ j1 = 0 (by multiplying α by a root of unity);
◦ gcd(ji, N′) > gcd(j2, N′) for i = 3, . . . , n′ (by relabeling);
◦ j2 = d is a proper divisor of N′ (by applying a field automorphism and using that the ji are not all equal);
◦ j3 6 · · · 6 jn′ (by relabeling);

◦ N′ − jn′ > j3 − j2 (by applying ji 7→ d − ji (mod N′) if needed);

◦ there are no indices i < i′ with ji′ − ji a nonzero multiple of N′/2 or N′/3 (as otherwise n′ > MinimalWeight(α));

◦ there are no indices i < i′ < i′′ with ji′ − ji, ji′′ − ji′ nonzero multiples of N′/5 (as otherwise
n′ > MinimalWeight(α));

◦ there are no indices i < i′ < i′′ < i′′′ with ji′ − ji, ji′′ − ji′ , ji′′′ − ji′′ nonzero multiples of N′/7 (as otherwise
n′ > MinimalWeight(α));

◦ if n′ = 3, then there is no permutation k1, k2, k3 of j1, j2, j3 such that k1 + k2 ≡ 2k3 + N′/2 (as otherwise α is
covered;

◦ if n′ = 4 and 5 | N , then there is no permutation k1, k2, k3, k4 of j1, j2, j3, j4 such that k1 − k2, k3 − k4 ≡ 0
(mod N′/5) and k1 − k2 + k3 − k4, k1 − k2 − k3 + k4 6≡ 0 (mod N′) (as otherwise α is covered.
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Conclusion

Timing
Generating indices costs one hour on Intel Core Ultra 5 135U, 14 cores @4.4GHz
with parallelization.

Controlling accuracy
Control accuracy with SageMath interval arithmetic and Rust being
IEEE-compliant.
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Rethinking Number Theory

What is Rethinking Number Theory?
◦ Workshop, started in 2020, on the model of AMS’s Mathematical Research

Communities or Women in Numbers.
◦ Every year, the RNT organizers recruit around six project leaders.
◦ Participants are recruited among students and post-docs.

Objective
◦ Work on open problems with joy, respect and open-mindness.
◦ Rethink our profession.
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Rethinking Number Theory

Organization
◦ Two weeks remote full time (if possible). Then it’s up to the participants!
◦ Rethinking sessions. In 2025:

◦ Building and supporting research collaborations.
◦ Adapting to a changing world.
◦ Activism and organization in academia.

◦ It works very well.

Thank you Allechar Serrano López, Heidi Goodson and Jen Berg!

https://sites.google.com/view/rethinkingnumbertheory/
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