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Two general problems

Hilbert’s tenth problem
Given a Diophantine equations, can one tell if it has integer solutions?

Matiyasevich’s theorem (1970): no algorithm can do that.

Integer linear programming

Find a vector x € Z™ that maximizes
(c,x), ceL",
under the constraints

Az <b, AezZ™™ beZ™,
> 0.

X

Integer linear programming is NP-complete.
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Elliptic curves

No hope of solving general problems: consider geometrical problems.

Projective curve given by y%z = 23 + axz? + b23, with a, b verifying 4a3 4+ 27b% # 0.

1. Geometrical structure.

2. Arithmetic structure (abelian group, i.e. Z-module).

Fermat-Wiles.

(¢]

(¢]

abc and BSD conjectures.

o

In computer algebra: ECPP (primality testing), ECM (integer factorization).

O

In cryptography: ECDH (pre-quantum key exchange), SQIsign family
(post-quantum key exchange).
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General philosophy

1. Elliptic curves/roots of unity: characteristic 0 and number fields.

2. Drinfeld modules: characteristic p and function fields.

Two examples from class field theory
o Kronecker-Weber-Hilbert: every abelian number field lies in a cyclotomic field
(i.e. extension of Q generated by roots of unity).

o The Hilbert class field (maximal unramified abelian extension) of an imaginary
quadratic number field Q(v/—d) is generated by the j-invariants of elliptic
curves with complex multiplication in Q(v/—d).
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Analogies

Zero characteristic ‘

Positive characteristic

Z | Fy[T]
Q | Fy(T)
Number fields (finite ext.) | Function fields (finite ext.)
R Re—F (1)
C | Cs = completion of R,
Roots of unity | Drinfeld modules
Elliptic curves | Drinfeld modules

Our integers are polynomials.
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o

o

(e)

(e}

O

The benefits of positive characteristic

Unconditional results (e.g. GRH).

Faster algorithms (e.g. factorization).

Geometrical structure properties of function fields.
Fg-linearity.

Non-Archimedean analysis.
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Applications of Drinfeld modules

Function field arithmetics
o Explicit class field theory and theory of complex multiplication.
o Geometric Langlands program.
o Exponential and logarithm functions.

o Drinfeld modular forms.

Computer algebra
State-of-the art factorization in F,[T, by computing Hasse invariants
(Doliskani-Narayanan-Schost, 2021).

Cryptography
Drinfeld module analogues of standard elliptic curve schemes fail, because of
Fg-linear structures.

Highlights both similarities and fundamental differences with elliptic curves.
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Broader questions

Elliptic curves

Integers
Number fields
Zero characteristic

0

vs

(5]

Drinfeld modules

Polynomials
Function fields
Positive characteristic
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Drinfeld modules
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Ore polynomials
Fix K/F,, and

ﬂ
3
g =

—
—>

E

Definition of K{7}

Finite K-linear combinations of 7"’; ring for addition and composition.

Properties
o Representation as polynomials: K{7} = {37, x;7%,n € Zso,z; € K}.
o Notion of 7-degree.
o Noncommutative: for A € K, 7"\ = 2" 7",
o Left-euclidean: for any A, B € K{7}, there exist Q, R € K{7} such that:

A=QB+R, deg. (R)<deg.(B).
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Representing Drinfeld modules

Almost Definition (Drinfeld, 1977)
A Drinfeld Fy[T]-module over K is a morphism of F,[T]-algebras
¢: Fy[T] — K{r}
a —  Qq.

Representation
¢ is represented by ¢p. The rank of ¢ is deg_ (o7).

Morphisms
A morphism u : ¢ — 1 is an Ore polynomial u € K{7} such that

Va € Fy [T, UPg = PYgu.
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The points of a Drinfeld module

For an elliptic curve, the points form a Z-module.

Geometric points

¢ acts on K wia
F,T]x K — K

(a,2) = da(2).
F,[T]-module denoted by ¢(K).

K-rational points

Write

The underlying set of ¢p(K) is always K.
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The number of points

For an elliptic curve,
E(Fg) =~ Z/(d1) X -+ X Z[(dn),

and
(IE(FQ)]) = (d1---dn)

Assume K is finite. Decompose
G(K) > Fy[T]/(dr) % - - x Fg[T]/(dn).

The “number of K-rational points of ¢” is

Often referred to as the Fuler-Poincaré characteristic or Fitting ideal of ¢(

K).
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Point counting
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The elliptic curve case

First deterministic polynomial time: Schoof, 1985.

1. An elliptic curve E/F, has a Frobenius endomorphism m : (z,y) — (29, y9).

2. mw has a characteristic polynomial
x=X?>—tX +q€Z[X]

such that
x(m)=n%—tn4+q=0.

3. We have

Important invariant.

1727



The Drinfeld module case

. Assume K is finite. A Drinfeld module ¢ over K has a Frobenius
endomorphism m = THFd ¢ K {7}

2. m has a characteristic polynomial
X=X"+a (D)X 4+ ay(T)X +ap(T) € F,[T][X]

such that

X(m) = 7" + o,y 7"

3. We have (Gekeler, 1991)

+"'+¢a1ﬂ-+¢a0:0-

(le(K)[) = (x(1))

Important invariant.
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Abstract definition of 7

Via Tate modules

1. Make F,[T] act on K via ¢.
Consider the action of m on (almost all) the ¢-torsion submodules, ¢ € F,[T.
Show that these are free with rank r on Fy[T/(¢).

Show that the characteristic polynomial of the action of 7 on these modules
lifts to a single polynomial x € F,[T][X].

o

Problem

Manipulate torsion elements in possibly large extensions.
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Anderson motives

Definition
M(¢) is the K[T]-module

K[T]XK{T} — K{r} '
(AT f(1) = i Af ()

Canonical basis
M(¢) is free with rank r with basis

Recursive process via Ore Euclidean division:
f(r) =Q(7)¢r + R(7), deg (R) <.
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Morphisms as matrices

Any morphisms v : ¢ — ¢ gives a morphism on the Anderson motives

M(u) : M(y) — M(¢)
f = fu

To compute the matrix of M(u), compute the coordinates of

f77f7"' 77_T_1f'
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Example
Pick
F, = F;
K =F,[z]/(2? + 62 + 3) ~ Fy2
¢r=z—+T+ 27>
The action of 72 on M(¢) is given by:

(54+2)T—1 2+52
2T + 5z 52I'+4)"°

The characteristic polynomial is:
T? + (2T + 4)X + 5T% 4+ 2T + 1.

Verify:
%+ (267 + 4)1% + 5d% 4+ 207 +1 = 0.
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Our contribution

Caruso, L., 2023
o Any endomorphism.
o Any 7.
o Any K.
o Extends to isogeny norms.
o Any function ring.

o SageMath implementation in the standard library.

2008  Gekeler Frobenius, r = 2 generalized to r € Z>¢ by Musleh
2019  Musleh, Schost  Frobenius, r = 2

2020  Garai, Papikian Frobenius, r = 2

2023  Musleh, Schost  Any endomorphism, any r

202/  Musleh Any endomorphism, any r
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Cost of computing y

Las Vegas algorithm, cost in bit operations:
o [F-MFF] O~(dlog? q) + (SM?'(d, d) + d?r + dr)log q)* o),
o [F-MKkU] O~ (dlog?q) + ((d®r“~! + dr®)log g)*+°(V),
o [F-csA] O~ (dlog?q) + (rd“ log q)*+°().

d = [K:Fg
r = rankof ¢
w = feasible exponent for matrix multiplication in a field
SM?! = related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]
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F-MKU

1
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For general endomorphisms

Deterministic algorithm:
o o O7(n?+ (n+r)r1) operations in K
o O(n? 4+ r?) g-exponentiations in K
If K is finite, Las Vegas algorithm (cost in binary operations):
o O7(dlog?q) + ((SMZY(n,d) + ndr + (n + d)r*) log ¢)* o).

T-degree of the endomorphism

[K : Fq]

rank of ¢

feasible exponent for matrix multiplication in a field

feasible exponent for characteristic polynomial computation in a field

= related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]

\XDE s a3
I
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For isogeny norms

Deterministic algorithm:
o o O7(n?+nr*~! +r¥) operations in K
o O(n? + 1?) g-exponentiations in K
If K is finite, Las Vegas algorithm (cost in bit operations):
o 07 (dlog? q) + ((SMZL(n, d) 4+ ndr + nmin(d, 7)r*=" + dr®) log ¢)**+°W).

T-degree of the isogeny

[K : Fq]

rank of ¢

feasible exponent for matrix multiplication in a field

feasible exponent for characteristic polynomial computation in a field

= related to fast multiplication of Ore polynomials [Caruso-Le Borgne, 2017]
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