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Post quantum key-exchange and signature (1/2)

The late queen and duke choose an abelian simply transitive group action G X X — X.

<{—— public agreement on random x € X ———»

a-x >
< b-x
————— Both calculate 24 - x (secret key) - — — — — = >

Definition (Couveignes, 1996)

If computing b - x knowing x, 4 - x, b - x is hard, this is a hard homogeneous space.

Beullens-Kleinjung-Vercauteren in CSI-FiSh
Knowing the group order, we can build efficient signature schemes.
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Post quantum key-exchange and signature (2/2)

G=2Z/nZ

Diftie-Hellman (76) | X = cyclic group with order # and generator g
Quantum-broken

G = Cl(Q(V-D))

CRS (96, ’04) X = subset of isomorphism classes of ordinary elliptic curves.

Slow to run & hard to know group order

G = Cl(Q(V-D))
CSIDH (’18) X = subset of isomorphism classes of supersingular elliptic curves.
Hard to know group order

Our hope
© Build a fast "Drinfeld analogue” of the CRS group action.

o Practical computation of the group order using Kedlaya’s algorithm.
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Why Drinfeld modules?

Drinfeld modules make explicit the class field theory of function fields.
They play the role of elliptic curves for building the Hilbert class field of a function field.

Rule of thumb

behave like
Elliptic curves «———  Drinfeld modules with rank two.

Algorithms
o Ore polynomials: Caruso-Leborgne.
o Characteristic polynomial of the Frobenius endomorphism: Schost-Musleh, 2019.
o Modular polynomials of rank 2 Drinfeld modules: Caranay-Greenberg-Scheidler, 2019.

o Tools for isogenies and endomorphisms: Caranay’s thesis, 2018;
Caranay-Greenberg-Scheidler, 2019; Wesolowski, 2022.

o Factorization over F, [ X] with Drinfeld modules: Doliskani-Narayanan-Schost, 2019.
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Drinfeld modules and elliptic curves

Number fields ‘ Function fields

Base ring: Z Base ring: F, [X]

Fraction field: Q Fraction field: F, (X)

Finite extensions: number fields | Finite extensions: function fields

Elliptic curves ‘ Drinfeld F, [X]-modules, rank 2
Z-module law on E(K) ‘ F,[X]-module law on K
Vélu formulae

jinvariant encoding Fq—isomorphism classes

Theory of complex multiplication
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Main results [arXiv:2203.06970]

Computer algebra
o Definition & proof of a simply transitive CRS-like group action for Drinfeld modules.
o Efficient algorithm to compute the action.

o Efficient C++/NTL implementation.

Cryptography
o Reduction of the inverse problem to the isogeny-finding problem.
o Conjecture that the best (at the time) algorithm ran in exponential time.

o Wesolowski since found a polynomial algorithm (ia.cr/2022/438).

Software
o SageMath implementation from scratch of Drinfeld modules.

o To be integrated in SageMath.
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Let’s find the definition

Let K /IF, be a field extension with a ring morphism
v:E, [X] — K.

Fact: a Drinfeld modules ¢ induces an IF, [ X ]-module structure on K.
Let’s find the definition from there!

Leta,bEFq[X],x,yEK,RE]Fq.
(D a-(x+y)=a-x+a-y;
(2) 1-x=Ax;
(1) + (2) = themap g, : x = 4 - xisin Endg, (K).
(3) a-(b-x)=(ab) - x;
(1) +(2) + (3) = themapa — ¢, is a ring morphism F, [X] — End]Fq (K).

We will define a Drinfeld module as a morphism F, [X] — Endg, (K) with extra properties.

Antoine Leudiere 2/3. DRINFELD MODULES

7/19



Endomorphisms are Ore polynomials

Endg, (K) = K{7} = {Zx,-r” n20x €K, 75 xq}.
i=1

This is the ring of Ore polynomials; multiplication is endomorphism composition.

o Non-commutative polynomials: Va € K, 7a = a77.
o Left-Euclidean domain for the 7-degree.

o SageMath implementation by Caruso.
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Definition
Definition

A Drinfeld module over y is an Fq-algebra morphism
¢ Fq[X] — K{r}
P ¢p

such that

px =ao+- - +a, 7

and» > 0,49 = y(X).

Module law
We define an F, [X']-module on K

F,[X]xK — K

(P, 2z) = ¢p(2).
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Example

In our case, a Drinfeld module is uniquely defined by ¢x.

Two main situations for the base morphism y : F,[X] — K:

/\

¥ is a projection 7 is injective
ex.¢X=X+z'+z'2 ex.¢X:X+X22'

Antoine Leudiére 2/3. DRINFELD MODULES 10/19



Morphisms, isogenies

Definition
A morphism of Drinfeld modules ¢ — ¢ is an Ore polynomial # € K{r} such that

u¢p = %p%, VP e Fq [X],

ie.
upy = yxu.

An isogeny is a non-zero morphism.

o ¢p € End(g) forall P € F,[X],ie. F,[X] C End(¢).
o F,=Fp, K =F(i),¢x =i +it+ 72, Yx =i+ (@ + 17+ 72and# =7 + ¢. Then
((+t)(G+it+7*) = (i +2)(i + (i + )7+ 7°) and u is an isogeny ¢ — ¢.
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Complex multiplication 1/2

Further hypotheses
o yis surjective (ergo K is finite).

o rank(g) = deg (¢x) = 2.

Definition
Define the Frobenius endomorphism 7 of ¢ as

TK ' X = x#K.
Theorem (Schost-Musleh)
There exists y € By[X][T), called the polynomial characteristic of the Frobenius endomorphism,
such that
x(¢x)(7g) =0
and y(X)(T) = T* = A(X)T + B(X) and deg(4) < [K : F,], deg(B) < deg(4)/2.
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Complex multiplication 2/2

Definition
¢ is ordinary if the Frobenius trace (middle coefficient of y) is not in Ker(y).

The characteristic polynomial y can be efficiently computed: Schost-Musleh, 2019.

Further hypotheses
o The curve H defined by y is hyperelliptic imaginary.

o ¢ isordinary.
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Action definition

Theorem (L.-Spaenlehauer, 2022)

The class group of End (@) acts freely and transitively on the set S of isomorphism classes of rank two
Drinfeld module that are isogeneous to §.

Let/ C End(¢) be an ideal and ¢ be a rank two Drinfeld module.
There exists (Vélu formulae) an isogeny with domain ¢ whose kernel is

m Ker(f).
fel

We map (/, ) to its codomain.

Action definition

The action is defined as the extension to class group and isomorphism classes of this map.
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Representation of the class group (1/2)

T1/(y) =~ End(¢) = {f € IFq(ff—f ) : [ regular everywhere outside co}.

Elements of Pic® (") are represented by Mumford coordinates: couples (#, v) € F,[X 1?
verifying:

O # is monic;

o deg(v) < deg(n) < ([K:F,] —1)/2

o ] (X, 0(X)).

Pic’(H) = Cl(F,[X1[T1/(2))
(#, v) > class of(u(X), T —v(X)),
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Representation of the class group (2/2)

() Ker(f) = M Ker(f (¢x, 7%))

fel feideal of By [X][T1/(x)

= (] Ker(f(px 7))
fe{u(X),T-v(X))

= Ker(¢,) N Ker(zgx — ¢,)

The isogeny corresponding to this kernel (Vélu formula) is

rged(Pu, 7k — Po)-
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Algorithm and benchmark

Input: — Mumford coordinates (%, v) € F,[X 1%
— Aj-invariantj € K.
Output: A j-invariant.
7 —u(Tl? + v+ (X)) € K{r};
20— o(T P+ T+ (X)) € K{r};
3 1« rged(z, 71KFy] -);
48— 1570+ (X)) - y(X)));
3 Z (—j_qdegf(’)-

b
6 Returng7™!/A.

C++/ NTL implementation with crypto parameters: ~200 ms computation for F, = F,,
K = Fysu, genus(H') = 260 and a Jacobian with order

2 X 315413182467545672604116316415047743350494962889744865259442943656024073295689.
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Back to crypto

It’s fast. But is it safe?
No.

Security relies on the hardness of finding a fixed-degree isogeny between two Drinfeld modules.
Write ¢x = A12+g'r+a),¢X = A'72 +g 4w =0,7+ -+ € L{r}.
Then ¢ is an isogeny ¢ — ¥ 7if

’ qz 2
AN — ATy, =0,
2 a—1 a
A'IZ_I AT =gt —g'lz,
2 a—k a—k+1 a—k+2
gl —
Vk € [[29 4]]: A,lﬂ_k —- A7 la—k = la—k+lgq _g,lz_/ﬁ_l + lﬂ—/e+2(wq - d)),

g +no? = wny +g'lg.

Wesolowski, 2022: this is a linear system! In our case, it is solvable in time linear of [K : F,].
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Demo!
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