Function field analogue of the CRS key exchange Journées C2 2022

Antoine Leudière

Pierre-Jean Spaenlehauer

INRIA Nancy-Grand Est

Antoine Leudière

Number fields	Function fields

Number fields	Function fields
\mathbb{Z}	$\mathbb{F}_{q}[X]$

Number fields	Function fields
\mathbb{Z}	$\mathbb{F}_{q}[X]$
Q	$\mathbb{F}_q(X)$

Number fields	Function fields	
Z	$\mathbb{F}_{q}[X]$	
Q	$\mathbb{F}_{q}(X)$	
Number field (finite ext.)	Function field (finite ext.)	

Number fields	Function fields	
Z	$\mathbb{F}_{q}[X]$	
Q	$\mathbb{F}_{q}(X)$	
Number field (finite ext.)	Function field (finite ext.)	

Elliptic curves over \mathbb{F}_q	Finite Drinfeld modules

Number fields	Function fields	
Z	$\mathbb{F}_{q}[X]$	
Q	$\mathbb{F}_{q}(X)$	
Number field (finite ext.)	Function field (finite ext.)	

Elliptic curves over \mathbb{F}_{q}	Finite Drinfeld modules
\mathbb{Z} -module law on $E(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$

Number fields and function fields $% \left({{{\rm{A}}} \right)$

	Number fields	Function fields	
	\mathbb{Z}	$\mathbb{F}_{q}[X]$	
	Q	$\mathbb{F}_{q}(X)$	
	Number field (finite ext.)	Function field (finite ext.)	
Elliptic curves over \mathbb{F}_q		Finite Drinfeld modules	
\mathbb{Z} -module law on $E(\overline{\mathbb{F}_q})$		$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$	
Any finite \mathbb{Z} -module gives rise to an isogeny		Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{I}}$ technical condition) gives rise to	$\overline{\mathrm{F}_{q}}$ (+
		isogeny	

	Number fields	Function fields	
	Z	$\mathbb{F}_{q}[X]$	
	Q	$\mathbb{F}_q(X)$	
	Number field (finite ext.)	Function field (finite ext.)	
Elliptic curves over \mathbb{F}_{a}		Finite Drinfeld modules	
\mathbb{Z} -module law on $E(\overline{\mathbb{F}_q})$		$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$	
Any finite Z-1 isogeny	module gives rise to an	Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (-technical condition) gives rise to an	+ 1
		Isogeny	
j-invariant encoding \mathbb{F}_q -isomorphism classes			

	Number fields	Function fields
	Z	$\mathbb{F}_{q}[X]$
	Q	$\mathbb{F}_q(X)$
	Number field (finite ext.)	Function field (finite ext.)
Elliptic curves over \mathbb{F}_q		Finite Drinfeld modules
\mathbb{Z} -module law on $E(\overline{\mathbb{F}_q})$		$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$
Any finite \mathbb{Z} -module gives rise to an isogeny		Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (+ technical condition) gives rise to an isogeny
j-invariant encoding $\overline{\mathbb{F}_q}$ -isomorphism classes		
Theory of complex multiplication		

CLASS FIELD THEORY OF NUMBER FIELDS

Couveignes showed (1996) that the class field theory of number fields provided a unifying vision for:

Couveignes showed (1996) that the class field theory of number fields provided a unifying vision for:

• the DLP on multiplicative groups \mathbb{F}_q^{\times} ,

Couveignes showed (1996) that the class field theory of number fields provided a unifying vision for:

- the DLP on multiplicative groups \mathbb{F}_q^{\times} ,
- the DLP on elliptic curves $E(\mathbb{F}_q)$,

Couveignes showed (1996) that the class field theory of number fields provided a unifying vision for:

- the DLP on multiplicative groups \mathbb{F}_q^{\times} ,
- the DLP on elliptic curves $E(\mathbb{F}_q)$,
- the Couveignes-Rostovtsev-Stolbunov (CRS) key-exchange scheme.

Couveignes showed (1996) that the class field theory of number fields provided a unifying vision for:

- the DLP on multiplicative groups \mathbb{F}_q^{\times} ,
- the DLP on elliptic curves $E(\mathbb{F}_q)$,
- the Couveignes-Rostovtsev-Stolbunov (CRS) key-exchange scheme.

This unification is made with the notion of hard homogeneous space (HHS).

Tristan and Isolde create a private key on a public channel.

Tristan and Isolde create a private key on a public channel. They choose an abelian group *G* acting (freely and transitively) on a set *X*, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$.

Tristan and Isolde create a private key on a public channel. They choose an abelian group *G* acting (freely and transitively) on a set *X*, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$. Generalizes Diffie-Hellman on a cyclic group $H: G = \mathbb{Z}/\#H\mathbb{Z}, X = H$.

Tristan and Isolde create a private key on a public channel. They choose an abelian group *G* acting (freely and transitively) on a set *X*, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$. Generalizes Diffie-Hellman on a cyclic group $H: G = \mathbb{Z}/\#H\mathbb{Z}, X = H$. CRS and CSIDH are built as hard homogeneous spaces.

Tristan and Isolde create a private key on a public channel. They choose an abelian group *G* acting (freely and transitively) on a set *X*, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$. Generalizes Diffie-Hellman on a cyclic group $H: G = \mathbb{Z}/\#H\mathbb{Z}, X = H$. CRS and CSIDH are built as hard homogeneous spaces. Quantum attack in $\exp(c\sqrt{\log(\#G)})$ for some c > 0 (Kuperberg, 2005; Bonnetain, Schrottenloher, 2020).

Introduction 000●	Function field CRS 0000	
Main results		

ln ia.cr/2022/349:

Construction of the function field analogue of CRS.

NTRODUCTION	Function field CRS 0000	Conclusion 00

ln ia.cr/2022/349:

- Construction of the function field analogue of CRS.
- Efficient C++ implementation.

ln ia.cr/2022/349:

- Construction of the function field analogue of CRS.
- Efficient C++ implementation.
- Reduction of the security to the isogeny finding problem.

ln ia.cr/2022/349:

- Construction of the function field analogue of CRS.
- Efficient C++ implementation.
- Reduction of the security to the isogeny finding problem.
- Enhancements on the analysis of the recursive algorithm to find isogenies (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020).

ln ia.cr/2022/349:

- Construction of the function field analogue of CRS.
- Efficient C++ implementation.
- Reduction of the security to the isogeny finding problem.
- Enhancements on the analysis of the recursive algorithm to find isogenies (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020).

But this new CRS is now broken (Wesolowski, three weeks ago; ia.cr/2022/438)!

ln ia.cr/2022/349:

- Construction of the function field analogue of CRS.
- Efficient C++ implementation.
- Reduction of the security to the isogeny finding problem.
- Enhancements on the analysis of the recursive algorithm to find isogenies (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020).

But this new CRS is now broken (Wesolowski, three weeks ago; ia.cr/2022/438)! Furthermore:

SageMath library for finite Drinfeld modules (work in progress).

Introduction 0000	Function field CRS •000	
Main result		

Let L/\mathbb{F}_q be a finite extension with odd degree.

Introduction 0000	Function field CRS ●000	
Main result		

Let L/\mathbb{F}_q be a finite extension with odd degree. Let \mathcal{H} be an imaginary hyperelliptic curve on \mathbb{F}_q .

Introduction 0000	Function field CRS •000	
Main result		

Let L/\mathbb{F}_q be a finite extension with odd degree. Let \mathcal{H} be an imaginary hyperelliptic curve on \mathbb{F}_q . Let $\mathbf{A}_{\mathcal{H}}$ be the ring of function of \mathcal{H} regular outside ∞ .

Introduction 0000	Function field CRS ●000	
Main result		

Let L/\mathbb{F}_q be a finite extension with odd degree. Let \mathcal{H} be an imaginary hyperelliptic curve on \mathbb{F}_q . Let $\mathbf{A}_{\mathcal{H}}$ be the ring of function of \mathcal{H} regular outside ∞ .

Theorem

There is an explicit and computable group action of $\operatorname{Pic}^{0}(\mathcal{H}) \simeq \operatorname{Cl}(\mathbf{A}_{\mathcal{H}})$ to the set of $\overline{\mathbb{F}_{q}}$ -isomorphism classes of rank 1 $\mathbf{A}_{\mathcal{H}}$ -Drinfeld modules defined over L.

Introduction 0000	Function field CRS 0000	
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension with o	dd degree.	

Introduction 0000	Function field CRS ⊙●○○	Conclusion 00
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension with o	odd degree.	

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

Introduction 0000	Function field CRS 0●00	
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension with o	odd degree.	
	$\tau: \mathbb{F}_q \to \mathbb{F}_q$	
	$x \mapsto x^{q}$.	

$$L\{\tau\} := \left\{ \sum_{0 \leqslant i \leqslant n} a_n \tau^i \mid n \in \mathbb{Z}_{\geqslant 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Introduction 0000	Function field CRS 0000	
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension with o	dd degree.	
	$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$ $x \mapsto x^q.$	

$$L\{\tau\} := \left\{ \sum_{0 \leqslant i \leqslant n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Introduction 0000	Function field CRS 0000	
Ore polynomials		
Let L/\mathbb{F}_q be a finite ext	ension with odd degree.	
	$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$ $x \mapsto x^q.$	

$$L\{\tau\} := \left\{ \sum_{0 \leq i \leq n} a_n \tau^i \mid n \in \mathbb{Z}_{\geq 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

• $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.

Introduction 0000	Function field CRS $0 \bullet 0 0$	Conclusion 00
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension	on with odd degree.	
	$\tau:\overline{\mathbb{F}_q}\to\overline{\mathbb{F}_q}$	

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

- $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.
- $L{\tau}$ is left-euclidean, hence notion of rgcd.

Introduction 0000	Function field CRS $0 \bullet 0 0$	Conclusion 00
Ore polynomials		
Let L/\mathbb{F}_q be a finite extension	on with odd degree.	
	$\tau:\overline{\mathbb{F}_q}\to\overline{\mathbb{F}_q}$	

$$L\{\tau\} := \left\{ \sum_{0 \leq i \leq n} a_n \tau^i \mid n \in \mathbb{Z}_{\geq 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

- $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.
- $L{\tau}$ is left-euclidean, hence notion of rgcd.
- SageMath implementation by X. Caruso.

Antoine Leudière

Fu
00

One function field analogue: CRS (3/3)

Representation:

■ isomorphism classes of Drinfeld modules are represented by a j-invariant,

One function field analogue: CRS (3/3)

Representation:

- isomorphism classes of Drinfeld modules are represented by a j-invariant,
- points in $Pic^{0}(\mathcal{H})$ are represented by Mumford coordinates.

One function field analogue: CRS (3/3)

Representation:

■ isomorphism classes of Drinfeld modules are represented by a j-invariant,

• points in $Pic^{0}(\mathcal{H})$ are represented by Mumford coordinates.

- **Input:** A *j*-invariant $j \in L$.
 - Mumford coordinates $(u, v) \in \mathbb{F}_q[X]^2$.

Output: A *j*-invariant.

// ω is a global constant $\widetilde{u} \leftarrow u(j^{-1}\tau^2 + \tau + \omega) \in L\{\tau\};$ $\widetilde{v} \leftarrow v(j^{-1}\tau^2 + \tau + \omega) \in L\{\tau\};$ $\iota \leftarrow \operatorname{rgcd}(\widetilde{u}, \tau^{[L:\mathbb{F}_q]} - \widetilde{v});$ $\widehat{g} \leftarrow \iota_0^{-q}(\iota_0 + \iota_1(\omega^q - \omega));$ $\widehat{\Delta} \leftarrow j^{-q^{\deg_{\tau}(\iota)}};$ 6 Return $\widehat{g}^{q+1}/\widehat{\Delta}.$

Function field CRS	
0000	

How secure is it? Not that much...

The security of the protocol reduces to the problem of finding an isogeny between two isogenous Drinfeld modules.

How secure is it? Not that much...

The security of the protocol reduces to the problem of finding an isogeny between two isogenous Drinfeld modules.

Previous work (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020) solve a recursive equation by exploring a research tree with exponential size (in the degree of the desired isogeny). We studied this algorithm and heuristically concluded that it ran in exponential time.

How secure is it? Not that much...

The security of the protocol reduces to the problem of finding an isogeny between two isogenous Drinfeld modules.

Previous work (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020) solve a recursive equation by exploring a research tree with exponential size (in the degree of the desired isogeny). We studied this algorithm and heuristically concluded that it ran in exponential time.

But two weeks ago... Wesolowski, solved this problem in polynomial time, reducing the isogeny-search problem to a linear algebra problem.

	Function field CRS	Conclusion
000	0000	● 0

Security

Function field CRS	Conclusio
	•0

Number fields		Function fields	
Problem	Security	Problem	Security
DLP on \mathbb{F}_q^{\times}	Broken in small characteristic		
DLP on $E(\mathbb{F}_q)$	Secure		
CRS	Secure		

Function field CRS

Number fields		Function fields	
Problem	Security	Problem	Security
DLP on \mathbb{F}_q^{\times}	Broken in small characteristic	Same problem!	
DLP on $E(\mathbb{F}_q)$	Secure		
CRS	Secure		

Function field CRS

Number fields		Function fields	
Problem	Security	Problem	Security
DLP on \mathbb{F}_q^{\times}	Broken in small characteristic	Same problem!	
DLP on $E(\mathbb{F}_q)$	Secure	Analogue with Drinfeld modules	<mark>Broken</mark> (Scanlon, 1999)
CRS	Secure		

0000	0000

Number fields		Function fields	
Problem	Security	Problem	Security
DLP on \mathbb{F}_q^{\times}	Broken in small characteristic	Same problem!	
DLP on $E(\mathbb{F}_q)$	Secure	Analogue with Drinfeld modules	<mark>Broken</mark> (Scanlon, 1999)
CRS	Secure	Analogue with Drinfeld modules	Broken (Wesolowski, 2022)

Introduction 0000	Function field CRS 0000	Conclusion 0•
Conclusion		

Introduction	Function field CRS	Conclusion
0000	0000	0
Conclusion		

It also seems to be the case for CSIDH and SIDH (Joux, Narayanan, 2019).

Introduction	Function field CRS	Conclusion
0000	0000	0
CONCLUSION		

It also seems to be the case for CSIDH and SIDH (Joux, Narayanan, 2019).

However, many algorithmic aspects of Drinfeld modules are yet to be explored for cryptographic purposes: higher ranks, abelian varieties...

Introduction	Function field CRS	Conclusion
0000	0000	0•
Conclusion		

It also seems to be the case for CSIDH and SIDH (Joux, Narayanan, 2019).

However, many algorithmic aspects of Drinfeld modules are yet to be explored for cryptographic purposes: higher ranks, abelian varieties...

Thank you!