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Class field theory of number fields

Couveignes showed (1996) that the class field theory of number fields provided a
unifying vision for:

the DLP on multiplicative groups F
×
q ,

the DLP on elliptic curves E(Fq),

the Couveignes-Rostovtsev-Stolbunov (CRS) key-exchange scheme.

This unification is made with the notion of hard homogeneous space (HHS).
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Hard homogeneous spaces (Couveignes, 1996)

Tristan and Isolde create a private key on a public channel.

They choose an
abelian group G acting (freely and transitively) on a set X, with an element x ∈ X.

a·x

b·x

Both calculate ab · x (secret key)

Secure if hard to compute ab · x knowing x,a · x and b · x.
Generalizes Diffie-Hellman on a cyclic group H : G =Z/#HZ, X =H .
CRS and CSIDH are built as hard homogeneous spaces.
Quantum attack in exp(c

√
log(#G)) for some c > 0 (Kuperberg, 2005; Bonnetain,

Schrottenloher, 2020).
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Main results

In ia.cr/2022/349:

Construction of the function field analogue of CRS.

Efficient C++ implementation.

Reduction of the security to the isogeny finding problem.

Enhancements on the analysis of the recursive algorithm to find isogenies
(Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020).

But this new CRS is now broken (Wesolowski, three weeks ago; ia.cr/2022/438)!
Furthermore:

SageMath library for finite Drinfeld modules (work in progress).
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Main result

Let L/Fq be a finite extension with odd degree.

LetH be an imaginary hyperelliptic
curve on Fq. Let AH be the ring of function ofH regular outside∞.

Theorem

There is an explicit and computable group action of Pic0(H) ' Cl(AH) to the set of
Fq-isomorphism classes of rank 1 AH-Drinfeld modules defined over L.
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Ore polynomials

Let L/Fq be a finite extension with odd degree.

τ : Fq→ Fq

x 7→ xq.

L{τ} :=

 ∑
06i6n

anτ
i | n ∈Z>0, ai ∈ L

 ⊂ End
Fq
(Fq)

Properties:
L{τ} is non commutative: τa = aqτ, ∀a ∈ L.
L{τ} is left-euclidean, hence notion of rgcd.
SageMath implementation by X. Caruso.
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One function field analogue: CRS (3/3)

Representation:
isomorphism classes of Drinfeld modules are represented by a j-invariant,

points in Pic0(H) are represented by Mumford coordinates.

Input: — A j-invariant j ∈ L.
— Mumford coordinates (u,v) ∈ Fq[X]2.

Output: A j-invariant.
// ω is a global constant

1 ũ← u(j−1τ2 + τ +ω) ∈ L{τ};
2 ṽ← v(j−1τ2 + τ +ω) ∈ L{τ};
3 ι← rgcd(ũ,τ [L:Fq] − ṽ);
4 ĝ← ι

−q
0 (ι0 + ι1(ωq −ω));

5 ∆̂← j−q
degτ (ι) ;

6 Return ĝq+1/∆̂.
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2 ṽ← v(j−1τ2 + τ +ω) ∈ L{τ};
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How secure is it? Not that much. . .

The security of the protocol reduces to the problem of finding an isogeny between
two isogenous Drinfeld modules.

Previous work (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler, 2020)
solve a recursive equation by exploring a research tree with exponential size (in
the degree of the desired isogeny). We studied this algorithm and heuristically
concluded that it ran in exponential time.

But two weeks ago... Wesolowski, solved this problem in polynomial time,
reducing the isogeny-search problem to a linear algebra problem.
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reducing the isogeny-search problem to a linear algebra problem.
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Recap of the situation

Number fields Function fields

Problem Security Problem Security

DLP on F
×
q Broken in small

characteristic
Same problem!

DLP on E(Fq) Secure Analogue with
Drinfeld modules

Broken (Scanlon,
1999)

CRS Secure Analogue with
Drinfeld modules

Broken
(Wesolowski,
2022)
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Conclusion

Function fields / Drinfeld modules analogues of elliptic curve isogeny-based
cryptosystems presented here seem very well broken. . .

It also seems to be the case for CSIDH and SIDH (Joux, Narayanan, 2019).

However, many algorithmic aspects of Drinfeld modules are yet to be explored for
cryptographic purposes: higher ranks, abelian varieties. . .

Thank you!
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