DIFFIE-HELLMAN KEY-EXCHANGE PR	ROPERTIES OF DRINFELD MODULES	MAIN RESULTS	Drinfeld modules	GROUP ACTION	CONCLUSION
000 00	0	0	00000	000	00

Hard Homogeneous Spaces from the Class Field Theory of Imaginary Hyperelliptic Function Fields JNCF 2022

Antoine Leudière Pierre-Jean Spaenlehauer

INRIA Nancy-Grand Est

Tristan and Isolde create a private key on a public chanel. They choose a finite cyclic group $G = \langle g \rangle$.

Secure if hard to compute g^{ab} knowing g, g^a and g^b .

Tristan and Isolde create a private key on a public chanel. They choose a finite cyclic group $G = \langle g \rangle$.

Secure if hard to compute g^{ab} knowing g, g^a and g^b .

Shor's quantum algorithm breaks this problem for any group.

Tristan and Isolde create a private key on a public chanel. They choose an abelian group G acting (freely and transitively) on a set X, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$.

Tristan and Isolde create a private key on a public chanel. They choose an abelian group G acting (freely and transitively) on a set X, with an element $x \in X$.

Secure if hard to compute $ab \cdot x$ knowing $x, a \cdot x$ and $b \cdot x$.

Quantum attack in $\exp(c\sqrt{\log(\#G)})$ for some c > 0 (Kuperberg, 2005).

Diffie-Hellman key-exchange 00●	Properties of Drinfeld modules	Main results 0	Drinfeld modules	Group action	Conclusion 00
CRS					

Diffie-Hellman key-exchange 00●	Properties of Drinfeld modules 00	Main results 0	Drinfeld modules	Group action	Conclusion 00
CRS					

■ *X*: subset of isomorphism classes of ordinary elliptic curves on \mathbb{F}_q with prescribed endomorphism ring and Frobenius trace.

Diffie-Hellman key-exchange 00●	Properties of Drinfeld modules 00	Main results 0	Drinfeld modules	Group action	Conclusion 00
CRS					

- X: subset of isomorphism classes of ordinary elliptic curves on \mathbb{F}_q with prescribed endomorphism ring and Frobenius trace.
- G: Class group of their endomorphism ring.

Diffie-Hellman key-exchange 00●	Properties of Drinfeld modules 00	Main results 0	Drinfeld modules	Group action 000	Conclusion 00
CRS					

- X: subset of isomorphism classes of ordinary elliptic curves on \mathbb{F}_q with prescribed endomorphism ring and Frobenius trace.
- G: Class group of their endomorphism ring.

Despite recent improvements (De Feo, Kieffer, Smith, 2018), calculations are take several minutes.

Diffie-Hellman key-exchange 00●	Properties of Drinfeld modules 00	Main results 0	Drinfeld modules	Group action 000	Conclusion 00
CRS					

- X: subset of isomorphism classes of ordinary elliptic curves on \mathbb{F}_q with prescribed endomorphism ring and Frobenius trace.
- *G*: Class group of their endomorphism ring.

Despite recent improvements (De Feo, Kieffer, Smith, 2018), calculations are take several minutes.

CSIDH (Castryck, Lange, Martindale, Panny, Renes, 2018) does better, but the structure of thei *G* is very hard to compute.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
	00				

Number fields	Function fields

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
	00				

Number fields	Function fields
Z	$\mathbb{F}_{q}[X]$

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
	00				

Number fields	Function fields
Z	$\mathbb{F}_{q}[X]$
Q	$\mathbb{F}_q(X)$

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
	00				

Number fields	Function fields			
Z	$\mathbb{F}_{q}[X]$			
Q	$\mathbb{F}_q(X)$			
Number field	Function field			

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
	00				

Finite Drinfeld modules

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over \mathbb{F}_q	Finite Drinfeld modules
Z-module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$
	-

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over \mathbb{F}_{q}	Finite Drinfeld modules
\mathbb{Z} -module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$
Any finite \mathbb{Z} -module gives rise to a separable isogeny	Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (+ technical condition)

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over \mathbb{F}_{q}	Finite Drinfeld modules
\mathbb{Z} -module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$
Any finite \mathbb{Z} -module gives rise to a separable isogeny	Any finite sub- $\mathbb{F}_{q}[X]$ -module of $\overline{\mathbb{F}_{q}}$ (+ technical condition)
Endomorphisms form a free \mathbb{Z} -module of rank 2 or 4	Endomorphisms form a free $\mathbb{F}_q[X]$ -module of rank 2 or 4

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over $\mathbb{F}_{\!q}$	Finite Drinfeld modules			
\mathbb{Z} -module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$			
Any finite \mathbb{Z} -module gives rise to a separable isogeny	Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (+ technical condition)			
Endomorphisms form a free \mathbb{Z} -module of rank 2 or 4	Endomorphisms form a free $\mathbb{F}_{q}[X]$ -module of rank 2 or 4			
j-invariant encoding $\overline{\mathbb{F}_q}$ -isomorphism classes				

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over \mathbb{F}_q	Finite Drinfeld modules
\mathbb{Z} -module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$
Any finite \mathbb{Z} -module gives rise to a separable isogeny	Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (+ technical condition)
Endomorphisms form a free \mathbb{Z} -module of rank 2 or 4	Endomorphisms form a free $\mathbb{F}_{q}[X]$ -module of rank 2 or 4
j-invariant encoding $\overline{\mathbb{F}}_{d}$	$\frac{1}{q}$ -isomorphism classes
Characterist	ic polynomial

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules		Conclusion
000	00		00000	000	00

Elliptic curves over \mathbb{F}_q	Finite Drinfeld modules			
\mathbb{Z} -module law on $\mathcal{E}(\overline{\mathbb{F}_q})$	$\mathbb{F}_q[X]$ -module law on $\overline{\mathbb{F}_q}$			
Any finite \mathbb{Z} -module gives rise to a separable isogeny	Any finite sub- $\mathbb{F}_q[X]$ -module of $\overline{\mathbb{F}_q}$ (+ technical condition)			
Endomorphisms form a free \mathbb{Z} -module of rank 2 or 4	Endomorphisms form a free $\mathbb{F}_q[X]$ -module of rank 2 or 4			
j-invariant encoding $\overline{\mathbb{F}_q}$ -isomorphism classes				
Characterist	ic polynomial			
Two families: ordinary and supersingular				

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
		•		

 Description of a setting in which a general action is simply transitive; proof.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
		•		

Main results

- Description of a setting in which a general action is simply transitive; proof.
- Efficient algorithm to compute the action.

000 00 0000 00 00 00	Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
			•		

- Description of a setting in which a general action is simply transitive; proof.
- Efficient algorithm to compute the action.
- C++/NTL implementation of the key-exchange; proof of concept.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
		•		

- Description of a setting in which a general action is simply transitive; proof.
- Efficient algorithm to compute the action.
- C++/NTL implementation of the key-exchange; proof of concept.
- SageMath library for finite Drinfeld modules; we aim for an integration in SageMath.

OF DRINFELD MODULES INTAIN R	ESULIS DRINFELD MODULES	GROUP ACTION	CONCLUSION
•			

- Description of a setting in which a general action is simply transitive; proof.
- Efficient algorithm to compute the action.
- C++/NTL implementation of the key-exchange; proof of concept.
- SageMath library for finite Drinfeld modules; we aim for an integration in SageMath.
- Numerical experiments suggest that the inverse problem of the action is hard.

Ore polynomials (1/2)

Fix $\mathbb{F}_q \hookrightarrow L \hookrightarrow \overline{\mathbb{F}_q}$ a finite field extension and

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

Ore polynomials (1/2)

Fix $\mathbb{F}_q \hookrightarrow L \hookrightarrow \overline{\mathbb{F}_q}$ a finite field extension and

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

Definition (Ore, 1933)

The set

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

is a ring for addition and composition, called the *ring of Ore polynomials*.
$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Properties:

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Properties:

■ $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Properties:

- $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.
- $L{\tau}$ is left-euclidean
 - \rightarrow notion of rgcd
 - \longrightarrow many algorithmic perspectives!

$$\tau: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q}$$
$$x \mapsto x^q.$$

$$L\{\tau\} := \left\{ \sum_{0 \le i \le n} a_n \tau^i \mid n \in \mathbb{Z}_{\ge 0}, a_i \in L \right\} \subset \operatorname{End}_{\mathbb{F}_q}(\overline{\mathbb{F}_q})$$

Properties:

- $L{\tau}$ is non commutative: $\tau a = a^q \tau$, $\forall a \in L$.
- $L{\tau}$ is left-euclidean
 - \rightarrow notion of rgcd
 - \longrightarrow many algorithmic perspectives!
- SageMath implementation by X. Caruso.

Drinfeld modules on $\mathbb{F}_{q}[X]$

Definition (Drinfeld, 1974)

An $\mathbb{F}_q[X]$ -Drinfeld module over L is an \mathbb{F}_q -algebra morphism

 $\phi:\mathbb{F}_q[X] \to L\{\tau\}$

such that

- there exists $a \in \mathbb{F}_q[X]$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is \overline{X} .

Drinfeld modules on $\mathbb{F}_{q}[X]$

Definition (Drinfeld, 1974)

An $\mathbb{F}_q[X]$ -Drinfeld module over L is an \mathbb{F}_q -algebra morphism

 $\phi:\mathbb{F}_q[X]\to L\{\tau\}$

such that

- there exists $a \in \mathbb{F}_q[X]$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is \overline{X} .

As a morphism, ϕ is uniquely determined by $\phi(X).$ We consider ϕ defined by

$$\phi(X) = \omega + g\tau + \Delta\tau^2, \quad g \in L, \Delta \in L^{\times}.$$

Drinfeld modules on $\mathbb{F}_{q}[X]$

Definition (Drinfeld, 1974)

An $\mathbb{F}_q[X]$ -Drinfeld module over L is an \mathbb{F}_q -algebra morphism

 $\phi:\mathbb{F}_q[X]\to L\{\tau\}$

such that

- there exists $a \in \mathbb{F}_q[X]$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is \overline{X} .

As a morphism, ϕ is uniquely determined by $\phi(X)$. We consider ϕ defined by

$$\phi(X) = \omega + g\tau + \Delta\tau^2, \quad g \in L, \Delta \in L^{\times}.$$

Those are *rank* 2 Drinfeld modules over *L*.

Let:

• ϕ : rank 2 Drinfeld module,

Let:

φ: rank 2 Drinfeld module,
τ_L = τ^[L:F_q].

Let:

φ: rank 2 Drinfeld module,
τ_I = τ^[L:F_q].

THEOREM (GEKELER, 1991)

There exists $\xi \in \mathbb{F}_q[X][Y]$ such that:

 $\xi(\phi(X),\tau_L)=0$

Let:

• ϕ : rank 2 Drinfeld module, • $\tau_L = \tau^{[L:\mathbb{F}_q]}$.

THEOREM (GEKELER, 1991)

There exists $\xi \in \mathbb{F}_q[X][Y]$ such that:

 $\xi(\phi(X),\tau_L)=0$

and

$$\begin{cases} \xi = Y^2 + h(X)Y - f(X), \\ \deg(f) = [L : \mathbb{F}_q], & (\text{Hasse-Weil bounds}) \\ \deg(h) \leq [L : \mathbb{F}_q]/2. \end{cases}$$

Let:

• ϕ : rank 2 Drinfeld module, • $\tau_L = \tau^{[L:\mathbb{F}_q]}$.

THEOREM (GEKELER, 1991)

There exists $\xi \in \mathbb{F}_q[X][Y]$ such that:

 $\xi(\phi(X),\tau_L)=0$

and

$$\begin{cases} \xi = Y^2 + h(X)Y - f(X), \\ \deg(f) = [L : \mathbb{F}_q], & (\text{Hasse-Weil bounds}) \\ \deg(h) \leq [L : \mathbb{F}_q]/2. \end{cases}$$

If $2 \nmid [L : \mathbb{F}_q]$ and the curve defined by the characteristic polynomial ξ is smooth, then it is an *imaginary hyperelliptic curve*.

If $2 \nmid [L : \mathbb{F}_q]$ and the curve defined by the characteristic polynomial ξ is smooth, then it is an *imaginary hyperelliptic curve*.

Efficiently computed (Musleh, Schost, 2019).

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
				000	

Assume $\xi \in \mathbb{F}_q[X][Y]$ defines an hyperelliptic curve.

Assume $\xi \in \mathbb{F}_q[X][Y]$ defines an hyperelliptic curve. Let: • ϕ : rank 2 with characteristic polynomial ξ ,

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
				000	

Assume $\xi \in \mathbb{F}_q[X][Y]$ defines an hyperelliptic curve. Let:

- ϕ : rank 2 with characteristic polynomial ξ ,
- I: ideal of $\mathbb{F}_q[X][Y]/\xi$,

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

Assume $\xi \in \mathbb{F}_q[X][Y]$ defines an hyperelliptic curve. Let:

- ϕ : rank 2 with characteristic polynomial ξ ,
- I: ideal of $\mathbb{F}_q[X][Y]/\xi$,
- **I** $\star \phi$: Drinfeld module ψ associated to ϕ and

$$\bigcap_{\overline{f}\in I}\operatorname{Ker}\left(f\left(\phi(X),\tau_{L}\right)\right).$$

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

DEFINITION OF THE ACTION

Assume $\xi \in \mathbb{F}_q[X][Y]$ defines an hyperelliptic curve. Let:

- ϕ : rank 2 with characteristic polynomial ξ ,
- I: ideal of $\mathbb{F}_q[X][Y]/\xi$,
- **I** $\star \phi$: Drinfeld module ψ associated to ϕ and

$$\bigcap_{\overline{f}\in I}\operatorname{Ker}\left(f\left(\phi(X),\tau_{L}\right)\right).$$

Theorem

If $2 \mid [L : \mathbb{F}_q]$, the map $(I, \phi) \mapsto I \star \phi$ extends to a group action of

 $\mathrm{Cl}(\mathbb{F}_q[X][Y]/\xi)$

to

$$\left\{ \operatorname{Isom}_{\overline{\mathbb{F}_q}}(\phi) \mid \operatorname{Rank}(\phi) = 2, \operatorname{CharPol}(\phi) = \xi \right\}.$$

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

Assume ξ defines an hyperelliptic curve \mathcal{H} . Representation:

■ Ideal classes: $Cl(\mathbb{F}_q[X][Y]/\xi) \simeq Pic_0(\mathcal{H})$

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

Assume ξ defines an hyperelliptic curve \mathcal{H} . Representation:

■ Ideal classes: $\operatorname{Cl}(\mathbb{F}_q[X][Y]/\xi) \simeq \operatorname{Pic}_0(\mathcal{H})$

 \longrightarrow Mumford coordinates $(u, v) \in \mathbb{F}_q[X]^2$.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

Assume ξ defines an hyperelliptic curve \mathcal{H} . Representation:

- Ideal classes: $Cl(\mathbb{F}_q[X][Y]/\xi) \simeq Pic_0(\mathcal{H})$
 - \longrightarrow Mumford coordinates $(u, v) \in \mathbb{F}_q[X]^2$.
- Isomorphism classes: *j*-invariants in *L*.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	GROUP ACTION	Conclusion
000	00		00000	000	00

Assume ξ defines an hyperelliptic curve \mathcal{H} . Representation:

- Ideal classes: $Cl(\mathbb{F}_q[X][Y]/\xi) \simeq Pic_0(\mathcal{H})$
 - \longrightarrow Mumford coordinates $(u, v) \in \mathbb{F}_q[X]^2$.

■ Isomorphism classes: *j*-invariants in *L*.

Input: — A *j*-invariant $j \in L$.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
000	00	0	00000	000	00

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
				000	

 k: algebraic function field with transcendance degree 1 over 𝔽_q,

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
				000	

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of **k**,

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	GROUP ACTION	Conclusion
000	00	0	00000	000	00

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of \mathbf{k} ,
- A: ring of functions that are regular outside ∞ ,

000	000	00

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of **k**,
- A: ring of functions that are regular outside ∞ ,
- $\gamma : \mathbf{A} \to L$: \mathbb{F}_q -algebra morphism.

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of \mathbf{k} ,
- A: ring of functions that are regular outside ∞ ,
- $\gamma : \mathbf{A} \to L$: \mathbb{F}_q -algebra morphism.

DEFINITION

A Drinfeld A-module over L is an \mathbb{F}_q -algebra morphism $\phi:\mathbf{A}\to L$ such that:

- there exists $a \in \mathbf{A}$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is $\gamma(a)$.

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of \mathbf{k} ,
- A: ring of functions that are regular outside ∞ ,
- $\gamma : \mathbf{A} \to L$: \mathbb{F}_q -algebra morphism.

DEFINITION

A Drinfeld A-module over L is an \mathbb{F}_q -algebra morphism $\phi:\mathbf{A}\to L$ such that:

- there exists $a \in \mathbf{A}$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is $\gamma(a)$.

Theorem (Drinfeld, 1974)

The group $Cl(\mathbf{A})$ acts on the set of $\overline{\mathbb{F}_q}$ -isomorphism classes of Drinfeld \mathbf{A} -modules over L with rank r.

- k: algebraic function field with transcendance degree 1 over 𝔽_q,
- ∞ : place of \mathbf{k} ,
- A: ring of functions that are regular outside ∞ ,
- $\gamma : \mathbf{A} \to L$: \mathbb{F}_q -algebra morphism.

DEFINITION

A Drinfeld A-module over L is an \mathbb{F}_q -algebra morphism $\phi:\mathbf{A}\to L$ such that:

- there exists $a \in \mathbf{A}$ such that $\deg_{\tau}(\phi(a)) > 0$,
- for all $a \in \mathbf{A}$ the constant term of $\phi(a)$ is $\gamma(a)$.

Theorem (Drinfeld, 1974)

The group $Cl(\mathbf{A})$ acts on the set of $\overline{\mathbb{F}_q}$ -isomorphism classes of Drinfeld \mathbf{A} -modules over L with rank r.

Our action is realized with $\mathbf{A} = \mathbb{F}_q[X][Y]/\xi$ and r = 1.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	Conclusion
				•0

CONCLUSION

 The group action is a adaptation of Couveignes-Rostovtsev-Stolbunov to Drinfeld modules.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	Conclusion
				•0

Conclusion

- The group action is a adaptation of Couveignes-Rostovtsev-Stolbunov to Drinfeld modules.
- The algorithm only requires elementary arithmetic tools.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	Conclusion
				00

Conclusion

- The group action is a adaptation of Couveignes-Rostovtsev-Stolbunov to Drinfeld modules.
- The algorithm only requires elementary arithmetic tools.
- After partial results and numerical experiments, we conjecture that the problem of inverting the action is hard (studied by Joux, Narayanan, 2019; and by Caranay, Greenberg, Scheidler, 2020).

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules	Conclusion
				00

Conclusion

- The group action is a adaptation of Couveignes-Rostovtsev-Stolbunov to Drinfeld modules.
- The algorithm only requires elementary arithmetic tools.
- After partial results and numerical experiments, we conjecture that the problem of inverting the action is hard (studied by Joux, Narayanan, 2019; and by Caranay, Greenberg, Scheidler, 2020).
- With q = 2 and $L = \mathbb{F}_{2^{521}}$, the key exchange is calculated in $\simeq 200$ ms with our C++ / NTL implementation.
Conclusion

- The group action is a adaptation of Couveignes-Rostovtsev-Stolbunov to Drinfeld modules.
- The algorithm only requires elementary arithmetic tools.
- After partial results and numerical experiments, we conjecture that the problem of inverting the action is hard (studied by Joux, Narayanan, 2019; and by Caranay, Greenberg, Scheidler, 2020).
- With q = 2 and $L = \mathbb{F}_{2^{521}}$, the key exchange is calculated in $\simeq 200$ ms with our C++ / NTL implementation.
- The structure of the group is calculated in 53 hours in our case (Kedlaya-Vercauteren alg.); 52 CPU-years for CSIDH-512 (Beullens, Kleinjung, Vercauteren, 2019).

000 00 00 000 000 0 0	Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
					00

Proving that the current best known algorithm to solve the inverse problem runs in exponential time.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	Main results	Drinfeld modules	Conclusion
				00

- Proving that the current best known algorithm to solve the inverse problem runs in exponential time.
- Finding optimal cryptographic parameters.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules		Conclusion
000	00		00000	000	00

- Proving that the current best known algorithm to solve the inverse problem runs in exponential time.
- Finding optimal cryptographic parameters.
- Contributing to SageMath with our framework for Drinfeld modules.

Diffie-Hellman key-exchange	Properties of Drinfeld modules	MAIN RESULTS	Drinfeld modules		Conclusion
000	00		00000	000	00

- Proving that the current best known algorithm to solve the inverse problem runs in exponential time.
- Finding optimal cryptographic parameters.
- Contributing to SageMath with our framework for Drinfeld modules.

Thank you!