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CONTEXT
@®00000

HARD HOMOGENOUS SPACES (1/2)

Tristan and Isolde choose an abelian group G acting freely and transitively on a
set X, with an element x € X.

ax

~

AN

b-x

¢ -——-- Both calculate ab - x (secret key) - ———— >

The protocol is secure if (among other things) it is hard to compute ab - x knowing
x,a-xandb-x.

DeriniTION (COUVEIGNES, 1996)

Under those hypotheses, this construction is called a hard homogeneous space.
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Tuae CRS acrioNn

Couveignes (1996) then Rostovstev, Stolbunov (2006) used this action:

THEOREM (CLASSICAL RESULT FROM CLASS FIELD THEORY)

Let E/IF, be some ordinary elliptic curve. Fix O = End]pq(E).

Then, C1(O) acts simply transitively on the set ofE—isomorphism classes of
elliptic curves defined over IFq with same endomorphism ring and characteristic
polynomial as E.

The computation is explicit, but slow (De Feo, Kieffer, Smith, 2019).
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WHaAT ABouT CSIDH?

CSIDH is way more efficient.

But... (like for CRS) the corresponding group is the class group of a imaginary
quadratic number field.

Those groups are extremely hard to compute (Beullens, Kleinjung, Vercauteren,
2019).

What if we used imaginary hyperelliptic curves instead of imaginary quadratic
number fields?

The analogue of the class group would be the Jacobian: computable with
Kedlaya's algorithm.

We could build post-quantum signature schemes (Beullens, Kleinjung,
Vercauteren, 2019).
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ANALOGIES (1/2)

Number fields ‘ Function fields

Z F, [X]

Imaginary quadratic number fields Imaginary hyperelliptic curves

Class group (hard computation) Jacobian (small characteristic:
easy-ish computation with Kedlaya's
algorithm)

Elliptic curves Drinfeld modules
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ANALOGIES (2/2)

Elliptic curves over finite fields ‘ Finite Drinfeld IF;[X]-modules
Z-module law on E(IF_q) -module law on Fq
E[n] =~ (Z/n)*ifptn ¢ola] = ( /a) ifpta

Elp] = (z/p)=®" plp] = ([ X )/p)y<tOrt)

Vélu formulae

j-invariant encoding E—isomorphism classes
Characteristic polynomial of the Frobenius endomorphism
Theory of complex multiplication
Two constructions: algebraic, analytic
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MAIN RESULTS

Preprint ia.cr/2022/349.
Computer algebra:
m Definition of a CRS-like group action for Drinfeld modules, and proof that it is
simply transitive.
m Definition of an algorithm to compute the action.
m Efficient C++/NTL implementation.
m Ongoing SageMath implementation of Drinfeld modules
(https://trac.sagemath.org/ticket/33713).
Cryptography:
B Reduction of the inverse problem to the isogeny-finding problem.

m Conjecture that the best (at the time) algorithm ran in exponential time.
Wesolowski found a new polynomial algorithm (ia.cr/2022/438).
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DRINFELD MODULES: INTUITION
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LeT’s DEFINE DRINFELD MODULES

Let ¢ denote a potential Drinfeld module. Let a,b € Fj[X], let x,p € F,let e IF,.
Let’s choose to act on IF_q (instead of E(E)):

GoaL l: a-(x+y)=a-x+a-yp;
GoaL 2: A-x = Ax; .
(1) +(2): ¢(a): (x> a-x)is F-linear (¢p(a) € End]Fq(IFq)).

Goatr 3: a-(b-x) = (ab)-x;
(3): a> ¢(a)is a ring morphism FF,[X] — Endrpq(lF_q).
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DRINFELD MODULES: INTUITION
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LINEAR ENDOMORPHISMS OF Fq (1/2)

A morphism in End]F (F ) has the form

x> Lt +o+ Lyl +1Lx, EIF_q.

Denote

T:x - x9.

xo L (x)+-+hr(x)+ 1 1(x), EE.

Endy, (F, {sz, neZsol; eIF}

i=1
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DRINFELD MODULES: INTUITION
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LINEAR ENDOMORPHISMS OF Fq (2/2)

Let L be a sub-extension of IF_q/IFq. Denote

L{T}:{Zli’fn, n€Z>0,ll‘€L}.

i=1

DeriNniTION (ORE, 1933)

The ring L{t} is called ring of Ore polynomials in T with coefficients in L.

ANTOINE LEUDIERE 10/23



DRINFELD MODULES: INTUITION
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DEFINITION OF A FINITE DRINFELD [F, [ X |-MODULE

Let L/IFq be finite; fix w € £.*.

DeriNITION (DRINFELD, 1974)

A finite Drinfeld IF,[ X]-module defined over L is an [F;-algebra morphism
¢: ]Fq[X] — L{t}

such that Im(¢) ¢ L and ConstCoeff(¢(X)) = w.

TaEOREM (DRINFELD, 1974)

I3

4 is an -module with

(a,x) = ¢(a)(x).

There is a more general definition.
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DRINFELD MODULES: PROPERTIES
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(GENERATOR OF A DRINFELD MODULE

Let ¢ : IF,[X] — L{t} be a finite Drinfeld module. ¢ is uniquely determined by ¢(X).
Write:
OX)=¢p, "+ +Pp1T+w, ¢, #0.

The rank of ¢ is n.

Rank 2 finite Drinfeld modules are closest to elliptic curves over finite fields.

ANTOINE LEUDIERE 12/23



DRINFELD MODULES: PROPERTIES
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ProPERTIES OF L{T}

m L{t}is non commutative if [F; # L:

=117, Vlel.

m L{t} is left-euclidean w.r.t. to the t-degree: for all P}, P, in L{t} with
deg, (P;) > deg (P,), there exists Q, R in L{t} such that:

Pl = QP2 +R,
deg, (R) < deg, (Ps).

m We can compute RGCD in L{t}.

m SageMath implementation (Xavier Caruso).

ANTOINE LEUDIERE 13/23



DRINFELD MODULES: PROPERTIES
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MORPHISMS AND ISOGENIES

DEerINITION

A morphism of finite Drinfeld modules ¢ — 1 is an Ore polynomial m € L{t} such
that

An isogeny is a nonzero morphism.

Endomorphisms always contain andty=xm x#L:

= H(P)H(X) = (PX) = p(XP) = p(X)p(P), Pe

B O(X)1 =1t + -+ w) = it + -+ 0l = P(X) 7y
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DRINFELD MODULES: PROPERTIES
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COMPLEX MULTIPLICATION

Assume ¢ has rank two.
The characteristic polynomial of the frobenius endomorphism of ¢ is the unique
polynomial

X¢(X, T)=T? - AX)T +B(X) € F, [ X[ T]

such that
X ($(X),71) = 7 — p(A)TL + $(B) = 0
and degy(A) <d/2,degy(B) = d (Hasse bounds).

¢ is supersingular iif p = MinPolqu(w) divides A.

X can be efficiently computed (Schost-Musleh, 2019).
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OUR EXPLICIT GROUP ACTION
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MAIN RESULT

THEOREM (CLASSICAL RESULT FROM CLASS FIELD THEORY)

Let E/IF, be some ordinary elliptic curve. Fix O = End]Fq(E).

Then, C1(O) acts simply transitively on the set of L-isomorphism classes of elliptic
curves defined over ]Fq with same endomorphism ring and characteristic
polynomial as E.

THEOREM (L., SPAENLEHAUER, 2022)

Assume [L: F,] is odd and > 5. Let ¢ be some ordinary rank two finite Drinfeld
module. Fix O = End(¢).

Assume X ¢ defines an imaginary hyperelliptic curve H.

Then, C1(O) ~ Pic®(H) and C1(O) acts simply transitively on the set of
f—isomorphism classes of rank 1 Drinfeld modules O — L{t}.
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OUR EXPLICIT GROUP ACTION
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DEFINITION OF THE ACTION

Let a € Id(O), let ¢’ be a representative. Let

V= |Ker(f).
fea

V, is the kernel of some isogeny 1, with domain ¢’. We associate

a* ¢’ = codomain of 1,.

This map can be extended to the class group and to set of isomorphism classes.
This defines our action.
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OUR EXPLICIT GROUP ACTION
[e]e] le]e}

MUMEORD COORDINATES FOR Cl(O) = Pic’(H)

Endomorphisms always contain IFL][X] and the Frobenius endomorphism 7;.
In our case, that's it, i.e.

O = IF [ X|[Y]/x¢ = ring of functions on H regular outside co.

Consequence:

Cl(O) = Pic’(H).
Representation with Mumford coordinates:
Pic’(H) «— CI(F, [ X|[Y )/ xy)
(1,v) «—> Class of (u(X),Y —v(X))

with (Hasse-Weil bounds) u,v € IF;[X], u # 0 is monic, deg(v) < deg(u) < (d —1)/2,
ul x(X,v(X))andd = [L: [F,].
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OUR EXPLICIT GROUP ACTION
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ExPLICIT COMPUTATION

By definition, the isogeny 1 is the one with kernel

Vo= Ker(f)= (] Ker(f(¢(X), 7))

fea FeuX),Y-v(X))

Therefore

1, =rged (p(u), 1p — P(v)).
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OUR EXPLICIT GROUP ACTION
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ALGORITHM

Input: — A j-invariant j € L.
— Mumford coordinates (u,v) € IFq[X]z.
Output: A j-invariant.
1 7 u(j' T2+ 1+ w) € Li{t);
2 Vv P+t +w) e L{t);
3 1 rged(i, TVl - 7);
4 g qu(to + 11 (w1 - w));
5 A j1,
6 Return §‘1+1//A\.
C++ / NTL implementation of the action: computation in ~200 ms for IFq =1IF, and
[L:F;] =521. The hyperelliptic curve has genus % =260, Pic’(H) has order

2x31541318246754567260411631641504...
...7743350494962889744865259442943656024073295689.
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CRYPTOGRAPHY
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INVERSE PROBLEM

THEOREM (L., SPAENLEHAUER, 2022)

The problems of inverting the action and the problems of finding finite Drinfeld
module polynomially reduce to one another.

Write p(X) = A2+ g1+, P(X) = N1+ g'T+ w, 1 = 1,7+ -+ + 1y € L{7}.
Then tis anisogeny ¢ — 1 iif

) qz a

Nig —AT1,=0,
2

7 q a-1 a ’q

Nig =N 1y =1,8T — g1,

2 a—k a—k+1 a—k+2

.9 _ ’4q

Vkel2,al, Ay AT k=t g8 — g, g Flake2(@T T —w),

log + ! = wiy + '),
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CRYPTOGRAPHY
oe

ATTACKS ON THIS PROBLEM

m Previous work (Joux, Narayanan, 2019; Caranay, Greenberg, Scheidler,
2020): the system is solved recursively.

m Wesolowski (2022): this is an [F,-linear system of equations. We can find an
IF,-basis by writing each coefficient in an [F;-basis of L.

Interpretation: endomorphisms act on isogenies; endomorphism contain IFq[X],
and therefore the field IF;. This is not possible for Z (field with one element).
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CONCLUSION

Drinfeld modules are already classical in abstract mathematics (arithmetic of
function fields). There is a flourishing research focusing on algorithmic aspects:
Gekeler (1998); Joux, Narayanan (2019); Caranay (thesis, 2018); Caranay,
Greenberg, Scheidler (2019); Schost, Musleh (2019).

Yet vast algorithmic aree remain unexplored (rank > 2, T-modules, general
Drinfeld modules). We aim to develop algorithmic and software toolboxes.

We are looking at the links with class field theory, as suggested by Couveignes in
1996.
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