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Power residue symbols and their reciprocity laws have applications not only in number
theory, but also in other fields like cryptography. A crucial ingredient in certain public key
cryptosystems is a fast algorithm for computing power residue symbols. Such algorithms
have only been devised for the Jacobi symbol as well as for cubic and quintic power
residue symbols, but for no higher powers. In this paper, we provide an efficient procedure
for computing 7-th power residue symbols. The method employs arithmetic in the field
Q(ζ), with ζ a primitive 7-th root of unity, and its ring of integers Z[ζ]. We give an
explicit characterization for an element in Z[ζ] to be primary, and provide an algorithm
for finding primary associates of integers in Z[ζ]. Moreover, we formulate explicit forms
of the complementary laws to Kummer’s 7-th degree reciprocity law, and use Lenstra’s
norm-Euclidean algorithm in the cyclotomic field.
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1. Introduction

Characters and reciprocity laws have a rich history and many uses in number theory.
One of the simplest applications of classical reciprocity is in the evaluation of Jacobi
symbols. Using the definition, one would have to factor the modulus and apply
Euler’s criterion to compute the Legendre symbols modulo the individual prime
factors. However, combining the Euclidean algorithm with quadratic reciprocity and
the accompanying complementary laws eliminates the need for this factorization.
This is particularly important when the modulus is too big to factor, which is the
case in cryptographic applications. Efficient Jacobi symbol computation is required,
for example, in the Rabin-Williams [26] and the Goldwasser-Micali [6] public key
cryptosystems as well as Blum’s protocol for coin flipping by telephone [1]. The
security of all these systems resides in the computational impossibility of factoring
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the underlying modulus.
It is natural to ask to what extent this method can be generalized to characters

of higher order. This question is not only of mathematical interest in its own right,
but once again has cryptographic applications. The above idea has in fact been
employed to evaluate cubic and quintic power residue symbols which are used in
higher power generalizations of the Rabin-Williams scheme [22,23,27]. Here, the
Jacobi symbol is replaced by the power residue symbol (α/β)λ where λ = 3 or
5, and α, β are integers in the cyclotomic field Q(ζ) with ζ a primitive λ-th root
of unity. An explicit algorithm that generalizes the procedure for Jacobi symbols
— which is just the case λ = 2 — was described for the cases λ = 3 and 5, but
for no higher values of λ. As λ grows, the technical details becomes increasingly
complicated. To point out the obstacles and motivate this work, we first recall the
efficient Jacobi symbol algorithm referred to above, and then illustrate how this
technique can be used to evaluate higher power residue symbols.

Computing Jacobi Symbols – Basic Idea

Suppose we wish to find the Jacobi symbol (a/b) for two rational integers a, b, with
b odd and positive. If gcd(a, b) > 1, then (a/b) = 0, so suppose that a and b are
coprime. We first apply the absolute least remainder Euclidean algorithm to find
q, r ∈ Z with a = qb + r and |r| ≤ b/2. Next, write r = (−1)k2lc with k ∈ {0, 1},
l ≥ 0, and c odd and positive. We recall that(

b
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The first of these three identities is known as the quadratic law of reciprocity, and
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Now replace a by b and b by c and start over. Since the “numerator” of the symbol
decreases by a factor of at least 2 in each iteration, we eventually arrive at a Jacobi
symbol of the form (1/b) = 1, at which point the algorithm terminates. The number
of iterations is therefore no more than the number of divisions with remainder
required to compute gcd(a, b), which is linear in the size of b, i.e. linear in log(b).

Computing Higher Power Residue Symbols – Basic Idea

In the λ-th power residue symbol, the rational integers a, b are replaced by algebraic
integers in the cyclotomic field Q(ζ) obtained by adjoining a primitive λ-th root
of unity ζ to the rationals Q. Note that if β and β′ differ by a unit factor in Z[ζ],
then (α/β)λ = (α/β′)λ. One first needs to assume that Z[ζ] is norm-Euclidean; a
list of values of λ for which Z[ζ] is known to satisfy this condition can be found in
[15]. Next, one requires complementary laws for units in Z[ζ] and for the “special”
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prime ω = 1 − ζ ∈ Z[ζ] lying above λ. Finally, Kummer’s reciprocity law states
that (γ/β)λ = (β/γ)λ if γ and β are primary, i.e. satisfy certain normalization
conditions. Every algebraic integer β in Q(ζ) has a primary associate β′, i.e. there
exists a unit ε (that is in fact unique up to sign) such that β = εβ′ and β′ is primary.

Once again, assume that α and β are coprime. To compute (α/β)λ with β not
divisible by ω, first replace β by a primary associate which we also denote by β;
this does not change the value of the residue symbol. Next, use the norm-Euclidean
algorithm to find ρ ∈ Z[ζ] with α ≡ ρ (mod β) and N(ρ) < N(β); here, N(·)
denotes the norm function of Q(ζ)/Q. Finally, find a unit η ∈ Z[ζ] and a primary
element γ ∈ Z[ζ] such that ρ = ηωlγ where l ≥ 0 and γ is primary. As above, we
obtain (

α

β

)
λ

=
(
ρ

β

)
λ

=
(
η

β

)
λ

(
ω

β

)l

λ

(
β

γ

)
λ

.

The first two residue symbols on the right hand side above are evaluated directly
using the comlementaries. Now replace α by β and β by γ and start over. Since
the norm of the “numerator” decreases in each iteration, one eventually reaches a
power residue symbol of the form (±1/β) = 1, since 1 and −1 can be shown to be
the only primary units of Q(ζ). At this point, the algorithm terminates, and the
total number of iterations is linear in log(N(β)).

Overview of this Work

We note that the above algorithm requires four major ingredients:

• simple explicit conditions for a cyclotomic integer to be primary;
• an algorithm for finding a primary associate of a cyclotomic integer, and

the corresponding unit factor;
• complementary laws for units and the cyclotomic prime lying above λ;
• a norm-Euclidean algorithm.

As mentioned earlier, all this machinery was previously provided for λ = 2, 3 and
5 only. The case λ = 2 is classical. The case λ = 3 is discussed in [22] and [26] and
uses a description of primary cubic cyclotomic integers and cubic complementary
laws due to Eisenstein [4,5]. Finally, the case λ = 5 was first presented in [22] and
[23]. It is based on an explicit formulation of the quintic complementary laws due to
Williams [28] and employs the same norm-Euclidean algorithm used for our work
here.

In this paper, we provide explicit details for the case λ = 7. That is, we develop
an efficient method for computing residue symbols (α/β)7 in the cyclotomic field
Q(ζ), with ζ a primitive 7-th root of unity, without factoring the modulus β. We
introduce a set of precise simple conditions for elements in the ring of integers Z[ζ]
to be primary. We give an efficient technique for finding primary associates and show
that these associates are unique up to sign. We also provide an explicit proof that
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Kummer’s general reciprocity law, stated only for primary primes in [9], holds for
composite primary cyclotomic integers as well. We derive explicit complementary
laws for the elements excluded from Kummer’s reciprocity law, using the results of
[10]. These elements include λ = 7, ω = 1− ζ, and the units ±1, ζ, ζ + ζ6, ζ2 + ζ5,
and ζ3 + ζ4; any two of the latter three are fundamental units of Q(ζ). The final
ingredient is an explicit norm-Euclidean algorithm in Q(ζ) that was first stated in
[22] and is based on work by Lenstra [16]. All these tools are then combined to
provide a fast algorithm for computing power residue symbols of order 7.

A review of basic properties of cyclotomic fields and primary elements is given
in Section 2. In Section 3, we present the λ-th residue symbol as well as Kummer’s
law of reciprocity and its accompanying complementary laws. We then specialize to
the case λ = 7, giving an an explicit characterization of primary elements in Z[ζ] in
Section 4, and an algorithm for finding primary associates in Z[ζ] in Section 5. This
is followed by an explicit description of the complementary laws for the 7-th power
residue symbol in Section 6. A norm-Euclidean division algorithm for λ ≤ 11 due
to Lenstra is described in Section 7. All these results are combined into an efficient
algorithm for computing 7-th power residue symbols in Section 8, where we also
provide a numerical example. We conclude with some remarks on possible future
research directions in Section 9.

2. Cyclotomic Fields

We recall some elementary properties of cyclotomic fields; for a good overview, see
for example Chapters 1 and 2 of [25]. Throughout this and the next section, let λ
be an odd rational prime and ζ = e2πi/λ a primitive λ-th root of unity, so

1 + ζ + ζ2 + · · ·+ ζλ−1 = 0 .

The cyclotomic field Q(ζ) formed by adjoining ζ to the rational numbers Q is a
Galois extension of degree λ−1 over Q. The λ−1 conjugate mappings of Q(ζ)/Q are
given by σi(ζ) = ζi for 1 ≤ i ≤ λ−1. For any α = a1ζ+a2ζ

2+· · ·+aλ−1ζ
λ−1 ∈ Q(ζ),

with ai ∈ Q, we thus have

σi(α) = a1ζ
i + a2ζ

2i + · · ·+ aλ−1ζ
(λ−1)i .

The norm and trace of α are the rational numbers N(α) =
∏λ−1

i=1 σi(α) and T(α) =∑λ−1
i=1 σi(α), respectively. Since σλ−i(α) is the complex conjugate of σi(α), we see

that N(α) > 0 for all non-zero α ∈ Q(ζ).
The maximal order of Q(ζ) is the ring Z[ζ], so any λ − 1 distinct powers of ζ

form an integral basis of Q(ζ). We will be using both the integral bases {ζk | 1 ≤
k ≤ λ − 1} and {ζk | 0 ≤ k ≤ λ − 2}. Since all the λ − 1 conjugate mappings are
complex embeddings of Q(ζ), the unit rank of Q(ζ) is r = (λ − 3)/2, so the unit
group of Z[ζ] is of the form Z[ζ]∗ = 〈−1, ζ〉 × E where E is an infinite cyclic group
of rank r. For any α, β ∈ Z[ζ], we write α ' β if αβ−1 ∈ Z[ζ]∗, i.e. α and β are
associates.
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The discriminant of Q(ζ) is (−1)(λ−1)/2λλ−2, so the only rational prime that
ramifies in Q(ζ) is λ, which is in fact totally ramified. Specifically, λ ' ωλ−1 where
ω = 1− ζ is a prime in Z[ζ]. Note that the powers ωk with 0 ≤ k ≤ λ− 2 also form
an integral basis of Q(ζ). For every α =

∑λ−1
i=1 aiζ

i ∈ Z[ζ], we define the quantities

b = b(α) =
λ−1∑
i=1

ai = −T(α) , c = c(α) =
λ−1∑
i=1

iai , (2.1)

which we will use extensively. Then we have the following useful identity.

Lemma 2.1. α ≡ b(α)− c(α)ω (mod ω2) for all α ∈ Z[ζ].

Proof. Write α =
∑λ−1

i=1 aiζ
i with ai ∈ Z for 1 ≤ i ≤ λ− 1. Then

α =
λ−1∑
i=1

ai(1− ω)i ≡
λ−1∑
i=1

ai(1− iω) ≡ b(α)− c(α)ω (mod ω2) .

Corollary 2.2.

(a) α ≡ 0 (mod ω) if and only if b(α) ≡ 0 (mod λ).
(b) α ≡ b (mod ω2) if and only if c(α) ≡ 0 (mod λ).

Corollary 2.3. Let α, β ∈ Z[ζ]. Then

b(αβ) ≡ b(α)b(β) (mod λ) , c(αβ) ≡ c(α)b(β) + b(α)c(β) (mod λ) .

Proof. By Lemma 2.1,

b(αβ)− c(αβ)ω ≡ αβ ≡
(
b(α)− c(α)ω

)(
b(β)− c(β)ω

)
≡ b(α)b(β)−

(
c(α)b(β) + b(α)c(β)

)
ω (mod ω2).

Now simply use the fact that two rational integers are congruent modulo ω if and
only if they are congruent modulo λ.

Corollary 2.4. Let α ∈ Z[ζ]. Then for all n ∈ N,

b(αn) ≡ b(α)n (mod λ) , c(αn) ≡ nc(α)b(α)n−1 (mod λ) .

Primary Elements

An important element in our λ-th power residue symbol algorithm is Kummer’s
reciprocity law [9]. However, this law only applies to primes that satisfy certain
normalization conditions.

Definition 2.5 (Primary elements). Let α ∈ Z[ζ]. Then α is said to be primary
if there exists B ∈ Z such that the following hold:

α 6≡ 0 (mod ω) , α ≡ B (mod ω2) , αα ≡ B2 (mod λ) .
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This definition can be found on p. 350 of [9] and p. 118 of [24]. Note that every
rational integer not divisible by λ is primary. The first two conditions in Definition
2.5 can be simplified using Corollary 2.2 above, which also shows that the integer
B above is in fact B = b(α) as given in (2.1). Note that the last condition of
Definition 2.5 generally does not have an obvious simplification along the same
lines as Corollary 2.2.

Lemma 2.6 (Properties of primary elements).

(a) If α, β ∈ Z[ζ] are primary, then αβ is primary.
(b) Let α ∈ Z[ζ] with α 6≡ 0 (mod ω). Then αλ ≡ bλ (mod λ), so αλ is primary.
(c) Every α ∈ Z[ζ] with α 6≡ 0 (mod ω) has a primary associate. Furthermore, if

α ∈ Z[ζ] is primary, then α′ ∈ Z[ζ] is a primary associate of α if and only if
α′ = αελ for some unit ε ∈ Z[ζ]∗.

(d) Let η1, η2, . . . , ηr be a system of fundamental units of Q(ζ). Then every
α ∈ Z[ζ] with α 6≡ 0 (mod ω) has a primary associate of the form α′ =
±ζe0ηe1

1 η
e2
2 · · · ηer

r α where 0 ≤ e0, e1, . . . , er ≤ λ − 1. Moreover, α′ is unique
up to sign.

Proof. Part (a) is easily verified using Definition 2.5. For part (b), αλ ≡ bλ (mod λ)
can be obtained by writing α = b + γω for suitable γ ∈ Z[ζ], so that binomial
expansion yields αλ ≡ bλ + γλωλ ≡ bλ (mod λ). Since αλ ≡ b

λ ≡ bλ (mod λ), we
see that αλ is primary.

The assertion of part (c) that every α ∈ Z[ζ] with α 6≡ 0 (mod ω) has a primary
associate, and that any two such associates differ by a λ-th unit power is proved in
[10] and on p. 288 of [8]. For the converse, note that α is primary by assumption
and ελ is primary by part (b), so α′ = αελ is a primary associate of α by part (a).

Finally, to obtain part (d), let α′′ be a primary associate of α, and write α′′ =
±ζk0ηk1

1 ηk2
2 · · · ηkr

r α with k0, k1, . . . , kr ∈ Z. Write ki = ei + miλ with 0 ≤ ei ≤
λ − 1 and mi ∈ Z for 0 ≤ i ≤ r, and set ε = ζm0ηm1

1 ηm2
2 · · · ηmr

r ∈ Z[ζ]∗ and
α′ = ζe0ηe1

1 η
e2
2 · · · ηer

r α. Then α′ = α′′ε−λ is a primary associate of α by part (c)
that is of the desired form.

Now let α1 = ±ζe0ηe1
1 η

e2
2 · · · ηer

r α and α2 = ±ζf0ηf1
1 η

f2
2 · · · ηfr

r α be two primary
associates of α with 0 ≤ ei, fi ≤ λ− 1 for 0 ≤ i ≤ r. By part (c), α1α

−1
2 is the λ-th

power of a unit in Z[ζ]∗, so since −λ < ei − fi < λ for 0 ≤ i ≤ r, this unit must
be ±1.

Corollary 2.7. The units 1 and −1 are the only primary units of Q(ζ).

Proof. Certainly both 1 and −1 are primary. By part(d) of Lemma 2.6,
±ζ0η0

1 · · · η0
r = ±1 are the only two primary associates of 1 and −1.
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3. λ-th Power Residue Symbols

Henceforth, we assume that Z[ζ] be a unique factorization domain; this is the case
exactly when λ ≤ 19 [17]. Let π ∈ Z[ζ] be a prime. Then Z[ζ]/πZ[ζ] is a field of
order N(π), so αN(π)−1 ≡ 1 (mod π) for any non-zero α ∈ Z[ζ] with π - α. It follows
that α(N(π)−1)/λ ≡ ζi (mod π) for some unique i ∈ {0, 1, . . . , λ− 1}. The exponent
i is referred to as the index of α with respect to π, denoted by indπ(α). This leads
to the following definition.

Definition 3.1. Let α, π ∈ Z[ζ], where π 6= ω is a prime. Then the λ-th power
residue symbol of α modulo π is defined as(α

π

)
λ

=
{

0 if π | α ,
ζ indπ(α) if π - α .

For any non-zero element β ∈ Z[ζ]\Z[ζ]∗ not divisible by ω, the λ-th power residue
symbol of α modulo β is defined as(

α

β

)
λ

=
k∏

i=1

(
α

πi

)ei

λ

,

where β '
∏k

i=1 π
ei
i is the unique factorization (up to order and unit factors) into

distinct primes πi ∈ Z[ζ].

The analogue for the λ = 2 case (which is excluded here) is the Legendre symbol
for prime moduli and the Jacobi symbol for composite moduli. It is not hard to show
that if β1 ' β2, then (α/β1)λ = (α/β2)λ. Furthermore, (α/β)λ = 0 if and only if α
and β have a common prime factor, and (α/π)λ = 1 if and only if α is a λ-th power
modulo π. The following properties are easily verified:

Lemma 3.2. Let α, β, γ, δ ∈ Z[ζ] with ω - βδ. Then the following hold:(
α

β

)
λ

=
(
γ

β

)
λ

if α ≡ γ (mod β) ,

(
αγ

β

)
λ

=
(
α

β

)
λ

(
γ

β

)
λ

,

(
α

βδ

)
λ

=
(
α

β

)
λ

(α
δ

)
λ
.

Kummer’s Law of Reciprocity

Kummer’s reciprocity law is a crucial ingredient in our power residue algorithm. It
can be found in [9], [14], [12], pp. 120-121 of [24] and pp. 312-313 of [8].

Theorem 3.3 (Kummer’s law of reciprocity). Let π and ψ be two distinct

primary primes. Then
(
π

ψ

)
λ

=
(
ψ

π

)
λ

.

Kummer stated his reciprocity law for primes only, but it extends easily to
composite cyclotomic integers:
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Corollary 3.4 (Law of reciprocity for composite elements). Let α, β ∈ Z[ζ]

be primary. Then
(
α

β

)
λ

=
(
β

α

)
λ

.

Proof. It suffices to prove this statement for elements α ' π1π2 and β ' ψ1ψ2

where π1, π2, ψ1, ψ2 are primary primes. By part (c) of Lemma 2.6, α = ελπ1π2 and
β = ηλψ1ψ2 for some units ε, η ∈ Z[ζ]∗. Then by Lemma 3.2 and Theorem 3.3,(

α

β

)
λ

=
(
ε

β

)λ

λ

(
π1π2

β

)
λ

=
(
π1π2

ψ1ψ2

)
λ

=
(
π1

ψ1

)
λ

(
π2

ψ1

)
λ

(
π1

ψ2

)
λ

(
π2

ψ2

)
λ

=
(
ψ1

π1

)
λ

(
ψ2

π1

)
λ

(
ψ1

π2

)
λ

(
ψ2

π2

)
λ

=
(
ψ1ψ2

π1π2

)
λ

=
(
ψ1ψ2

α

)
λ

=
( η
α

)λ

λ

(
ψ1ψ2

α

)
λ

=
(
β

α

)
λ

.

The Complementary Laws

Kummer’s reciprocity law does not apply to units or to the conjugates of the
prime ω. For these elements, the residue symbol needs to be explicitly stated via
complementary laws, which were also provided by Kummer. Before we state these,
we note that the complementary laws for the units ±1 and ζ are obvious:

Lemma 3.5 (Complementary laws for ±1 and ζ). Let π ∈ Z[ζ] be any prime
distinct from ω. Then indπ(±1) = 0 and indπ(ζ) ≡ (N(π)− 1)/λ (mod λ).

Proof. The claim that ind(±1) = 0 follows from the fact that N(±1) = 1. The
congruence for indπ(ζ) follows straight from Definition 3.1.

Corollary 3.6 (Complementary laws for ±1 and ζ, composite modulus).
Let β ∈ Z[ζ] not be divisible by ω. Then (±1/β)λ = 1 and (ζ/β)λ = ζ(N(β)−1)/λ.

Proof. It suffices to prove the statement for β = πψ where π, ψ are primes in Z[ζ].
The complementary law for ±1 is obvious, and that for ζ follows from the fact that
(N(π)− 1) + (N(ψ)− 1) ≡ N(πψ)− 1 (mod λ2).

The remaining complementary laws can be found in Kummer’s works [10] and
[13], as well as on pp. 121-123 of [24], pp. 107-113 of [7], and pp. 312 and 326-327
of [8]. We take this opportunity to point out that there are discrepancies in these
literature sources, as detailed on pp. 61-63 of [2]. However, for the results presented
here, none of the formulas that exhibit such inconsistencies were used.

Following Kummer’s notation, we write any α =
∑λ−1

i=1 aiζ
i ∈ Z[ζ] as

α = A(ζ) with A(t) =
λ−2∑
i=0

Ait
i ∈ Z[t] .
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Note that α is now expressed in terms of the integral basis 1, ζ, . . . , ζλ−2. Then the
two representations of α are related via

A0 = −aλ−1 , Ai = ai − aλ−1 for 1 ≤ i ≤ λ− 2 . (3.1)

For m ≥ 0, the m-th logarithmic differential quotient of α is given by

Dm(α) =
dm lnA(ev)

dvm

∣∣∣∣
v=0

. (3.2)

Kummer’s complementary laws can be found on pp. 695-697 of [9] and pp. 122-123
of and [24]. The two laws required for our purposes are given as follows (recall that
r = (λ− 3)/2 is the unit rank of Q(ζ)):

Theorem 3.7 (Complementary laws for λ and units). Let π be a primary
prime in Z[ζ]. Then the following hold.

(a) indπ(λ) ≡ Dλ(π)
λ

(mod λ).

(b) For any unit ε ∈ Z[ζ]∗,

indπ(ε) ≡ D1(ε)
N(π)− 1

λ
+

r∑
k=1

D2k(ε)Dλ−2k(π) (mod λ) .

Now that since λ = εωλ−1 for some unit ε ∈ Z[ζ]∗, indπ(ω) can be derived from
Theorem 3.7 via indπ(ω) ≡ indπ(ε)− indπ(λ) (mod λ).

4. Primary Elements, λ = 7

We now restrict to the case λ = 7, so ζ is a 7-th primitive root of unity. Let
α =

∑6
i=1 aiζ

i ∈ Z[ζ]. We define six linear combinations of the coefficients of α as
follows:

b = b(α) =
6∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6 ,

c = c(α) =
6∑

i=1

iai = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 ,

a = a(α) =
6∑

i=1

i2ai ≡ a1 − 3a2 + 2a3 + 2a4 − 3a5 + a6 (mod 7) ,

d = d(α) =
6∑

i=1

i3ai ≡ a1 + a2 − a3 + a4 − a5 − a6 (mod 7) ,

e = e(α) =
6∑

i=1

i4ai ≡ a1 + 2a2 − 3a3 − 3a4 + 2a5 + a6 (mod 7) ,

f = f(α) =
6∑

i=1

i5ai ≡ a1 − 3a2 − 2a3 + 2a4 + 3a5 − a6 (mod 7) .

(4.1)
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The quantities b and c were already introduced in (2.1). Inverting the above system
modulo 7 yields

a1 ≡ −a− b− c− d− e− f (mod 7) ,
a2 ≡ −2a− b+ 3c− d+ 3e− 2f (mod 7) ,
a3 ≡ 3a− b+ 2c+ d− 2e− 3f (mod 7) ,
a4 ≡ 3a− b− 2c− d− 2e+ 3f (mod 7) ,
a5 ≡ −2a− b− 3c+ d+ 3e+ 2f (mod 7) ,
a6 ≡ −a− b+ c+ d− e+ f (mod 7) .

(4.2)

Since ω6 ' 7, it is straightforward to deduce that

α =
6∑

i=1

ai(1− ω)i ≡ b− cω + 3(c− a)ω2 + (2c− 3a+ d)ω3 (4.3)

−(a+ 2c+ 2d+ 2e)ω4 + (a− 3c+ 3e− f)ω5 (mod 7) .

We investigate the multiplicative behavior of the quantities in (4.1).

Lemma 4.1. Let α, β ∈ Z[ζ] with c(α) ≡ c(β) ≡ 0 (mod 7). Then the following
hold:

b(αβ) ≡ b(α)b(β) (mod 7) ,

c(αβ) ≡ 0 (mod 7) ,

a(αβ) ≡ a(α)b(β) + b(α)a(β) (mod 7) ,

d(αβ) ≡ d(α)b(β) + b(α)d(β) (mod 7) ,

e(αβ) ≡ e(α)b(β) + b(α)e(β)− a(α)a(β) (mod 7) ,

f(αβ) ≡ f(α)b(β) + b(α)f(β) + 3
(
d(α)a(β) + a(α)d(β)

)
(mod 7) .

Proof. The first two congruences follow immediately from Corollary 2.3. Now
c(α) ≡ 0 (mod 7) reduces (4.3) to

α ≡ b− 3aω2 + (d− 3a)ω3 − (a+ 2d+ 2e)ω4 + (a+ 3e− f)ω5 (mod 7) ; (4.4)

similarly for β. This implies

αβ ≡ b(α)b(β)− 3
(
a(α)b(β) + b(α)a(β)

)
ω2 (mod ω3) .

Since c(αβ) ≡ 0 (mod 7), (4.4) applied to αβ yields

αβ ≡ b(αβ)− 3a(αβ)ω2 (mod ω3) .

Comparing the coefficients of ω2 in the two above congruences for αβ (mod ω3)
implies the third of the above congruences. Similar coefficient comparisons at ω3,
ω4 and ω5 yield the remaining identities.

Using induction, Lemma 4.1 immediately yields
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Corollary 4.2. Let α ∈ Z[ζ] with c(α) ≡ 0 (mod 7). Then for all n ∈ N,

a(αn) ≡ na(α)b(α)n−1 (mod 7) ,

e(αn) ≡ ne(α)b(α)n−1 + 3n(n− 1)a(α)2b(α)n−2 (mod 7) .

Corollary 2.2 gives simple congruences involving rational (rather than algebraic)
integers for two of the three conditions for a cyclotomic integer to be primary. For
λ = 7, we provide a similar simple set of congruences characterizing the third
condition.

Theorem 4.3. Let α =
∑6

i=1 aiζ
i ∈ Z[ζ], a, b, e as given in (4.1), and suppose

that α ≡ b (mod ω2) and b 6≡ 0 (mod 7). Then αα ≡ b2 (mod 7) if and only if
a ≡ e ≡ 0 (mod 7).

Proof. Let c, d, f also be as given in (4.1). Then c ≡ 0 (mod 7) by part (b) of
Corollary 2.2. Since α =

∑6
i=1 aiζ

7−i, (4.1) yields b(α) = b, c(α) ≡ −c ≡ 0 (mod 7),
a(α) ≡ a (mod 7), d(α) ≡ −d (mod 7), e(α) ≡ e (mod 7), and f(α) ≡ −f (mod 7).
By Corollary 2.3, b(αα) ≡ b2 (mod 7) and c(αα) ≡ 0 (mod 7), and by Lemma 4.1,
a(αα) ≡ 2ab (mod 7), e(αα) ≡ 2be− a2 (mod 7), and d(αα) ≡ f(αα) ≡ 0 (mod 7).
Thus, by (4.4),

αα ≡ b2 + abω2 + abω3 − (2ab− 3be− 2a2)ω4 + (2ab− be− 3a2)ω5 (mod 7) .

So αα ≡ b2 (mod 7) if and only if the coefficients of ωi for 2 ≤ i ≤ 5 vanish modulo
7. Since b 6≡ 0 (mod 7), this holds if and only if a ≡ e ≡ 0 (mod 7).

Lemma 4.4. Let α =
∑6

i=1 aiζ
i ∈ Z[ζ], a, b, c, d, e defined as in (4.1), and suppose

that b 6≡ 0 (mod 7) and c ≡ 0 (mod 7). Then a ≡ e ≡ 0 (mod 7) if and only if
a1 + a6 ≡ a2 + a5 ≡ a3 + a4 (mod 7).

Proof. Simple verification using (4.1) and (4.2).

Theorem 4.3, Lemma 4.4 and Corollary 2.2 now provide a simple practical test
for elements of Z[ζ] to be primary:

Corollary 4.5. Let α =
∑6

i=1 aiζ
i ∈ Z[ζ]. Then α is primary if and only if the

following conditions hold:

(a) b 6≡ 0 (mod 7),
(b) c ≡ 0 (mod 7),
(c) a ≡ e ≡ 0 (mod 7), or equivalently, a1 + a6 ≡ a2 + a5 ≡ a3 + a4 (mod 7).

5. Finding Primary Associates, λ = 7

We continue to let ζ be a primitive 7-th root of unity. Then the field Q(ζ) has unit
rank r = 2. By p. 99 of [24],

η1 = ζ + ζ6 and η2 = σ2(η1) = ζ2 + ζ5
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form a pair of fundamental units of Q(ζ). It is easy to verify that

b(η1) ≡ 2 (mod 7) , b(η2) ≡ 2 (mod 7) ,
c(η1) ≡ 0 (mod 7) , c(η2) ≡ 0 (mod 7) ,
a(η1) ≡ 2 (mod 7) , a(η2) ≡ 1 (mod 7) ,
d(η1) ≡ 0 (mod 7) , d(η2) ≡ 0 (mod 7) ,
e(η1) ≡ 2 (mod 7) , e(η2) ≡ 4 (mod 7) ,
f(η1) ≡ 0 (mod 7) , f(η2) ≡ 0 (mod 7) .

(5.1)

Lemma 5.1. Let m,n ∈ Z be non-negative, α ∈ Z[ζ], and a, b, c, e as given in (4.1)
with c ≡ 0 (mod 7). Then the following hold.

b(αηm
1 η

n
2 ) ≡ 2m+nb(α) (mod 7) ,

c(αηm
1 η

n
2 ) ≡ 0 (mod 7) ,

a(αηm
1 η

n
2 ) ≡ 2m+n−1

(
b(2m+ n) + 2a

)
(mod 7) ,

e(αηm
1 η

n
2 ) ≡ 2m+n−2

(
b(3n2 − 2n− 2m2 −m− 2mn) + a(3m− 2n)− 3e

)
(mod 7) .

Proof. The first two congruences follow from (5.1) as well as Corollaries 2.3 and 2.4.
For the last two identities, we use (5.1) as well as Corollaries 2.4 and 4.2 to compute

a(ηm
1 ) ≡ 2mm (mod 7) , a(ηn

2 ) ≡ 2n−1n (mod 7) ,
e(ηm

1 ) ≡ 2mm(3m− 2) (mod 7) , e(ηn
2 ) ≡ 2n−2n(3n− 2) (mod 7) ,

and hence by (5.1) and Lemma 4.1 with α = ηm
1 and β = ηn

2 ,

a(ηm
1 η

n
2 ) ≡ 2m+n−1(2m+ n) (mod 7) ,

e(ηm
1 η

n
2 ) ≡ 2m+n−2(3n2 − 2n− 2m2 −m− 2mn) (mod 7) .

Applying Lemma 4.1 again with β = ηm
1 η

n
2 yields the last two congruences of the

lemma.

Corollary 5.2. Let Let m,n ∈ Z be non-negative, α ∈ Z[ζ], a, b, c, e be as given in
(4.1) with b 6≡ 0 (mod 7) and c ≡ 0 (mod 7). Then αηm

1 η
n
2 is primary if and only if

m ≡ b−1(a+ e− 3a2b−1) (mod 7) , (5.2)

n ≡ b−1(3a− 2e− a2b−1) (mod 7) . (5.3)

Proof. By part (c) of Lemma 2.6, we only need to consider values m,n with 0 ≤
m,n ≤ 6. So let m,n be any such integers. By Lemma 5.1, b(αηm

1 η
n
2 ) 6≡ 0 (mod 7)

and c(αηm
1 η

n
2 ) ≡ 0 (mod 7). By the same lemma and Corollary 4.5, αηm

1 η
n
2 is pri-

mary if and only if

b(2m+ n) + 2a ≡ 0 (mod 7) , (5.4)

b(3n2 − 2n− 2m2 −m− 2mn) + a(3m− 2n)− 3e ≡ 0 (mod 7) . (5.5)

Now (5.4) is equivalent to

n ≡ −2(m+ ab−1) (mod 7) . (5.6)
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With n as given in (5.6), we obtain

3n2 − 2n− 2m2 −m− 2mn ≡ 3m− 3ab−1 − 2(ab−1)2 (mod 7)

and 3m − 2n ≡ −3ab−1 (mod 7). Thus, by (5.5), αηm
1 η

n
2 is primary if and only if

(5.6) holds and

(3bm− 3a− 2a2b−1)− 3a2b−1 − 3e ≡ 0 (mod 7) .

This last congruence is equivalent to (5.2), and then (5.6) is easily seen to be
equivalent to (5.3).

The following algorithm computes for any α ∈ Z[ζ] with b(α) 6≡ 0 (mod 7) the
unique values k,m, n ∈ {0, 1, . . . , 6} and the unique associate α′ = ζkηm

1 η
n
2α of

α such that ±α′ is primary. Note that (α′/β)λ = (−α′/β)λ by Lemma 3.2 and
Corollary 3.6, so for computing 7-th residue symbols, it does not matter which of
the two associates α′ and −α′ is used.

Algorithm 5.3 (Finding primary associates, λ = 7).
Input: α ∈ Z[ζ] such that b(α) 6≡ 0 (mod 7).
Output: k,m, n ∈ Z with 0 ≤ k,m, n ≤ 6 and α′ ∈ Z[ζ] such that α′ = ζkηm

1 η
n
2α

is primary.

(1) Compute b ≡ b(α) (mod 7) and c ≡ c(α) (mod 7) via (4.1).
(2) Compute k ≡ −b−1c (mod 7), 0 ≤ k ≤ 6, and α′′ = ζkα.
(3) Compute a ≡ a(α′′) (mod 7) and e ≡ e(α′′) (mod 7) via (4.1).
(4) Compute m and n with 0 ≤ m,n ≤ 6 via (5.2) and (5.3), respectively, and

α′ = ηm
1 η

n
2α

′′.
(5) Output k,m, n, α′.

Theorem 5.4. Algorithm 5.3 is correct.

Proof. Note that b(1) = −6 and b(ζk) = 1 for 1 ≤ k ≤ 6, so b(ζk) ≡ 1 (mod 7)
for 0 ≤ k ≤ 6. It follows that b(αζk) ≡ b (mod 7) by Corollary 2.3. Furthermore,
c(1) = −21 ≡ 0 (mod 7) and c(ζk) ≡ k (mod 7) for 1 ≤ k ≤ 6, so c(ζk) ≡ k (mod 7)
for 0 ≤ k ≤ 6. Again by Corollary 2.2, c(αζk) ≡ c+bk (mod 7). Thus, if α′′ is defined
as in step 2, we have b(α′′) ≡ b (mod 7) and c(α′′) ≡ 0 (mod 7). By Corollary 5.2,
α′ as defined in step 4 is primary.

6. Complementary Laws, λ = 7

Using Theorem 3.7, we now derive explicit complementary laws for λ = 7, η1 =
ζ + ζ6, η2 = ζ2 + ζ5, and η3 = ζ3 + ζ4; note that the complementary law for η3
could also be derived from the identity η3 = (η1η2)−1. We will then employ these
results to find the complementary law for ω. Since r = 2, Theorem 3.7 now reads

indπ(7) ≡ D7(π)
7

(mod 7) , (6.1)

indπ(ε) ≡ D1(ε)
N(π)− 1

7
+D2(ε)D5(π) +D4(ε)D3(π) (mod 7) (6.2)
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for any unit ε ∈ Z[ζ]∗, where π ∈ Z[ζ] is a primary prime. So we need to
find Dj(ηi) (mod 7) for j = 1, 2, 4 and i = 1, 2, 3, as well as D3(π), D5(π),
D7(π)/7 (mod 7) for j = 3, 5, 7. We obtain

D1(η1) ≡ 0 (mod 7) , D2(η1) ≡ 1 (mod 7) , D4(η1) ≡ 5 (mod 7) ,
D1(η2) ≡ 0 (mod 7) , D2(η2) ≡ 4 (mod 7) , D4(η2) ≡ 3 (mod 7) ,
D1(η3) ≡ 0 (mod 7) , D2(η3) ≡ 2 (mod 7) , D4(η3) ≡ 6 (mod 7) .

(6.3)

As in Section 3, we write π =
∑6

i=1 aiζ
i ∈ Z[ζ] as π = A(ζ) where A(t) =∑5

i=0Ait
i ∈ Z[t]. The remaining logarithmic differential quotients require the com-

putation of lnA(ev) and its derivatives with respect to v at v = 0. This in turn
requires the first seven derivatives of A(t) with respect to t at t = 1. We compute
these derivatives for arbitrary elements π and then restrict to primary primes π.
Let a, b, c, d, e, f be given by (4.1). We obtain

π(1) = b− 7a6 ,
dπ

dt
(1) = c− 21a6 ,

d2π

dt2
(1) ≡ a (mod 7) ,

d3π

dt3
(1) ≡ d (mod 7) ,

d4π

dt4
(1) ≡ e (mod 7) ,

d5π

dt5
(1) ≡ f (mod 7) ,

d6π

dt6
(1) ≡ b+ a6 (mod 7) ,

d7π

dt7
(1) ≡ c (mod 7) .

(6.4)

For primary π, Corollary 4.5 states that b 6≡ 0 (mod 7) and c ≡ a ≡ e ≡ 0 (mod 7).
This yields

D3(π) ≡ d

b
(mod 7) , D5(π) ≡ f

b
(mod 7) , (6.5)

D7(π)
7

≡ c

7b
− d

b
+

3f
b

+ 3 (mod 7) . (6.6)

We combine the above results:

Lemma 6.1. Let π ∈ Z[ζ] be a primary prime and a, b, c, d, e, f given by (4.1), with
π in place of α. Then the following hold:

(1) indπ(7) ≡ c

7b
− d

b
+

3f
b

+ 3 (mod 7) ,

(2) indπ(ω) ≡ 4(N(π) + 6)
7

− c

7b
(mod 7) ,

(3) indπ(ζ + ζ6) ≡ f − 2d
b

(mod 7) ,

(4) indπ(ζ2 + ζ5) ≡ 3(d− f)
b

(mod 7) ,

(5) indπ(ζ3 + ζ4) ≡ 2f − d

b
(mod 7) .
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Proof. The first assertion follows immediately from (6.1) and (6.6), and the last
three from (6.2), (6.3) and (6.5). Finally, we have

7 = εω6 with ε = −ζ4(ζ + ζ6)7(ζ2 + ζ5)5(ζ3 + ζ4)9 ,

so by parts (1), (4), (5), and Lemma 3.5,

indπ(ω) ≡ indπ(ε)− indπ(7)

≡ indπ(−1) + 4 indπ(ζ) + 5 indπ(ζ2 + ζ5) + 2 indπ(ζ3 + ζ4)− indπ(7)

≡ 4
N(π)− 1

7
+ 5

3(d− f)
b

+ 2
2f − d

b
−

(
c

7b
− d

b
+

3f
b

+ 3
)

≡ 4
N(π)− 1

7
− c

7b
+

49− 21
7

≡ 4(N(π) + 6)
7

− c

7b
(mod 7) .

Before we extend all the complementary laws for the case λ = 7 to composite
moduli, we require a refinement of Corollary 2.3:

Lemma 6.2. Let α, β ∈ Z[ζ] be primary. Then

c(αβ) ≡ c(α)b(β) + b(α)c(β) + 21b(α)b(β) (mod 49) .

Proof. Write α = A(ζ) and β = B(ζ) with A(t) =
∑5

i=0Ait
i, B(t) =

∑5
i=0Bit

i,
and set A(t)B(t) =

∑10
i=0 Cit

i. For brevity, denote the first derivative with respect
to t of any of these polynomials F (t) by F ′(t). Then by the first line of (6.4),

c(αβ) = (αβ)′(1)− 21C0 = α′(1)β(1) + α(1)β′(1)− 21C0

= (c(α) + 21A0)(b(β) + 7B0) + (b(α) + 7A0)(c(β) + 21B0)− 21C0

≡ c(α)b(β) + b(α)c(β) + 21(b(α)B0 + b(β)A0 − C0) (mod 49) ,

so it suffices to show that b(α)B0 + b(β)A0 − C0 ≡ b(αβ) (mod 7). Now by (3.1),
the last congruence of (4.1), and Lemma 4.1, we have

b(α)B0 + b(β)A0 ≡ b(α)
(
b(β)− d(β)− f(β)

)
+ b(β)

(
b(α)− d(α)− f(α)

)
≡ 2b(α)b(β)− b(α)d(β)− b(β)d(α)− b(α)f(β)− b(β)f(α)

≡ 2b(αβ)− d(αβ)− f(αβ) ≡ b(αβ) + C0 (mod 7) .

Theorem 6.3 (Complementary laws, λ = 7). Let β ∈ Z[ζ] be primary and
a, b, c, d, e, f given by (4.1) (with β in place of α). Then the following hold:(

±1
β

)
7

= 1 ,
(
ζ

β

)
7

= ζ
N(β)−1

7 ,

(
7
β

)
7

= ζ
c
7b−

d+3f
b +3 ,

(
ω

β

)
7

= ζ
4(N(β)+6)

7 − c
7b ,

(
ζ + ζ6

β

)
7

= ζ
f−2d

b ,

(
ζ2 + ζ5

β

)
7

= ζ
3(d−f)

b ,

(
ζ3 + ζ4

β

)
7

= ζ
2f−d

b .
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Proof. The complementaries for ±1 and ζ are just a re-statement of Corollary 3.6.
It suffices to prove the remaining results for β = πψ where π and ψ are primary
primes. Note that Corollary 2.3 and Lemma 4.1 imply

F (πψ)
b(πψ)

≡ F (πψ)
b(π)b(ψ)

≡ F (π)
b(π)

+
F (ψ)
b(ψ)

(mod 7)

for F = d and F = f . Furthermore, by Corollary 2.3 and Lemma 6.2,

c(πψ)
7b(πψ)

≡ c(πψ)
7b(π)b(ψ)

≡ c(π)
7b(π)

+
c(ψ)
7b(ψ)

+ 3 (mod 7) .

Finally, note that 49 divides

(N(π)− 1)(N(ψ)− 1) = (N(πψ)− 1)− (N(π)− 1)− (N(ψ)− 1) ,

so
N(πψ)− 1

7
≡ N(π)− 1

7
+

N(ψ)− 1
7

(mod 7) .

The above identities are sufficient to verify all the claims of the theorem.

7. A Norm-Euclidean Algorithm, λ ≤ 11

The ring Z[ζ], with ζ a primitive λ-th root of unity and λ an odd prime, is known to
be norm-Euclidean for λ ≤ 13. For λ ≤ 11, a very efficient norm-Euclidean algorithm
was provided in [22,23], based on the work of Lenstra [16]; see also Chapter 6 of
[2]. This is the method that we will use here. For completeness, we mention that a
norm-Euclidean algorithm for λ = 13 was given in [18].

If Z[ζ] is norm-Euclidean, then there exists for all α, β ∈ Z[ζ] with β 6= 0
an element ρ ∈ Z[ζ] such that α ≡ ρ (mod β) and N(ρ) < N(β). By setting
x = α/β ∈ Q(ζ) and y = (α − ρ)/β = x − ρ/β ∈ Z[ζ], this is equivalent to finding
for any x ∈ Q(ζ) an element y ∈ Z[ζ] with N(x− y) < 1. In other words, one needs
to generate y ∈ Z[ζ] “close” to x ∈ Q(ζ) with respect to the norm.

Assume henceforth that λ ≤ 11. For any element x ∈ Z[ζ], define

µ(x) = T(xx) =
λ−1∑
i=1

|σi(x)|2 .

Then the arithmetic-geometric mean inequality yields

N(x) ≤
(
µ(x)
λ− 1

)(λ−1)/2

.

Lenstra’s method finds for every x ∈ Q(ζ) an element y ∈ Z[ζ] with µ(x − y) ≤
(λ2 − 1)/12. This implies

N(x− y) ≤
(
λ+ 1
12

)(λ−1)/2

.

In the case when λ = 7, this produces the very good bound N(x− y) ≤ 8/27 < 0.3.
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The idea of the technique is as follows. If x ∈ Z[ζ], then one can simply take
y = x, so assume that x ∈ Q(ζ)\Z[ζ]. Write x as a rational linear combination of all
the λ powers ζi, 0 ≤ i ≤ λ− 1; note that such a representation is no longer unique.
By adding the expression 1+ ζ+ ζ2 + · · ·+ ζλ−1 = 0 sufficiently many times to this
representation, we may write x as x =

∑λ−1
i=0 xiζ

i with xi ≥ 0 for 0 ≤ i ≤ λ− 1. Set
y =

∑λ−1
i=0 yiζ

i ∈ Z[ζ] with yi = bxic; note that yi ∈ Z and yi ≥ 0 for 0 ≤ i ≤ λ− 1.
In addition, set z = x− y =

∑λ−1
i=0 ziζ

i ∈ Q(ζ).
One now systematically adds powers of ζ to z, and subtracts the corresponding

power from y to leave x intact. Specifically, sort the zi in non-descending order, say
0 ≤ ze0 ≤ ze1 ≤ . . . ≤ zeλ−1 , where (e0, e1, . . . , eλ−1) is an appropriate permutation
of (0, 1, . . . , λ−1). Now set z(0) = z, z(k) = z(k−1)+ζek , y(0) = y, y(k) = y(k−1)−ζek

for 0 ≤ k ≤ λ− 1. Then x = y+ z = y(k) + z(k) for all k, and z(λ−1) = z(0). Lenstra
proved that at least one of the values z(k) satisfies µ(z(k)) ≤ (λ2 − 1)/12, in which
case N(x − y(k)) < 1 by our above remarks. (For λ = 11, equality is theoretically
possible here, but this can only happen if x ∈ Z[ζ], which was ruled out from the
beginning.)

For the development of his theory, Lenstra specified xi ≥ 0; however, for the
actual algorithm, this is in fact unnecessary. This is because for any M ∈ Z, x =∑λ−1

i=0 (xi+M)ζi. The order of the elements zi+M is the same as that of the xi, and
the value of y does not change. The overall algorithm is given below (see Algorithm
6.4 of [22] and Algorithm 5.1 of [23]).

Algorithm 7.1 (Approximating a cyclotomic number by a cyclotomic
integer, λ ≤ 11).
Input: An element x =

∑λ−1
i=0 xiζ

i ∈ Q(ζ).
Output: An element y ∈ Z[ζ] such that N(x− y) < 1.

(1) If x ∈ Z[ζ], then output y = x and terminate.

(2) For 0 ≤ i ≤ λ− 1 set yi = bxic and z′i = xi − yi. Set z =
λ−1∑
i=0

z′iζ
i, y =

λ−1∑
i=0

yiζ
i.

(3) Sort the z′i in non-descending order: set zi = z′ei
such that z0 ≤ z1 ≤ · · · ≤ zλ−1.

(4) While µ(z) > (λ2 − 1)/12 do

(a) Replace y by y − ζe0 and z by z + ζe0 .
(b) Set t = z0, z0 = z1, . . . zλ−2 = zλ−1, zλ−1 = t+ 1.

The algorithm finds y ∈ Z[ζ] with N(x − y) < 1 after at most λ tests of the
“while” condition in step 4. The following is a formulation of the norm-Euclidean
algorithm that is suitable for our purposes.

Algorithm 7.2 (Norm-Euclidean division, λ ≤ 11).
Input: α, β ∈ Z[ζ] with β non-zero.
Output: ρ ∈ Z[ζ] such that α ≡ ρ (mod β) and N(ρ) < N(β).

(1) Set x = α/β = ασ2(β)σ3(β) . . . σλ−1(β)/N(β).
(2) Find y ∈ Z[ζ] such that N(x− y) < 1 using Algorithm 7.1.
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(3) Output ρ = α− yβ.

8. Efficient Residue Symbol Computation, λ = 7

We now have all the necessary tools to evaluate 7-th power residue symbols.
The following algorithm explicitly computes the residue symbol (α/β)7. Note that
(α/β)7 = 0 if and only gcd(N(α),N(β)) > 1, so we may assume that α and β are
coprime. We also need to ensure that T(β) 6≡ 0 (mod 7) as otherwise the residue
symbol is not defined.

Algorithm 8.1 (Computing Residue Symbols, λ = 7).
Input: α, β ∈ Z[ζ] with T(β) 6≡ 0 (mod 7) and gcd(α, β) ' 1.

Output: s ∈ Z with 0 ≤ s ≤ 6 and
(
α

β

)
7

= ζs.

(1) Initialize s = 0.
(2) Find a primary associate β′ of β using Algorithm 5.3.
(3) While N(α) > 1 do

(a) Find γ ∈ Z[ζ] such that α ≡ γ (mod β) and N(γ) < N(β′) using Algo-
rithm 7.2.

(b) Write N(γ) = 7iN with N 6≡ 0 (mod 7) and i ≥ 0 and set γ′′ = γω−i.
(c) Find k,m, n, γ′ so that γ′ = ζkηm

0 η
n
1 γ

′′ is a primary associate of γ′′, using
Algorithm 5.3.

(d) Compute

b ≡ b(β′) (mod 7) , c ≡ c(β′) (mod 49) ,
d ≡ d(β′) (mod 7) , f ≡ f(β′) (mod 7) ,

and b−1 (mod 7). Replace s by

s+ i

(
6c
7b

+
4(N(β′) + 6)

7

)
− k

N(β′)− 1
7

−m

(
5d+ f

b

)
− n

(
3d+ 4f

b

)
(mod 7)

.

(e) Replace α by β′ and β′ by γ′.

(4) Output s.

Note that i as given in step 3 (b) is exactly the power of ω contained in γ,
while k, m, and n are the powers of ζ, η1, and η2, respectively, which γ′′ needs
to be multiplied by to obtain a primary associate γ′ of γ′′. So we need to add
the appropriate multiple of i as given by Theorem 6.3 to s in step 3 (d), while
subtracting the suitable multiples of k, m, and n as given in the same theorem
from s.

It is clear that N(α) strictly decreases in each iteration of the while loop, and
since the input values are coprime, the algorithm eventually reaches a value of α
that is a primary associate of gcd(α, β) ' 1. So α is a primary unit, and hence must
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be ±1 by Corollary 2.7. At that point (α/β)7 = 1 by Theorem 6.3. The number
of iterations of the while loop is no more than the number of steps required when
applying the norm-Euclidean algorithm to α and β, and is hence linear in log(N(β)).

We implemented this algorithm on a Pentium(R) 4 laptop using the computer
algebra system PARI/GP [3]. Even on inputs with norms as large as 150 decimal
digits, the method took no more than a few milliseconds to find the 7-th power
residue symbol.

An Example for λ = 7

We illustrate Algorithm 8.1 by computing the residue symbol (α/β)7 for

α = 128ζ + 80ζ2 + 44ζ3 + 161ζ4 − 21ζ5 + 189ζ6 and β = −3ζ − 2ζ2 .

(1) Initialize s = 0.
(2) Algorithm 5.3 produces the primary associate

β′ = η4
1β = −17ζ − 12ζ2 + ζ3 − 9ζ4 − 17ζ5 − 5ζ6

of β.
(3) The while condition is checked for the first time. We have N(α) = 695653 > 1,

so the loop is entered.

(a) Algorithm 7.2 finds

x =
α

β′
= −25799

463
− 5513

463
ζ − 16722

463
ζ2 − 16966

463
ζ3 − 5074

463
ζ4 − 25966

463
ζ5 ,

and after four iterations,

y =
⌊
−25799

463

⌋
+

⌊
−5513

463

⌋
ζ +

⌊
−16722

463

⌋
ζ2 +

⌊
−16966

463

⌋
ζ3

+
⌊
−5074

463

⌋
ζ4 +

⌊
−25966

463

⌋
ζ5 − 1− ζ − ζ4 − ζ6

= −57− 13ζ − 37ζ62− 37ζ3 − 12ζ4 − 57ζ5 − ζ6 .

Therefore, γ = α− yβ′ = −2ζ − 10ζ2 − 6ζ3 +2ζ4 − 7ζ5 − 10ζ6, and N(γ) =
71 < 463) = N(β).

(b) Since N(γ) = 71 6≡ 0 (mod 7), we see that i = 0, so γ′′ = γ.
(c) Algorithm 5.3 finds k = 4, m = 6, n = 3, and

γ′ = ζ4η6
1η

3
2 = 73ζ + 25ζ2 + 39ζ3 + 62ζ4 + 6ζ5 + 84ζ6 .

(d) One easily computes b(β′) = −59 ≡ 4 (mod 7), c(β′) = −189 ≡ 7 (mod 49),
d(β′) ≡ 4 (mod 7), f(β′) ≡ 2 (mod 7) and b−1(β′) ≡ 2 (mod 7). So recall-
ing that N(β′) = 463, one obtains s = 3.

(e) Set

α = −17ζ − 12ζ2 + ζ3 − 9ζ4 − 17ζ5 − 5ζ6 ,

β′ = 73ζ + 25ζ2 + 39ζ3 + 62ζ4 + 6ζ5 + 84ζ6 .
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(3) The while condition is checked for the second time. We have: N(α) = 463 > 1,
so the loop is entered.

(a) Algorithm 7.2 finds

x =
α

β′
= +

1093
71

+
922
71

ζ − 151
71

ζ2 +
405
71

ζ3 +
1168
71

ζ4 +
289
71

ζ5 ,

and after two iterations,

y =
⌊

1093
71

⌋
+

⌊
922
71

⌋
ζ +

⌊
−151

71

⌋
ζ2

⌊
405
71

⌋
ζ3 +

⌊
1168
71

⌋
ζ4 +

⌊
289
71

⌋
ζ5

−ζ5 − ζ6 .

Therefore, γ = α − yβ′ = −48ζ − 39ζ3 − 17ζ4 − 17ζ5 − 39ζ6 and N(γ) =
1 < 71 = N(β).

(b) Since N(γ) = 1 6≡ 0 (mod 7), we see that i = 0, so γ′′ = γ.
(c) Algorithm 5.3 finds k = 6, m = 2, n = 0, and

γ′ = ζ6η2
1 = 157ζ + 31ζ2 + 101ζ3 + 101ζ4 + 31ζ5 + 157ζ6 .

(d) We compute b(β′) = 289 ≡ 2 (mod 7), c(β′) = 1022 ≡ 42 (mod 49), d(β′) ≡
3 (mod 7), f(β′) ≡ 6 (mod 7) and b−1(β′) ≡ 4 (mod 7). So recalling that
N(β′) = 71, we obtain s = 3 + 3 = 6.

(e) Set

α = 73ζ + 25ζ2 + 39ζ3 + 62ζ4 + 6ζ5 + 84ζ6 ,

β′ = 157ζ + 31ζ2 + 101ζ3 + 101ζ4 + 31ζ5 + 157ζ6 .

(3) The while condition is checked for the third time. We have N(α) = 1, so the
while loop is skipped.

(4) The algorithm outputs s = 6.

The algorithm computes (α/β)7 = ζ6 after only two iterations of the while loop.
Typically, many more iterations are required; we simply chose this example for its
compactness. Note also that N(β) = 463 = 7 · 66 + 1 is a prime. So in this case,
the residue symbol could also have been computed using Definition 3.1. That is,
(α/β)7 ≡ α66 (mod β). PARI indeed verifies that α66 − ζ6 is divisible by β; since
the actual quotient is very large, we forego reproducing it here.

9. Conclusion

We developed a fast and effective algorithm for computing residue symbols of the
form (α/β)7 in the cyclotomic field Q(ζ), where ζ is a primitive 7-th root of unity.
Just as in the efficient computation of Jacobi symbols, our method does not require
the factorization of β, and has an analogous running time that is linear in log(N(β))
when expressed in terms of rational integer operations. The four major ingredients
employed in our technique were:
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• an explicit characterization of primary cyclotomic integers in Z[ζ], together
with an algorithm for finding a primary associate (unique up to sign) of any
cyclotomic integer whose trace is not divisible by 7;

• Kummer’s reciprocity law;
• explicit forms of Kummer’s complementary laws for 7, the ramified prime 1−ζ,

and the units ±1, ζ, as well as the two fundamental units ζ + ζ6 and ζ2 + ζ5

(along with the redundant complementary law for the unit ζ3 + ζ4);
• an efficient norm-Euclidean algorithm.

Our conditions for testing if a cyclotomic integer is primary, as well as the method
for finding primary associates, involves only basic arithmetic on rational integers
modulo 7. Similarly, our explicit form of the complementary laws requires only the
computation of some very simple functions modulo 7 and 49 of the basis coefficients
of the modulus when represented as a linear combination of the powers ζk for
1 ≤ k ≤ 6. Moreover, they do not require the modulus to be prime. Finally, the
norm-Euclidean method that we employed is based on work of Lenstra [16] and was
first stated in explicit algorithmic form in [22] and [23]. For λ = 7, it generates a
remainder whose norm is smaller than that of the divisor by a factor of at least 8/27.

In principle, our method can be extended to other cyclotomic rings Z[ζ] with
ζ a primitive λ-th root of unity. Kummer’s work assumes λ to be a regular prime.
Lenstra’s technique [16] extends to values of λ with ϕ(λ) ≤ 10 and λ 6= 16, 24; here,
ϕ denotes Euler’s totient function. With these two restrictions, the above technique
applies to the values λ = 2, 3, 5, 7 and 11. The only other regular prime for which
Q(ζ) is known to be norm-Euclidean is λ = 13. For this scenario, McKenzie [18]
provided a highly combinatorial norm-Euclidean algorithm; the cases λ = 17 and
λ = 19 remain undetermined.

Even for the case λ = 11, for which Euclidean division remains straightforward,
the other details of the method get increasingly complicated. Finding explicit con-
ditions for a cyclotomic integer to be primary becomes more and more technical,
as does an algorithm to find a primary associate. The cyclotomic field generated by
an 11-th primitive root of unity has four fundamental units, so complementary laws
need to be found for three of them as well as for the ramified prime lying above 11
(or for 11 itself).

Finally, we remark that our method can be used to extend Williams’ quadratic
[26] and cubic [27] public key cryptosystem as well as the quintic system of [23] to
the case λ = 7.
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In Collected Papers, Vol. 1, ed. A. Weil, Springer-Verlag, Berlin 1975, 688–698.
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