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Abstract. In 2000, Paulus and Takagi introduced a public key cryp-
tosystem called NICE that exploits the relationship between maximal
and non-maximal orders in imaginary quadratic number fields. Relying
on the intractability of integer factorization, NICE provides a similar
level of security as RSA, but has faster decryption. This paper presents
REAL-NICE, an adaptation of NICE to orders in real quadratic fields.
REAL-NICE supports smaller public keys than NICE, and while pre-
liminary computations suggest that it is somewhat slower than NICE, it
still significantly outperforms RSA in decryption.

1 Introduction

The most well-known and widely used public-key cryptosystem whose security
is related to the intractability of the integer factorization problem is the RSA
scheme. A lesser known factoring-based system is the NICE (New Ideal Coset
Encryption) scheme [13,18], a cryptosystem whose trapdoor decryption makes
use of the relationship between ideals in the maximal and a non-maximal order
of an imaginary quadratic number field. The security of NICE relies on the
presumed intractability of factoring an integer of the form q2p where p and q
are prime, thereby providing a similar level of security as RSA, but with much
faster decryption. NICE decryption has quadratic complexity, as opposed to
RSA’s cubic decryption complexity. This makes NICE particularly suited for
devices with limited computing power or applications that require fast digital
signature generation.

In this paper, we explain how to extend the NICE concept to real quadratic
fields; this was first proposed in [19]. REAL-NICE exploits the same relationship
between ideals in the maximal and a non-maximal quadratic order as NICE. Fur-
thermore, just as in NICE, knowledge of the trapdoor information is provably
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equivalent to being able to factor the discriminant of the non-maximal order
in random polynomial time. However, the security of REAL-NICE relies on the
intractability of a somewhat different problem. In NICE, encryption hides the
message ideal in its own exponentially large coset with respect to a certain sub-
group of the ideal class group of the non-maximal order. In a real quadratic field,
such a coset may be too small to prevent an exhaustive search attack. Instead,
REAL-NICE encryption hides the message ideal in the generally exponentially
large cycle of reduced ideals in its own ideal class in the non-maximal order.

While preliminary numerical data using prototype implementations suggest
that REAL-NICE is somewhat slower than its imaginary counterpart NICE,
REAL-NICE allows for the possibility of a smaller public key than NICE, at the
expense of increased encryption effort. Moreover, both our NICE and REAL-
NICE prototypes significantly outperformed a highly optimized public-domain
implementation of RSA in decryption for all five NIST security levels [12]; for
the two highest such levels, combined encryption and decryption was faster for
both NICE and REAL-NICE compared to RSA.

The discrepancy in performance between NICE and REAL-NICE can be offset
by using a more efficient encryption algorithm, called IMS encryption, for REAL-
NICE. IMS encryption exploits the very fast baby step operation in the cycle
of reduced ideals of a real quadratic order, an operation that has no imaginary
analogue. Unfortunately, so far, the only known rigorous proof of security for IMS
encryption needs to assume a very unfavourable parameter set-up. However, even
under these adverse assumptions, IMS-REAL-NICE outperformed the original
REAL-NICE system. It it is conceivable that a set-up could be established that
makes IMS-REAL-NICE competitive to NICE without sacrificing security. IMS
encryption and its security are the subject of future research.

2 Overview of Quadratic Orders

We begin with a brief overview of quadratic fields and their orders. Most of the
material in this section can be found in [11] and Chapter 2, §7, of [4]; while the
latter source considers mostly imaginary quadratic fields, much of the results are
easily extendable to real quadratic fields as was done in [19].

Let D ∈ Z, D �= 0, ±1 be a squarefree integer. A quadratic (number) field is
a field of the form K = Q(

√
D) = {a + b

√
D | a, b ∈ Q}. K is an imaginary,

respectively, real quadratic field if D < 0, respectively, D > 0. Set Δ1 = 4D if
D ≡ 2 or 3 (mod 4) and Δ1 = D if D ≡ 1 (mod 4), so Δ1 ≡ 0 or 1 (mod 4). Δ1
is called a fundamental discriminant. For f ∈ N, set Δf = f2Δ1. The (quadratic)
order of conductor f in K is the Z-submodule OΔf

of K of rank 2 generated by 1
and f(Δ1+

√
Δ1)/2; its discriminant is Δf . We speak of imaginary, respectively,

real quadratic orders, depending on whether K is an imaginary, respectively, a
real quadratic field. The maximal order of K is OΔ1 ; it contains all the orders
of K, and f = [OΔ1 : OΔf

] is the index of OΔf
in OΔ1 as an additive subgroup.

Henceforth, let f ∈ N be any conductor. We denote by O∗
Δf

the group of units
of the integral domain OΔf

, i.e. the group of divisors of 1 in OΔf
. The units
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of OΔf
, denoted by O∗

Δf
, form an Abelian group under multiplication. If K is

imaginary, then O∗
Δf

consists of the roots of unity in K and thus has 6, 4, or 2
elements, according to whether Δ1 = −3, Δ1 = −4, or Δ1 < −4. If K is real,
then O∗

Δf
is an infinite cyclic group with finite torsion {1, −1}, whose unique

generator εΔf
exceeding 1 is the fundamental unit of OΔf

. In this case, the real
number RΔf

= log(εΔf
) is the regulator of OΔf

. Here, as usual, log(x) denotes
the natural logarithm of x > 0.

An (integral) OΔf
-ideal 1 a is a Z-submodule of OΔf

of rank 2 that is closed
under multiplication by elements in OΔf

. A fractional OΔf
-ideal a is a Z-

submodule of K of rank 2 such that da is an (integral) OΔf
-ideal for some d ∈ N.

A fractional OΔf
-ideal a is invertible if there exists a fractional OΔf

-ideal b such
that ab = OΔf

, where the product of two fractional OΔf
-ideals a, b is defined to

consist of all finite sums of products of the form αβ with α ∈ a and β ∈ b. The
set of invertible fractional OΔf

-ideals, denoted by I(OΔf
), is an infinite Abelian

group under multiplication with identity OΔf
. A principal fractional OΔf

-ideal
a consists of OΔf

-multiples of some fixed element α ∈ K∗ = K \ {0} that is said
to generate (or be a generator of) a. We write a = (α) = αOΔf

. The principal
fractional OΔf

-ideals form an infinite subgroup of I(OΔf
) that is denoted by

P(OΔf
). The factor group Cl(OΔf

) = I(OΔf
)/P(OΔf

) is a finite Abelian group
under multiplication, called the ideal class group of OΔf

. Its order hΔf
is the

(ideal) class number of OΔf
. For any OΔf

-ideal a, we denote the OΔf
-ideal class

by [a] ∈ Cl(OΔf
).

For any element α = a + b
√

D ∈ K (a, b ∈ Q), the conjugate of α is α =
a−b

√
D ∈ K, and the norm of α is N(α) = αα = a2−b2D ∈ Q. If α ∈ OΔ1 , then

N(α) ∈ Z. The norm NΔf
(a) of an (integral) OΔf

-ideal a is the index of a as an
additive subgroup of OΔf

. When the context is clear, we will omit the subscript
Δf from the ideal norm and simply write N(a). If we set a = {α | α ∈ a},
then aa = (N(a)), the principal OΔf

-ideal generated by N(a). If a is a principal
OΔf

-ideal generated by α ∈ OΔf
, then N(a) = |N(α)|.

An integral OΔf
-ideal a is primitive if the only positive integer d such that

every element of a is an OΔf
-multiple of d is d = 1. An OΔf

-ideal a is reduced if
it is primitive and there does not exist any non-zero α ∈ a with |α| < N(a) and
|α| < N(a). We summarize some important properties of reduced ideals; see for
example [6,13,21] as well as Sections 2.1 and 2.2 of [19].

Theorem 1. Let OΔf
be an order in a quadratic number field K = Q(

√
D).

Then the following hold:

1. Every ideal class of Cl(OΔf
) contains a reduced OΔf

-ideal.
2. If K is imaginary, then every ideal class of Cl(OΔf

) contains a unique re-
duced OΔf

-ideal. If K is real, then the number rC of reduced ideals in any
ideal class C ∈ Cl(OΔf

) satisfies RΔf
/ log(f2D) ≤ rC < 2RΔf

/ log(2) + 1.
3. If a is a primitive OΔf

-ideal with N(a) <
√

|Δf |/2, then a is reduced.
4. If a is a reduced OΔf

-ideal, then N(a) <
√

Δf if K is real and N(a) <√
|Δf |/3 is K is imaginary.

1 We always assume that integral and fractional ideals are non-zero.
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For an OΔf
-ideal a, we denote by ρΔf

(a) any reduced OΔf
-ideal in the class of

a. By the above theorem, if K is imaginary, then ρΔf
(a) is the unique reduced

representative in the OΔf
-ideal class of a, whereas if K is real, then there are

many choices for ρΔf
(a). Given any OΔf

-ideal a, a reduced ideal ρΔf
(a) in the

equivalence class of a can be found using at most O
(
log

(
N(a)/

√
Δf

)
log(Δf )

)

bit operations. Furthermore, in the real scenario, the entire cycle of reduced
ideals in the OΔf

-ideal class of a can then be traversed using a procedure called
baby steps. Details on ideal reduction, baby steps, and other ideal arithmetic can
be found in Section 7.

For any integer d, an integral OΔf
-ideal a is said to be prime to d if N(a)

is relatively prime to d. Of particular interest is the case d = f , as every OΔf
-

ideal prime to f is invertible, and the norm map is multiplicative on the set of
OΔf

-ideals prime to f . Denote by I(OΔf
, f) the subgroup of I(OΔf

) generated
by the OΔf

-ideals prime to f , by P(OΔf
, f) the subgroup of I(OΔf

, f) gener-
ated by the principal ideals (α) with α ∈ OΔf

and N(α) prime to f , and set
Cl(OΔf

, f) = I(OΔf
, f)/P(OΔf

, f). Then Cl(OΔf
, f) is isomorphic to the class

group Cl(OΔf
) of OΔf

; see Proposition 7.19, p. 143, of [4] and Theorem 2.16,
p. 10, of [19].

Finally, we denote by I(OΔ1 , f) the subgroup of I(OΔ1) generated by the
OΔ1 -ideals prime to f , by P(OΔ1 , f) the subgroup of I(OΔ1 , f) generated by
the principal OΔ1 -ideals (α) with α ∈ OΔ1 and N(α) prime to f , and define the
factor group Cl(OΔ1 , f) = I(OΔ1 , f)/P(OΔ1 , f).

For the NICE cryptosystem in both real and imaginary quadratic orders, it
will be important to move between OΔf

-ideals prime to f and OΔ1 -ideals prime
to f . More specifically, we have the following isomorphism (see Proposition 7.20,
p. 144, of [4] and Theorem 3.2, p. 25, of [19]):

φ : I(OΔ1 , f) −→ I(OΔf
, f) via φ(A) = A∩OΔf

, φ−1(a) = aOΔ1 . (2.1)

The maps φ and φ−1 are efficiently computable if f and Δ1 are known; for
details, see Section 7. In fact, both the NICE and the REAL-NICE schemes use
φ−1 as their underlying trapdoor one-way function, with public information Δf

and trapdoor information f , where f is a prime. Note that φ and φ−1 preserve
norms and primitivity. Furthermore, φ−1 preserves ideal principality, but φ does
not. Thus, φ−1 induces a surjective homomorphism

Φ̂ : Cl(OΔf
, f) −→ Cl(OΔ1 , f) via Φ̂([a]) = [φ−1(a)] = [aOΔ1 ] . (2.2)

For proofs of these results, see pp. 144-146 of [4] and pp. 25-29 of [19].
The kernel of Φ̂, i.e. the subgroup of Cl(OΔf

, f) of the form

ker(Φ̂) = {[a] ∈ Cl(OΔf
, f) | φ−1(a) is a principal OΔ1 -ideal}

is of crucial importance to the NICE cryptosystem in imaginary quadratic orders,
and also plays a role in its counterpart REAL-NICE in real quadratic orders.
The size of this kernel is exactly the class number ratio hΔf

/hΔ1 . For the cryp-
tographically interesting case of prime conductor f = q, and disregarding the
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small cases Δ1 = −3 or −4 where K contains nontrivial roots of unity, the size
of this kernel is given by

| ker(Φ̂)| =
hΔq

hΔ1

=

{
q − (Δ1/q) if Δ1 < −4 ,
q − (Δ1/q)RΔ1/RΔq if Δ1 > 0 ,

(2.3)

where (Δ1/q) denotes the Legendre symbol.

3 The Original NICE Cryptosystem

The original NICE cryptosystem [18,13] exploits the relationship between ideals
in a maximal and a non-maximal imaginary quadratic order of prime conductor q
as described in (2.1) and (2.2). The key observation is that images of OΔq -ideals
under the map φ−1 of (2.1) are efficiently computable if q is known, whereas
without knowledge of the trapdoor information q (i.e. only knowledge of Δq),
this task is infeasible and is in fact provably equivalent to being able to factor
Δq in random polynomial time (see Theorem 2.1, pp. 13-14, of [18]).

The specifics of NICE are as follows:

Private Key: Two large primes p, q of approximately equal size with p ≡
3 (mod 4).

Public Key: (Δq, k, n, p) where
– Δq = q2Δ1 with Δ1 = −p;
– k and n are the bit lengths of 	

√
|Δ1|/4
 and q − (Δ1/q), respectively;

– p is a randomly chosen OΔq -ideal with [p] ∈ ker(Φ̂).

The key ideal p can be found by generating a random element α ∈ OΔ1 whose
norm is not divisible by q, finding a Z-basis of the principal OΔ1 -ideal A = (α),
and computing p = φ(A). Note that the OΔq -ideal p itself is generally not
principal, but its image φ−1(p) is a principal OΔ1 -ideal.

Encryption: Messages are bit strings of bit length k − t, where t is a fixed
parameter explained below. To encrypt a message m:
1. Embed m into a primitive OΔq -ideal m prime to q with NΔq (m) ≤ 2k in

such a way that NΔq(m) uniquely determines m.
2. Generate random r ∈R {1, 2, . . . , 2n−1}.
3. The ciphertext is the reduced OΔq -ideal c = ρΔq(mpr).

Note that since 2n−1 < q − (Δ1/q) < 2n, the range for r specified in step 2
ensures that r < q − (Δ1/q) = | ker(Φ̂)|. This is the optimal range, as [p]q−(Δ1/q)

is the identity in Cl(OΔq), i.e. the principal class. The cipher ideal c is computed
using standard ideal arithmetic; see Section 7 for details.

Decryption: To decrypt a ciphertext OΔq -ideal c:
1. Compute M = ρΔ1(φ−1(c)).
2. Extract m from NΔ1(M).
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Note that [p] ∈ ker(Φ̂) and (2.2) together imply

[M] = [ρΔ1(φ
−1(c))] = [φ−1(c)] = Φ̂([c]) = Φ̂([ρΔq (mpr)])

= Φ̂([mpr]) = Φ̂([m])Φ̂([p])r = Φ̂([m]) = [φ−1(m)] .

Since φ−1 is norm-preserving and 2k−1 ≤ 	
√

|Δ1|/4
 < 2k, encryption step 1
yields

NΔ1(φ
−1(m)) = NΔq(m) ≤ 2k ≤ 2

⌊√
|Δ1|
4

⌋

<

√
|Δ1|
2

,

where the last inequality follows since
√

|Δ1|/4 /∈ Z. By part 3 of Theorem 1,
φ−1(m) is a reduced OΔ1 -ideal. Thus, M and φ−1(m) are reduced ideals in the
same OΔ1 -ideal class, so they must be equal by part 2 of Theorem 1. It follows
that NΔ1(M) = NΔ1(φ−1(m)) = NΔq(m), which by encryption step 1 uniquely
determines m. Note also that NΔf

(m) = NΔ1(M) <
√

|Δ1|/2 < q, where the
last inequality holds because p and q are of roughly the same size. It follows that
both m and M are prime to q. Since N(c) = N(m)N(p)r , c is also prime to q.

Since the decrypter knows the conductor q of OΔq , he can efficiently compute
φ−1(c), and hence M using standard reduction arithmetic. We explain how to
compute images under φ−1 in Section 7.

To perform encryption step 1, one first selects a security parameter t; we
explain below how large t should be chosen. The plaintext needs to be divided
into message blocks of bit length k − t. To embed such a block m into a reduced
OΔq -ideal m prime to q, the encrypter does the following:

1. Set m = m2t, obtaining an integer m of bit length k whose t low order bits
are all 0.

2. Find the smallest prime l exceeding m such that (Δq/l) = 1.
3. Set m to be the OΔq -ideal of norm l.

If l ≡ 3 (mod 4), then a Z-basis for the ideal m can be found efficiently and
deterministically. If l ≡ 1 (mod 4), then there is a fast probabilistic method for
performing step 3 above. For details, see again Section 7.

If l ≤ m+2t, then m ≤ 2k−t−1 implies NΔf
(m) = l ≤ m+2t = (m+1)2t ≤ 2k

as desired. Furthermore, the k high order bits of l agree with m and hence with m.
Since NΔ1(M) = NΔq(m) = l, m is easily obtained from NΔ1(M) in decryption
step 2 by truncating the first k bits from l. According to pp. 34-36 of [19], the
probability that l ≤ m + 2t is bounded below by Pt = 1 − 2−2t/k. It follows that
decryption step 2 is successful with high probability for t sufficiently large.

The security of NICE was analyzed in detail in [13], [7], and [19], and resides in
the difficulty of factoring Δq. We only briefly review some facts here. Encryption
under NICE can be viewed as masking the message ideal m by multiplying it by a
random ideal a = pr with [a] ∈ ker(Φ̂), thereby hiding it in its own coset m ker(Φ̂).
The size of each such coset is equal to | ker(Φ̂)| = q − (Δ1/q). Obviously, q must
be chosen large enough to make exhaustive search through any coset relative to
ker(Φ̂) infeasible. Moreover, in order to guarantee a sufficiently large number of
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distinct elements of the form mpr, or equivalently, a sufficiently large number of
distinct powers pr, we need to ensure that the subgroup in ker(Φ̂) generated by
the class [p] is large. The order of this subgroup is a divisor of q− (Δ1/q), so this
quantity should be chosen prime or almost prime. Suppose that q−(Δ1/q) = Ld
where L is a large prime and d ∈ N is very small. Then the number of generators
of the cyclic subgroup of ker(Φ̂) of order L is φ(L) = L− 1, where ϕ(N) denotes
the Euler totient function of N ∈ N. So the probability that a random ideal
p ∈ ker(Φ̂) generates this subgroup is (L − 1)/Ld ≈ 1/d which is large if d is
small. One expects d trials of an ideal p to produce a desirable key ideal. For any
such trial, checking that ρΔq(pd) �= OΔq guarantees that p generates a subgroup
of ker(Φ̂) of order L.

An algorithm for computing images of primitive OΔq -ideals under φ−1 without
knowledge of q would lead to the decryption of any message. However, according
to Theorem 1 of [13], such an algorithm could be used as an oracle for factoring
Δq in random polynomial time. Hence, the security of NICE is equivalent to
factoring an integer of the form q2p, so p and q need to be chosen sufficiently
large to render the factorization of Δq via the elliptic curve method and the
number field sieve infeasible. Using the estimate that factoring a 1024-bit RSA
modulus is computationally equivalent to finding a 341-bit factor of a 3-prime
modulus of the same size [10] yields the estimates in Table 1 for parameter sizes
of Δq that are required to provide a level of security equivalent to block ciphers
with keys of 80, 112, 128, 192, and 256 bits, respectively.

Table 1. NIST recommendations for parameter sizes of p and q

symmetric key size 80 112 128 192 256
Size of Δq 1024 2048 3072 8192 15360
Size of p and q 341 682 1024 2731 5120

To the best of our knowledge, revealing the public key and the form of Δq

(Δq = −q2p with primes p, q and p ≡ 3 (mod 4)) does not compromise the
security of NICE. Finally, the chosen ciphertext attack of [7] is prevented by
padding message blocks with t low order 0 bits for sufficiently large t. To ensure
that this attack is approximately as costly as any other known attack method, t
should be chosen according to the first row of Table 1 (the symmetric key size).
NICE has also been extended, using standard techniques, to provide IND-CCA2
security in the random oracle model — see the NICE-X protocol presented in [1].

4 NICE in Real Quadratic Orders

Before we describe in detail REAL-NICE, our adaptation of NICE to orders
in real quadratic fields, we highlight the main differences between REAL-NICE
and NICE. The security of the original NICE scheme resides in the difficulty of
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identifying a specific representative in the coset of an OΔq -ideal m relative to
ker(Φ̂) without knowledge of the conductor q of the order OΔq . In real quadratic
orders, this problem is generally easy to solve via exhaustive search, since hΔq

can be a small multiple of hΔ1 , resulting in a very small kernel of Φ̂ by (2.3).
Instead, in the real case, an adversary needs to identify a specific reduced ideal
in the cycle of reduced ideals in the OΔq -ideal class [m]. It is therefore necessary
to ensure that the number of reduced ideals in any OΔq -ideal class is large.

At the same time, the decryption process of NICE no longer yields a unique
reduced OΔ1 -ideal. To extract m, we need to make sure that the OΔ1 -ideal class
of φ−1(c) contains very few reduced ideals, so they can all be quickly computed
and the correct one identified by a predetermined unique bit pattern in its norm.
During encryption, m is endowed with that same bit pattern. By part 2 of
Theorem 1, the system parameters must therefore be chosen so that RΔ1 is very
small, while RΔq is large.

Finally, the ideal p need no longer be included in the public key; instead, a
random ideal p with [p] ∈ ker(Φ̂) can be generated for each encryption.

The specifics of REAL-NICE are as follows:

Private Key: Two large primes p, q of approximately equal size with p ≡
1 (mod 4).

Public Key: (Δq, k, n, p) or (Δq, k, n), where
– Δq = q2Δ1 with Δ1 = p;
– k and n are the bit lengths of 	

√
Δ1/4
 and q − (Δ1/q), respectively;

– p is a randomly chosen OΔq -ideal with [p] ∈ ker(Φ̂); inclusion of p in the
public key is optional.

Here, p and q must be chosen so that RΔ1 is small and RΔq is large; details
on how to select these primes will be provided in Section 5. If storage space
for public keys is restricted, p need not be included in the public key. Instead,
a different ideal p with [p] ∈ ker(Φ̂) can be generated for each encryption, at
the expense of increased encryption time. In the case where p is included in
the public key, it can be generated exactly as in the original NICE system. In
Section 7, we describe an alternative method for finding p that does not require
knowledge of q and Δ1 and can hence be used by the encrypter.

Encryption: Messages are bit strings of bit length k − t − u, where t and u are
fixed parameters explained below. To encrypt a message m:
1. Convert m to a string m′ that uniquely determines m and contains a

predetermined bit pattern of length u.
2. Embed m′ into a primitive OΔq -ideal m prime to q with NΔq(m) ≤ 2k

in such a way that NΔq(m) uniquely determines m′.
3. Generate random r ∈R {1, 2, . . . , 2n−1}.
4. If the public key does not include the ideal p, generate a random OΔq -

ideal p with [p] ∈ ker(Φ̂).
5. The ciphertext is a reduced OΔq -ideal c = ρΔq (mpr).
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Decryption: To decrypt a ciphertext OΔq -ideal c:
1. Compute C = φ−1(c).
2. Find the reduced ideal M ∈ [C] such that NΔ1(M) contains the prede-

termined bit pattern of length u of encryption step 1.
3. Extract m′ from NΔ1(M) and m from m′.

Since the decrypter knows q, he can once again efficiently compute C; for details,
see Section 7. As in the original NICE scheme, we see that [M] = [φ−1(m)].
Unfortunately, we can no longer conclude from this that M = φ−1(m), only
that both are two among many reduced ideals prime to q in the same OΔ1 -class.
This is the reason why in contrast to encryption step 1 of NICE, the embedding
of a message m into an OΔq -ideal m in REAL-NICE requires two steps. To
ensure that M = φ−1(m) does in fact hold, m is endowed with a predetermined
public bit pattern of length u to obtain m′. We argue below that this forces
M = φ−1(m) with high probability, so NΔ1(M) = NΔq(m) uniquely determines
m′ by encryption step 2, and hence m by encryption step 1.

More exactly, to perform encryption steps 1 and 2, one first selects the pa-
rameters t and u; we explain below how large t and u should be chosen. The
plaintext needs to be divided into blocks of bit length k − t − u. To embed such
a block m into a reduced OΔq -ideal m prime to q, one does the following:

1. Set m′ = m + 2k−t, obtaining an integer m′ of bit length k − t whose u high
order bits are 100 · · ·000.

2. Set m′ = m′2t, obtaining an integer m′ of bit length k whose u high order
bits are 100 · · · 000 and whose t low order bits are all 0.

3. Find the smallest prime l exceeding m′ such that (Δq/l) = 1.
4. Set m to be the OΔq -ideal of norm l.

The ideal m is found exactly as in the NICE embedding procedure, and provided
that M = φ−1(m), m′ can again be extracted from NΔ1(M) = NΔq (m) = l with
high probability by truncating the high order k bits from l. Then m is obtained
from m′ by simply discarding the u high order bits of m′.

Before we argue that, with high probability, the class of [C] contains only
one ideal whose norm contains our specified bit pattern (namely the ideal M =
φ−1(m) of norm l), we explain how to find this ideal. In order to perform de-
cryption step 2, the decrypter needs to traverse the set of reduced OΔ1 -ideals
in the class of C to locate M. This is accomplished by applying repeated baby
steps as described in Section 7, starting with the OΔ1 -ideal C ∈ [M]. Since Δ1
was chosen so that the class of C contains very few reduced ideals, M can be
found efficiently. After each baby step, the decrypter performs a simple X-OR
on the u high order bits of the ideal norm and the string 100 · · ·000, checking
whether or not the resulting string consists of all 0’s.

The decryption procedure will work with high probability under two condi-
tions. Firstly, just as in NICE, the parameter t needs to be chosen as described in
Section 3 to ensure that m′ can be uniquely determined from M. We already saw
that this succeeds with probability at least Pt = 1−2−2t/k. Secondly, u must be
chosen large enough so that with high probability, the OΔ1 -class of C contains
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only one reduced OΔ1 -ideal M such that the u high order bits of NΔ1(M) are
100 · · ·000. Using the analysis on p. 53, of [19], this probability is expected to be
bounded below by Pu = (1− 2−u)N , where N is an upper bound on the number
of reduced ideals in any class of Cl(OΔ1). We will see in Section 5 that Δ1 can be
chosen so that such an upper bound is of the form κ1 log(Δ1) for some explicitly
computable constant κ1.

5 Choice of Parameters

The parameters for REAL-NICE clearly need to be selected with care to ensure
both efficiency and security. As explained in Section 4, p and q must be chosen
to satisfy the following conditions:

– RΔq must be large enough to ensure a sufficiently large number of reduced
ideals in any OΔq -ideal class, thus rendering exhaustive search through any
cycle of reduced OΔq -ideals infeasible.

– RΔ1 must be small enough to ensure a sufficiently small number of reduced
ideals in any OΔ1 -ideal class, thus rendering exhaustive search through any
cycle of reduced OΔ1 -ideals efficient.

We proceed in two steps. First, we explain how to ensure that the ratio RΔq/RΔ1

is of order of magnitude q with high probability. Then we present a means of
guaranteeing that RΔ1 is small, i.e. bounded by a polynomial in log(Δ1).

The unit index of OΔq is the group index [O∗
Δ1

: O∗
Δq

], i.e. the smallest positive
integer i such that εi

Δ1
= εΔf

, or equivalently, RΔf
= iRΔ1 . By (2.3), i divides

q − (Δ1/q), so forcing i to be large is another reason why q − (Δ1/q) should be
almost prime. Specifically, Theorem 5.8, p. 58, of [19] states that if q − (Δ1/q) =
Ld where L is a large prime and d ≤ log(Δ1)κ for some positive constant κ, then
the probability that i < L is bounded above by log(Δ1)2κ/(

√
Δ1 − 1). In other

words, i = RΔq /RΔ1 ≥ L with overwhelming probability.
To verify that i ≥ L does in fact hold, it suffices to check that i does not

divide d, i.e. that εd
Δ1

�= εΔf
. Suppose that RΔ1 is sufficiently small so that εΔ1 =

U1 + V1
√

Δ1 is computable; εΔ1 can be obtained from RΔ1 using for example
Algorithm 4.2 of [2]. Then any power εj

Δ1
= Uj + Vj

√
Δ1 can be efficiently

evaluated using Lucas function arithmetic on Uj and Vj analogous to binary
exponentiation; see Chapter 4, pp. 69-95, of [20].

Next, we illustrate how to choose Δ1 so that RΔ1 is small. In general, the
regulator RΔf

of any real quadratic order OΔf
is of magnitude

√
Δf which is far

too large for our purposes. One possibility is to choose D to be a Schinzel sleeper
[15], i.e. a positive squarefree integer of the form D = D(x) = a2x2 + 2bx + c
with a, b, c, x ∈ Z, a �= 0, and b2 − a2c dividing 4 gcd(a2, b)2. Schinzel sleepers
were analyzed in detail in [3]; here, the regulator RΔ1 is of order log(Δ1). More
exactly, if a, b, c, x are chosen so that gcd(a2, 2b, c) is squarefree and D ≡ 0 or
1 (mod 4) (so Δ1 = D), then by Theorem 5.4, p. 52, of [19], the number of
reduced OΔ1 -ideals in any class of Cl(OΔ1) is bounded above by κ1 log(Δ1) for
an explicitly computable constant κ1 that depends only on a and b.
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Finally, the fixed bit pattern in any message is again critical in defending
REAL-NICE against the same chosen ciphertext attack [7] that was already
mentioned in Section 3. This attack can be detected with the same probabil-
ity with which the cipher ideal can be successfully decrypted. Therefore, it is
suggested to choose t + u according to first row of Table 1, keeping the proba-
bility of successful decryption via the chosen ciphertext attack consistent with
the probability of success of any other known attack on REAL-NICE.

6 Security

Although the security of REAL-NICE is based on a different mathematical prob-
lem than NICE, namely locating an OΔq -ideal within the cycle of reduced ideals
in its own ideal class, as opposed to locating it in its own coset relative to ker(Φ̂),
the same security considerations apply. Assuming a passive adversary, both sys-
tems can be broken if and only if an adversary can efficiently compute images of
OΔq -ideals under the map φ−1 of (2.1) without knowledge of the trapdoor infor-
mation q, a task that is provably equivalent to factoring in random polynomial
time. More exactly, according to Theorem 2.1, pp. 13-14, of [18]:

Theorem 2. Let Δ1 ∈ N be a fundamental discriminant and Δq = q2Δ1 with q
prime. Assume that there exists an algorithm A that computes for any primitive
ideal a ∈ I(OΔq , q) the primitive ideal A = φ−1(a) ∈ I(OΔ1 , q) without knowl-
edge of the conductor q of OΔq . By using the algorithm A as an oracle, Δq can
be factored in random polynomial time. The number of required queries to the
oracle is polynomially bounded in log(Δq).

Hence, as with NICE, p and q must be chosen sufficiently large to render the
factorization of Δq infeasible. Again, it is highly unlikely that knowledge of the
public information would compromise the security of REAL-NICE. In addition,
the specified bit pattern in the norm of the message ideal m protects against the
chosen ciphertext attack of [7]; once again, the length of this bit pattern should
be chosen equal to the symmetric key size as specified in Table 1 to render this
attack as expensive as any other known attack. As REAL-NICE is so similar to
NICE, it should also be possible to adapt the methods of [1] to obtain IND-CCA2
security.

The fact that Δ1 = a2x2 + 2bx + c is chosen to be a Schinzel sleeper requires
further analysis. It is recommended that the values a, b, c, x are kept secret and
discarded after computing Δ1. Care must also be taken how to select x in the
Schinzel sleeper. Put A = qa, B = q2b, and suppose B = SA+R with 0 ≤ R < A
(note that A, B, S, R are all unknown). Then by Theorem 4.1 of [3], the fraction
A/R appears among the first κ2 log(A) convergents of the continued fraction
expansion of

√
Δq for some explicit positive constant κ2, so there are only poly-

nomially many possibilities for this fraction. If we find A/R and write it in lowest
terms, i.e. A/R = U/V with gcd(U, V ) = 1, then q = gcd(Δq , U	

√
Δq
 + V ) if

x is sufficiently large, so Δq is factored. This factoring attack can be avoided if
x is chosen sufficiently small, but at the same time large enough to guarantee
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sufficiently large Δ1. More exactly, by Corollary 6.5, p. 72, of [19], it is sufficient
to choose x < 2−3w−1q − 2w where a, b ≤ 2w.

Suppose we wish to generate parameters Δ1 and q of bit length s. If we choose
a and b of some bit length w ≤ s/4 − 1 and x of bit length s/2 − w, then ax
has bit length s/2, 2bx has bit length s/2+1, and the condition b2 − a2c divides
4 gcd(a2, b)2 implies |c| ≤ 5b2 < 22w+3 ≤ 2s/2+1, so |c| has bit length at most
s/2 + 1. Thus, (ax)2 is the dominant term in D(x), which then has bit length
s. Since q > 2s−1, it suffices to choose x < 2s−3w−2 − 2w, so to obtain x of bit
length at least s/2 − w, we require that 2s/2−w < 2s−3w−2 − 2w. This is easily
verified to always hold if w ≤ s/4 − 1.

We also need to ensure that there are sufficiently many primes of desired size
that occur as values of Schinzel sleepers. Let πF (n) denote the number of primes
assumed by the polynomial F (x) = ax2 + bx + c for 0 ≤ x ≤ n, with a, b, c ∈ Z,
a > 0, and a + b, c not both even. The well-known Hardy-Littlewood conjecture
[5] states in essence that πF (n) ∼ κF n/ log(n), where κF is an explicitly com-
putable constant than depends only on F . Under the assumption that prime
values assumed by Schinzel polynomials behave similarly to those assumed by
arbitrary quadratic polynomials, we conclude that the number of primes pro-
duced by Schinzel polynomials is large enough to render an exhaustive search
for Δq infeasible. However, further study of this question is warranted.

Finally, we need to make sure that there are sufficiently many reduced OΔq -
ideals of the form c = ρΔq(mpr) to ensure that cipher ideals cannot be found via
exhaustive search. We already saw how to guarantee a large ratio RΔq /RΔ1 = Ld
where L is a large prime and d ≤ log(Δ1)κ for some positive constant κ. This
ensures a large number of reduced ideals in each OΔq -ideal class. For any B ∈ N,
any OΔq -ideal p with [p] ∈ ker(Φ̂), and any reduced OΔq -ideal m, consider the
set of possible cipher ideals CB = {ρΔq(mpr) | 1 ≤ r ≤ B}. Then a sufficiently
large choice of a generator α ∈ OΔq of p ensures that all the ideals in CB are
distinct. More exactly, according to Theorem 6.8, p. 81, of [19], if we choose α
so that log(α) ∈ I where

I = ] (b + 1) log(4Δq) + log(2),
L log(Δ1)

2b+2 − b log(2) ] (6.4)

and b is the bit length of B, then the set CB has cardinality B.
Table 2 contains upper and lower bounds on log(α) depending on the required

level of security and the constant κ. The notation (v, w) in the column headers
means that the set CB contains at least 2v different OΔq -ideals, where Δq has
bit length w. The columns “min” and “max” denote lower and upper bounds on
the bit length of log(α). The data show that it is feasible to choose α such that
CB is sufficiently large to satisfy the NIST security requirements.

7 Ideal Arithmetic and Algorithms

We review basic ideal arithmetic involving Z-bases and provide the algorithms
that are required in the REAL-NICE cryptosystem. See also [21,9] for details.
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Table 2. Bounds the size of log α depending on the level of security

(80, 1024) (112, 2048) (128, 3092) (192, 8192) (256, 15360)
κ min max min max min max min max min max
1 17 259 18 568 20 1235 21 2536 22 4861
5 17 223 18 528 20 1191 21 2488 22 4809

10 17 178 18 478 20 1136 21 2428 22 4744
15 17 133 18 428 20 1081 21 2368 22 4679
20 17 88 18 378 20 1026 21 2308 22 4614

Let K = Q(
√

D) be a (real or imaginary) quadratic field and OΔf
an order in

K of conductor f . Set σ = 1 if D ≡ 2, 3 (mod 4) and σ = 2 if D ≡ 1 (mod 4), so
Δ1 = (2/σ)2D ≡ σ − 1 (mod 4). Then every integral OΔf

-ideal a is a Z-module
of the form

a = S

(
Q

σ
Z +

P + f
√

D

σ
Z

)

,

where S, Q ∈ N, P ∈ Z, σ divides Q, σQ divides f2D−P 2, and gcd(Q, 2P, (f2D−
P 2)/Q) = σ. Here, Q and S are unique and P is unique modulo Q, so we write
a = S(Q, P ) for brevity. We have NΔf

(a) = S2Q/σ. The ideal a is primitive if
and only if S = 1, in which case we simply write a = (Q, P ).

Suppose now that D > 0, so K is a real quadratic field. Recall that any OΔf
-

ideal class contains a finite number of reduced ideals. A baby step moves from
one such ideal to the next. More exactly, if ai = (Qi, Pi) is a reduced OΔf

-ideal,
then a reduced OΔf

-ideal ai+1 = (Qi+1, Pi+1) in the OΔf
-ideal class of ai can

be obtained using the formulas

qi =

⌊
Pi +

√
D

Qi

⌋

, Pi+1 = qiQi − Pi, Qi+1 =
f2D − P 2

i+1

Qi
. (7.5)

Note that f2D = (σ/2)2Δf , so f need not be known here. Baby steps applied to
any reduced OΔf

-ideal a produce the entire cycle of reduced ideals in the OΔf
-

ideal class of a. In practice, one uses a more efficient version of (7.5) that avoids
the division in the expression for Qi+1; see for example Algorithm 1 of [21].

We now give details on how to perform the different encryption and decryption
steps, beginning with a method for finding a Z-basis (Q, P ) of the message ideal
m of prime norm l as required in encryption step 2 of REAL-NICE. Set Q = 2l,
and let P ′ be a square root of Δq modulo l with 0 < P < l. Such a square root
exists since (Δq/l) = 1 and can be found using standard probabilistic methods
in at most an expected O(log(l)3) bit operations. Now put P = P ′ if P is odd
and P = l − P ′ if P is even. Then it is not hard to verify that m = (Q, P ) is a
primitive OΔq -ideal of norm Q/2 = l.

Given Z-bases of two reduced OΔf
-ideals a, b, it is well-known how to com-

pute a Z-basis of a reduced OΔf
-ideal ρΔf

(ab) in the class of the (generally
non-reduced and possibly not even primitive) product ideal ab in O(log(D)2)
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bit operations. This operation is called a giant step. Five different ways for ef-
fecting a giant step were described and compared in [9]; the most efficient one
is Algorithm 6.8 on p. 111 (the NUCOMP algorithm). This method can be em-
ployed to compute the cipher ideal c in REAL-NICE encryption step 5.

An ideal p ∈ ker(Φ̂) as required in encryption step 4 can be determined
during encryption or as part of the public key as follows. Generate a random
element x ∈ I, with I as given in (6.4), and use Algorithm 5.2 of [14] to find
the Z-basis of a reduced principal OΔq -ideal p that has a generator α ∈ OΔq

with log2(α) ≈ x/ log(2), so log(α) ≈ x. This algorithm is essentially repeated
squaring using giant steps and requires O(log(x) log(Δq)2) bit operations. Since
p is principal and φ−1 preserves principality, φ−1(p) is a principal OΔ1 -ideal, so
[p] ∈ ker(Φ̂).

In decryption step 1, the user needs to find the image C of the cipher ideal c
under φ−1. The functions φ−1 and φ can be efficiently computed if the conductor
f is known. We briefly recall the procedures here; for details, see [6,13] as well
as pp. 14 and 28 of [19]. Let a = (Q, PΔf

) be any primitive OΔf
-ideal prime

to f . Then A = φ−1(a) = (Q, PΔ1) is a primitive OΔ1 -ideal prime to f , where
PΔ1 ≡ xPΔf

+ybQ/2 (mod Q). Here, x, y ∈ Z are given by xf +yQ/σ = 1, and b
is the parity of Δf ; note that if Q is odd, then σ = 1 and hence b = 0. Conversely,
if A = (Q, PΔ1) is a primitive OΔ1 -ideal prime to f , then a = φ(A) = (Q, PΔf

)
with PΔf

≡ fPΔ1 (mod Q) is a primitive OΔf
-ideal prime to f .

8 Implementation and Run Times

We implemented prototypes of both NICE and REAL-NICE in C++ using GMP
and the NTL library for large integer arithmetic [16]. Our numerical data were
generated on an Athlon XP 2000+ with 512 MB RAM under the Linux Mandrake
9.1 operating system. In addition, we felt that a comparison to the RSA cryp-
tosystem would be of interest, since the security of RSA also depends on integer
factorization and, because it is so widely used in practice, highly-optimized im-
plementations are readily available. We therefore determined run times for RSA
using the open source implementation of OpenSSL. Note that our current im-
plementations of NICE and REAL-NICE are first prototypes, whereas the RSA
implementation in OpenSSL is highly optimized. Thus, our numerical results are
somewhat skewed in favour of RSA.

We used the same parameter sizes for our RSA moduli and non-fundamental
discriminants Δq = q2Δ1, with q and Δ1 of approximately equal size, as they
give the same level of security. We chose parameter sizes corresponding to the
NIST recommended levels of security equivalent to block ciphers with keys of 80,
112, 128, 192, and 256 bits, as specified in Table 1. As public key cryptosystems
are usually used for secure key exchange, the message lengths used in our set-up
corresponded to these key sizes.

Both NICE and REAL-NICE require selecting a suitable fundamental dis-
criminant Δ1. For NICE, we simply chose Δ1 = −p where p is a prime with
p ≡ 3 (mod 4). In REAL-NICE, we chose Δ1 = p where p ≡ 1 (mod 4) and
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p is a Schinzel sleeper as described in Section 5. To find such a prime p of bit
length s, we began by choosing random positive integers a and b of bit length
w = 12; this length easily satisfies the requirement w ≤ s/4 − 1 of Section 6 for
all five NIST [12] security levels with s as given in the second row of Table 1.
Then we attempted to determine an integer c such that b2 − a2c divides g2 with
g = 2 gcd(a2, b). To find c, we searched the interval S = [(b2−g2)/a2, (b2+g2)/a2]
for an integer c satisfying the above divisibility condition. Note that if a and b
are randomly generated, then g = 1 with high probability, leaving only a very
small search interval S. Moreover, smaller values of a lead to a larger interval S.
Hence, if for a given pair (a, b), no suitable c value was found, we decreased a
by 1 — rather than generating a new random value a — and conducted a new
search for c. We repeated this procedure until either a = 1 or a suitable value of
c was found; in the former case, we discarded a and b and started over.

Once a suitable triple (a, b, c) was obtained, we generated successive random
integers x of bit length at least s/2 − 12 until a value x was found such that
ax2 + 2bx + c is a prime congruent to 1 (mod 4). After a certain number of
unsuccessful trials at a value of x, we discarded the triple (a, b, c) and started
over with a new choice of a and b. This method worked very well in practice.

To find a conductor q such that q − (Δ1/q) is guaranteed to have a large
prime factor, we first generated a random prime L close to |Δ1| and checked
exhaustively whether q = jL + 1 is prime and (Δ1/q) = −1 for j = 2, 4, 6, . . .
If no prime was found for j up to some predetermined bound M , we discarded
L and repeated the same procedure until a prime l with the desired properties
was obtained.

For encryption under NICE and REAL-NICE, messages were embedded into
an OΔq -ideal of prime norm l such that the binary representation of l contained
a fixed bit pattern of length bΔq ∈ {80, 112, 128, 192, 256} corresponding to the
level of security that was chosen for Δq; bΔq = t in NICE and bΔq = t + u in
REAL-NICE. In addition, the 20 low order bits of l were set so that (Δq/l) = 1.
Consequently, messages were bit strings of length k − bΔq − 20.

Table 3 gives the average run times for NICE, REAL-NICE, and RSA for var-
ious parameter sizes. The run times were obtained by encrypting and decrypting
1000 randomly generated messages for each discriminant size. In addition to the
timings for encryption, decryption and message embedding, Table 3 lists the
minimal, the maximal and the average number of baby steps that were required
to locate the OΔ1 -ideal M during decryption with REAL-NICE.

Our numerical results show that NICE out-performs REAL-NICE for both
encryption and decryption. This is not surprising. Recall that in REAL-NICE,
the ideal p with [p] ∈ ker(Φ̂) is not included in the public key, resulting in shorter
keys. This is done at the expense of a considerable increase in encryption time
due to the need for generating a new random ideal p for each encryption. We also
expect decryption times of REAL-NICE to be slower than those of NICE, due to
the extra search through the cycle of reduced ideals in the class of the OΔ1 -ideal
C = φ−1(c), where c is the cipher ideal. In fact, decryption showed the most
significant difference in performance between NICE and REAL-NICE. When
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Table 3. Average Run Times for NICE, REAL-NICE, and RSA

size(Δq) 1024 2048 3072 8192 15360
message length 80 112 128 192 256

block length 180 244 276 404 532
NICE

encryption 0.02139s 0.06994s 0.12659s 0.68824s 2.35274s
decryption 0.00033s 0.00082s 0.00099s 0.00312s 0.00729s
embedding 0.00467s 0.01152s 0.01550s 0.04257s 0.08860s

REAL-NICE
encryption 0.03532s 0.09944s 0.18096s 0.96830s 3.28507s
decryption 0.00210s 0.00468s 0.00757s 0.02811s 0.07735s
embedding 0.00531s 0.01152s 0.01547s 0.04289s 0.09770s

min. number of baby steps 1 1 1 2 2
max. number of baby steps 127 181 193 271 355
avg. number of baby steps 58.345 92.801 121.107 204.056 281.438
RSA

encryption 0.0074s 0.0081s 0.0090s 0.0173s 0.0499s
decryption 0.0127s 0.0334s 0.0931s 1.1188s 7.8377s

considering the overall performance, NICE is up to 1.61 faster than REAL-
NICE. However, we note that encryption in REAL-NICE can be replaced by
a technique called infrastructure multiple side-step (IMS) encryption that could
potentially make REAL-NICE competitive to NICE; a similar idea was used with
considerable success in cryptographic protocols using real hyperelliptic curves [8],
and is explained in the next section.

As expected, both NICE and REAL-NICE decryption significantly outper-
form RSA for all security levels. It is also noteworthy that when considering the
overall performance, both NICE and REAL-NICE are faster than RSA for the
two highest levels of security. This is surprising as our NICE and REAL-NICE
implementations are first prototypes, whereas the implementation of RSA in the
OpenSSL package is considered to be highly optimized.

9 Conclusion and Further Work

There exists a modified version of RSA due to Takagi [17] that would perhaps be
more appropriate for comparison with NICE and REAL-NICE. Takagi’s cryp-
tosystem relies on the difficulty of factoring integers of the form pkq (similar
to NICE and REAL-NICE) and has faster decryption than RSA. When using
k = 2, Takagi reports decryption times that are three times faster than decryp-
tion using Chinese remaindering with a 768-bit modulus. Our main goal was to
compare NICE and REAL-NICE with a highly-optimized implementation of the
most widely-used factoring-based cryptosystem (namely RSA), but a comparison
with Takagi’s cryptosystem would clearly be of interest as well.
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While the performance difference between NICE and REAL-NICE is at first
glance disappointing, a method referred to as infrastructure multiple side-step
(IMS) encryption can speed up REAL-NICE encryption time considerably, mak-
ing the system potentially competitive with NICE. IMS is explained in detail
in Section 7.2.1 of [19]. In both NICE and REAL-NICE, the OΔq -ideal ρΔq (pr)
used to obtain the cipher ideal c is evaluated using a standard binary exponen-
tiation technique involving giant steps. That is, a square corresponds to a giant
step of the form ρΔq (a2), and a multiply to the giant step ρΔq(ap), where a is
the intermediate ideal (a = ρΔq(pr) at the end). In IMS encryption, no random
exponent needs to be generated. Instead, a fixed number of square giant steps
is chosen, and each square giant step is followed by a certain random number of
baby steps (multiple side steps) in the cycle of reduced ideals (also referred to
as the infrastructure) in the OΔq -class of the message ideal m.

The complexity of a baby step is linear in O(log(Δq)) in terms of bit oper-
ations, whereas a giant step has quadratic complexity. Thus, if the number of
square giant steps corresponds to the bit length of r, and the number of baby
steps after each square & reduce operation is not too large, this results in a
significant speed-up in encryption time. On the other hand, if the number of
squarings or the number of side steps is too small, this may significantly de-
crease the number of possible values that the cipher ideal c can take on, thereby
rendering exhaustive search for c potentially feasible. Preliminary numerical data
in Section 7.3 of [19] showed that an IMS-prototype of REAL-NICE using even
the most conservative security analysis outperformed the original REAL-NICE
scheme. It is conceivable that the IMS parameters could be chosen to lead to
significantly faster encryption times, while still ensuring the same level of secu-
rity. Under these circumstances, IMS-REAL-NICE could be competitive to, or
even outperform, NICE. This would make IMS-REAL-NICE potentially attrac-
tive in situations where fast decryption time is essential (e.g. for fast signature
generation) and space is too restricted to hold the larger NICE keys. Clearly,
the subject of IMS encryption requires further exploration.

The questions of whether there are sufficiently many prime Schinzel sleepers
of a given bit length, and whether choosing Δ1 to be a Schinzel sleeper presents a
security risk, warrant further study. We also point out that it should be possible
to adapt the IND-CCA2 secure version of NICE to REAL-NICE in order to
provide the same level of security. These and other questions are the subject of
future research.
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