
Advances in Mathematics of Communications doi:10.3934/amc.2010.4.261
Volume 4, No. 2, 2010, 261–279

EFFICIENT REDUCTION OF LARGE DIVISORS ON

HYPERELLIPTIC CURVES

Roberto Avanzi

Faculty of Mathematics, Ruhr-Universität Bochum and
Horst Görtz Institut für IT-Sicherheit

Universitätsstraße 150, D-44780 Bochum, Germany

Michael J. Jacobson, Jr.

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

Renate Scheidler

Department of Mathematics & Statistics, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

(Communicated by Neal Koblitz)

Abstract. We present an algorithm for reducing a divisor on a hyperelliptic
curve of arbitrary genus over any finite field. Our method is an adaptation
of a procedure for reducing ideals in quadratic number fields due to Jacobson,
Sawilla and Williams, and shares common elements with both the Cantor and
the NUCOMP algorithms for divisor arithmetic. Our technique is especially
suitable for the rapid reduction of a divisor with very large Mumford coeffi-
cients, obtained for example through an efficient tupling technique. Results of
numerical experiments are presented, showing that our algorithm is superior
to the standard reduction algorithm in many cases.

1. Introduction and motivation

An important concern in the implementation of curve based cryptography, as
well as computer algebra systems, is the choice of algorithms with respect to per-
formance. Cryptographic systems are often chosen according to their speed at a
given security level, and the working mathematician will surely profit from shorter
waiting times in front of the computer. A concrete example is divisor reduction,
which represents a key ingredient in hyperelliptic curve arithmetic. Since this pro-
cedure can be rather time consuming, it is desirable to optimize this process as
much as possible.

In Mumford’s representation [18], a degree zero divisor D on a hyperelliptic curve
of genus g is represented by a pair of polynomials (Q,P ), with Q monic of degree t
and P usually (but not necessarily) of degree at most t− 1. Here, t is the number
of finite places in the support of D, counted with multiplicities. The polynomial
Q is referred to as the norm of D, and D is said to be reduced if t ≤ g. In the
case of imaginary hyperelliptic curves, each divisor class contains a unique reduced

2000 Mathematics Subject Classification: Primary: 11R58, 14H45; Secondary: 14G50.
Key words and phrases: Hyperelliptic curve, divisor, reduction, continued fraction expansion,

scalar multiplication.
The second and third author are supported by NSERC of Canada.

261 c©2010 AIMS-SDU

http://dx.doi.org/10.3934/amc.2010.4.261


262 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

representative, and the purpose of reduction is to determine this representative. In
the real hyperelliptic curve scenario, there are in general many reduced elements in
each class, and reduction generates one of them. This paper presents a procedure
for efficiently reducing a divisor whose norm has very large degree. Such a divisor
can arise for example in the context of scalar multiplication as employed in many
cryptographic and number theoretic applications, as explained below. Our method
is an adaptation of the most efficient algorithm for reducing ideals in quadratic
number fields, due to Sawilla et al. [21, 12], to the setting of hyperelliptic curves.

The reduction operation plays an important role in divisor arithmetic. For in-
stance, in Cantor’s seminal algorithm [2], the addition of two divisor classes is split
into two steps: a composition of two degree zero divisors to obtain a divisor equiva-
lent to the sum of the two input divisors, followed by the reduction of said composi-
tion. Composing two divisors whose norms have respective degrees s and t usually
results in a divisor whose norm has degree s + t and requires a quadratic number
(in s+ t) of base field operations. As result, the composition of two reduced divisors
generally results in a divisor whose norm has degree 2g, and this process, combined
with subsequent reduction, requires a base field operation count that is quadratic
in g. A different approach to divisor class addition was given by Shanks’ NUCOMP
algorithm [20, 11], which was originally introduced in the context of composing re-
duced imaginary binary quadratic forms [23]. NUCOMP interleaves reduction with
composition, essentially performing reduction on intermediate operands occurring
during the addition. This keeps their degrees well below 2g and additionally avoids
other computational overhead arising in Cantor’s technique. The total number of
base field operations is still quadratic in g, but in practice, NUCOMP performs
significantly faster than Cantor’s method [14] in most cases.

Our focus in this paper is somewhat different from the scenario of computing the
reduced composition of two divisors. Instead, the main application of the research
described here is the efficient reduction of a divisor of very large norm, i.e. whose
norm has degree significantly larger than 2g. In practice, such a divisor is often
obtained by composing several — i.e. more than two — not necessarily distinct
divisors. To motivate this scenario, we consider an operation on divisors that is an
essential ingredient in much of hyperelliptic curve cryptography and number theory:
scalar multiplication.

Given a divisor D and an integer n, the scalar multiplication of D by n consists
of computing (a divisor equivalent to) nD. The most common method to perform
this operation is based on a suitable digital expansion of the scalar n. For instance,

using a base 2 expansion n =
∑ℓ

i=0 ni2
i, one can compute the n-fold of D by

a Horner scheme, i.e. a double-and-add method. The most commonly used binary
expansion is the w-NAF [3, 25, 1]; we refer to [8] for additional information on scalar
multiplication techniques. On elliptic curves over fields of characteristic three [15],
one would adopt a triple-and-add method. In the hyperelliptic curve scenario,
this corresponds to composing three copies of the same divisor, see [9] for efficient
divisor tripling. In general, the composition of p copies of the same divisor on a curve
defined over a field of characteristic p is often an inexpensive process. This is because
its main ingredient is the computation of the p-th power of a polynomial, which in
characteristic p is very fast. One can even employ several bases simultaneously to
expand a given scalar and use such an expansion for scalar multiplication [5, 6, 4].

In all these scalar multiplication techniques, one would first employ tupling, i.e.
scalar multiplication of a given group element by the underlying base(s) and possibly

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 263

some of their products and powers. For example, in a double-base representation
using 2 and 3 as bases, one would wish to precompute at the minimum the divisors
2D and 3D, and possibly 5D, 6D, and other higher multiples of D as well. While
this is usually quite straightforward, the resulting divisors will then have to be
reduced. This reduction process needs to handle polynomials of very large degree:
m-tupling a reduced divisor on a curve of genus g is expected to result in Mumford
coefficients of degree as large as mg. This necessitates highly efficient reduction
algorithms.

Reduction of a divisor on a hyperelliptic curve is closely linked to the regular con-
tinued fraction expansion of the corresponding irrational function in an appropriate
field of Laurent series [14]. Such an expansion is expensive to compute. In contrast,
the continued fraction expansion of a rational function is simply produced by the
Euclidean algorithm and is thus efficiently computable. It is therefore desirable to
replace the partial quotients in the expansion of the irrational function arising in
the classical reduction procedure by those of a known close rational approximation
in such a way that the process still leads to the correct reduced divisor.

This fact was first exploited in the context of arithmetic on ideals in quadratic
number fields in [22] and of Jacobians of hyperelliptic curves in [2]. It is also the
basis for the NUCOMP algorithm mentioned earlier. The idea was again employed
by Sawilla et al. [21, 12] in the context of reducing ideals in quadratic number
fields. Sawilla’s technique is the best available reduction algorithm in this setting
and represents the starting point for our divisor reduction procedure. In addition,
our method shares similarities with Cantor’s and uses ideas akin to those employed
in NUCOMP as presented in [14]. However, we note that Cantor only considered
imaginary hyperelliptic curves over fields of odd characteristic, whereas our descrip-
tion also includes real models and applies to any finite field.

As in both Sawilla’s and Cantor’s methods, the approximating rational function
is the quotient of the two Mumford polynomials of the divisor to be reduced; note
that NUCOMP uses a different rational approximation. The Euclidean algorithm
is applied to these polynomials until half way to finding their greatest common
divisor, at which point we obtain a divisor that is almost always reduced and is
(in the setting of certain real hyperelliptic curves) at most one step away from
being reduced; this is analogous to the NUCOMP situation. We discuss how to
avoid this potential extra reduction step, and provide formulae for the final reduced
divisor that eliminate the need to compute all the intermediate divisors and are
computationally more efficient than Cantor’s.

This paper is organized as follows. In Sections 2 through 6, we recall the necessary
background on hyperelliptic curves and continued fractions, and explain the con-
nection to divisor reduction. We then describe our reduction algorithm plus some
variations, and present numerical experiments designed to test their efficiency, in
Section 7. An alternative representation of a real hyperelliptic curve that provides
some advantages for our reduction algorithm is given in Section 8. Conclusions and
ideas for future research are found in Section 9.

2. Overview of hyperelliptic curves

A considerable amount of literature has been devoted to hyperelliptic curves
and their cryptographic applications. We therefore only provide an overview of
the material required here and refer the reader to [17, 10, 13, 14] for more details.
Following the description of [13], we define a hyperelliptic curve of genus g over a

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



264 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

finite field Fq (with q any prime power) to be an absolutely irreducible, non-singular
affine plane curve of the form

(2.1) C : y2 + h(x)y = f(x),

where f, h ∈ Fq[x] and h is usually (but need not be) taken to be zero if q is odd.
Such a curve can take on the following two forms:

• Imaginary model: f is monic, deg(f) = 2g + 1, and deg(h) ≤ g;
• Real model: h = 0 or h is monic and deg(h) = g+1. Moreover, if q is odd, then
f is monic and deg(f) = 2g + 2. If q is even, then either deg(f) ≤ 2g + 1, or
deg(f) = 2g+2 and the leading coefficient of f is of the form sgn(f) = u2 +u
for some non-zero u ∈ Fq.

The coordinate ring of C is the ring Fq[x, y]; its field of fractions Fq(x, y) is the
function field of C. The hyperelliptic involution on C takes y to y = −h(x) − y,
and hence extends to the conjugation map on Fq(x, y) that maps every element
α = a+ by ∈ Fq(x, y) (with a, b ∈ Fq(x)) to its conjugate α = a− bh− by.

Imaginary hyperelliptic curve models have one (ramified) place at infinity, de-
noted by ∞, whereas real models have two infinite places, ∞ and ∞, both of
degree one. In the latter case, there are two embeddings of Fq(x, y) into the
field of Laurent series Fq〈x

−1〉, given by the valuations v∞ and v∞ correspond-
ing to the two infinite places. Non-zero elements in Fq〈x

−1〉 have the form α =
anx

n + · · · + a0 + a−1x
−1 + · · · with n ∈ Z, ai ∈ Fq for i ≤ n, and an 6= 0. Write

n = deg(α), an = sgn(α), and ⌊α⌋ = anx
n + · · · + a1x+ a0 ∈ Fq[x]. We choose the

embedding of Fq(x, y) into Fq〈x
−1〉 with deg(y) = −v∞(y) = g + 1; this establishes

the notion of degree and sign for non-zero functions in Fq(x, y).
Every degree zero divisor D on C can be uniquely written in the form

D =

{

Dx − deg(Dx)∞ if C is imaginary,
Dx − deg(Dx)∞− δ(D)(∞−∞) if C is real,

where Dx is a finite divisor, i.e. a divisor on C whose support does not include any
of the infinite places. Here, δ(D) = −v∞(D) is the value of D at the place ∞,
referred to as the distance of D, if C is real. For C imaginary, D is thus uniquely
determined by its finite part Dx, whereas for C real, D is uniquely determined by
Dx and δ(D).

The exact definition of a semi-reduced divisor can be found in [2]; suffice it to state
here that the semi-reduced divisors on C are exactly those divisors D whose finite
portionDx can be represented by a pair of polynomialsQ,P ∈ Fq[x] with Q dividing
P 2 + hP − f . Here, Q is unique up to constant factors in Fq — usually Q is chosen
to be monic — and P is unique modulo Q. The pair (Q,P ) is generally referred to
as the Mumford representation of Dx. In literature sources that focus on imaginary
hyperelliptic curves, the Mumford representation specifies that deg(P ) < deg(Q),
but we will not impose this restriction here; in fact, in our algorithm, we generally
have deg(P ) = deg(Q) + 1. A semi-reduced divisor D is reduced if the Mumford
representation (Q,P ) of Dx satisfies deg(Q) ≤ g.

The Jacobian J of C over Fq is the group of degree zero divisor classes defined
over Fq under linear equivalence. An easy consequence of the Riemann-Roch Theo-
rem is the fact that every divisor class in J contains a reduced divisorD. Arithmetic
in J can then be performed via these reduced representatives. Real hyperelliptic
curve cryptography can also take place in the (principal) infrastructure of C, which

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 265

is the set of reduced principal divisors D with 0 ≤ δ(D) < R. Here, R is the order
of the divisor class of ∞−∞ in J and is refereed to as the regulator of C.

In the context of Jacobian or infrastructure arithmetic, and specifically public
key cryptography, one is frequently faced with the following situation: a poten-
tially large semi-reduced divisor E is given; here, “large” refers to the degree of
the polynomial Q in the Mumford representation of Ex, i.e. deg(Q) is larger, and
possibly significantly larger, than the genus g of C. The task is to find a reduced
divisor D linearly equivalent to E as efficiently as possible. If C is imaginary, then
D is unique. If C is real, then usually certain restrictions on δ(D) relative to δ(E)
are imposed to guarantee uniqueness. One such common example is the condition
0 ≤ δ(E)−δ(D) ≤ g which can always be satisfied; in practice, one can even achieve
δ(D) = δ(E); see [19, 7, 13].

In order to treat the imaginary and real hyperelliptic curve scenarios simulta-
neously, we will henceforth write every semi-reduced divisor D as D = (Q,P, (δ))
where (Q,P ) is the Mumford representation of Dx, δ = δ(D) is included in the
representation of D if C is real, and δ is not included otherwise.

3. Continued fraction expansions

We review some basic required facts about continued fractions, confining our dis-
cussion to rational functions only, rather than the more general scenario of Laurent
series considered in [14].

A continued fraction expansion is any symbolic expression of the form

[q0, q1, . . . , qn, αn+1] := q0 +
1

q1 +
1

.. .

qn +
1

αn+1

·

Fix polynomials q0, q1, . . . qm, P0, Q0 ∈ Fq[x] with Q0 non-zero, and define α0 =
P0/Q0 and αi+1 = (αi − qi)

−1 for 0 ≤ i ≤ m. Then αi ∈ Fq(x), and α0 =
[q0, q1, . . . , qi, αi+1] = [q0, q1, . . . , qm].

Associated with the continued fraction expansion α0 = [q0, q1, . . . , qm] are the
following two sequences of polynomials in Fq[x]:

(3.1)
A−2 = 0 , A−1 = 1 , Ai = qiAi−1 +Ai−2

B−2 = 1 , B−1 = 0 , Bi = qiBi−1 +Bi−2
(0 ≤ i ≤ m).

The fraction Ai/Bi satisfies Ai/Bi = [q0, q1, . . . qi] for 0 ≤ i ≤ m and is hence known
as the i-th convergent of α. The name is justified by the inequality

(3.2) deg

(

α0 −
Ai

Bi

)

≤ − deg(BiBi+1) < −2 deg(Bi) (0 ≤ i ≤ m− 1).

It will be useful to define two more sequences of polynomials:

(3.3)
C−2 = P0 , C−1 = Q0 , Ci = −qiCi−1 + Ci−2

J−2 = −1 , J−1 = 0 , Ji = −qiJi−1 + Ji−2
(0 ≤ i ≤ m).

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



266 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

The sequences given in (3.3) and (3.1) are related as follows:

(−i)i+1Ji = Bi (−2 ≤ i ≤ m),(3.4)

(−1)i+1Ci = Q0Ai + P0Bi = C−1Ai + C−2Bi (−2 ≤ i ≤ m),(3.5)

(−1)i+1Q0 = Ci−1Ji − CiJi−1 (−1 ≤ i ≤ m).(3.6)

These identities are easily established using induction. Using (3.4) and (3.5), (3.2)
can now be rewritten as

(3.7) deg(Ci−1Ji) ≤ deg(Q0) (−1 ≤ i ≤ m).

Note that in the special case when

(3.8) qi =

⌊

Ci−2

Ci−1

⌋

(0 ≤ i ≤ m),

the sequences qi and Ci represent the quotients and remainders, respectively, ob-
tained when applying the Euclidean algorithm to α0 = P0/Q0. In this case,
α0 = [q0, q1, . . . , qm] is known as the regular continued fraction expansion of α0,
and we have qi = ⌊αi⌋ for 0 ≤ i ≤ m. Since deg(Ci) strictly decreases and deg(Ji)
strictly increases as i increases from 0 to m, (3.6) implies

(3.9) deg(Ci−1Ji) = deg(Q0) if qi =

⌊

Ci−1

Ci−1

⌋

(0 ≤ i ≤ m),

which is a stronger statement than (3.7).
Note that the length m+1 of the regular continued fraction expansion of P0/Q0

is usually of approximate order deg(Q0). More exactly, since deg(Ci) decreases
by at least one (and usually exactly one) as i increases, we see that deg(Cm) ≤
deg(C−1) − 1 −m. Substituting C−1 = Q0 and Cm = gcd(P0, Q0) yields m + 1 ≤
deg(Q0) − deg(gcd(P0, Q0)). Since this inequality is usually close to sharp, and
gcd(P0, Q0) tends to have small degree, we see that m+ 1 ≈ deg(Q0).

4. Continued fractions and hyperelliptic divisors

The relationship between continued fraction expansions and hyperelliptic divi-
sor arithmetic was described in considerable detail in [14], but mainly in the con-
text of divisor composition with subsequent reduction via the NUCOMP algorithm.
Although the techniques used here share similarities with those employed in NU-
COMP [14], the results and formulas appearing here are new, and we present a
more general framework than [14].

Let C be a hyperelliptic curve over Fq as given in (2.1), and as before, fix poly-
nomials q0, q1, . . . qm, P0, Q0 ∈ Fq[x] with Q0 non-zero. In addition, we require that
Q0 divides f +hP0 −P

2
0 , so (Q0, P0) is the Mumford representation of some divisor

D1 on C (of some distance δ1 = δ(D1) if C is real). Recursively define a sequence
of polynomials Qi, Pi (1 ≤ i ≤ m+ 1) as follows:

(4.1) Pi = h− Pi−1 + qi−1Qi−1, Qi =
f + hPi − P 2

i

Qi−1
.

Put Ψ1 = 1, and for 2 ≤ i ≤ m+ 2,

(4.2) Ψi =
i−1
∏

j=1

ψj with ψj =
Pj + y

Qj−1
.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 267

Now set Di = Di−1 + div(ψi−1) = D1 + div(Ψi) for 2 ≤ i ≤ m + 2, where div(α)
denotes the principal divisor of any non-zero function α ∈ Fq(x, y). Then it is easy
to verify, using (4.1), thatDi = (Qi−1, Pi−1, (δi)), and δi = δ(Di) = δ(D1)+deg(Ψi)
if C is real. Now (4.1) easily yields ψiψi−1 = qi−1ψi−1 + 1, so (4.2) implies Ψ1 = 1,
Ψ2 = ψ1, and Ψi+1 = qi−1Ψi + Ψi−1 for 1 ≤ i ≤ m+ 1. From (3.3), we thus obtain

(4.3) Ψi+1 = (−1)i Ci−1 + Ji−1(h+ y)

Q0
(0 ≤ i ≤ m+ 1).

Our aim is to obtain closed form formulae for Qi and Pi in terms of the sequences Ci

and Ji only, using (4.3). These formulae avoid the need to compute the intermediate
Mumford basis coefficients Qj, Pj (1 ≤ i ≤ i− 1). A similar idea was employed in
the NUCOMP algorithm — see expression (8.1) of [14] — except that the sequence
(−1)iAi, with Ai as given in (3.1), was used in place of Ji. In fact, there are many
similar such expressions for the Mumford coefficients Qi and Pi in terms of the
remainder sequence Ci and one other related linear sequence. In our context, we
chose the formulation in terms of Ci and Ji because in view of (4.3), it allows for the
most straightforward treatment and minimizes notation as well as computational
effort.

Proposition 4.1. Let Q0, P0 ∈ Fq[x] with Q0 dividing f +hP0−P
2
0 , and let Qi, Pi

be defined by (4.1), and Ci, Ji by (3.3). Then

Qi =
(−1)i

Q0
(C2

i−1 + Ci−1Ji−1h− J2
i−1f),

Pi =
(−1)i

Q0
(Ci−2Ci−1 + Ci−2Ji−1h− Ji−2Ji−1f),

for 0 ≤ i ≤ m+ 1.

Proof. From (4.1), it is easy to verify that ψiψi = −Qi/Qi−1, and hence Ψi+1Ψi+1 =
(−1)iQi/Q0. Thus, by (4.3),

Qi = (−1)iQ0Ψi+1Ψi+1

= (−1)iQ0
Ci−1 + Ji−1(h+ y)

Q0

Ci−1 − Ji−1y

Q0

=
(−1)i

Q0
(C2

i−1 + Ci−1Ji−1h− J2
i−1f).

Furthermore, again by (4.3),

Pi + y

Qi−1
= ψi =

Ψi+1

Ψi

=
Ψi+1Ψi

ΨiΨi

= −

(−1)iCi−1 + Ji−1(h+ y)

Q0
(−1)i−1Ci−2 − Ji−2y

Q0

(−1)i−1
Qi−1

Q0

.

Now 1 and y form an Fq(x)-basis of Fq(x, y)/Fq(x). The formula for Pi can now be
read off by comparing the basis coefficient of 1 on both sides.

The polynomials Pi and Qi are related as follows:

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



268 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

Lemma 4.2. Let Q0, P0 ∈ Fq[x] with Q0 dividing f + hP0 − P 2
0 , and let Qi, Pi be

defined by (4.1), and Ci, Ji by (3.3). Then

PiCi−1 −QiCi−2 = Ji−1f,

PiJi−1 +QiJi−2 = Ci−1 + Ji−1h,

for 0 ≤ i ≤ m+ 1.

Proof. Multiply the expressions for Pi+1 and Qi+1 in Proposition 4.1 by Ci−1 and
Ci−2, respectively, to obtain

(−1)iQ0PiCi−1 = Ci−2C
2
i−1 + Ci−2Ci−1Ji−1h− Ci−1Ji−2Ji−1f,

(−1)iQ0QiCi−2 = Ci−2C
2
i−1 + Ci−2Ci−1Ji−1h− Ci−2J

2
i−1f.

Subtracting these two equalities yields

(−1)iQ0(PiCi−1 −QiCi−2) = Ji−1f(Ci−2Ji−1 − Ci−1Ji−2).

Our claim now follows from (3.6). The second identity can be obtained similarly.

5. Divisor reduction via continued fractions

Consider now the case where P0/Q0 = [q0, q1, . . . , qm] is the regular continued
fraction expansion of P0/Q0. Conventional divisor reduction as described for ex-
ample in [14] applies uniformly to both real and hyperelliptic curves (although in
practice, one would not use the technique for imaginary curves).

The idea is to compute a reduced (or almost reduced) divisor Di+1 = (Qi, Pi,
(δi+1)) linearly equivalent to some starting divisor D1 = (Q0, P0), (δ1)) by repeat-
edly applying (4.1) until a polynomial Qi of degree at most g (or possibly g + 1) is
reached. Each iteration of (4.1) reduces the degree of Qi by at least 2, except for
the last step which might only reduce it by 1. When C is real, the relative distance
δi+1−δ1 can easily be obtained alongside as well. In almost all situations, a reduced
divisor is obtained; for just one scenario (which only occurs when deg(f) = 2g+2),
this procedure might only produce a minimal degree of g + 1 for Qi, but a slight
change in the expression (4.1) for Pi in the last step yields a reduced divisor. The
target divisor is reached after at most ⌈(deg(Q0) − g)/2⌉ iterations; this bound is
generally sharp, especially for large base fields Fq.

The recursive nature of (4.1) requires the computation of the Mumford basis
coefficients of all the intermediate divisors D2, D3, . . . , Di, which is very costly.
This can be avoided by computing Qi and Pi via the much faster linear recurrences
(3.3), using the expressions given in Proposition 4.1. However, the termination
condition deg(Qi) ≤ g is now useless — one cannot know if this holds at any given
point without actually computing Qi, which is exactly what we wish to avoid. In
this section, we replace this condition by a more suitable termination condition
involving either one of the sequences Ji or Ci. We also explain how the distance of
the reduced target divisor can be found.

The ideas described above — using the partial quotients of the regular continued
fraction expansion of a suitable rational function and certain simple linear recur-
rences to avoid computing intermediate divisors — were already employed in the
NUCOMP algorithm. So it is once again not surprising that the techniques utilized
in this section are quite similar to those of [14, Section 8]. The main difference is
that NUCOMP is based on the continued fraction expansion of a different rational
function that was first suggested by Schnorr and Seysen ([22], see Appendix A of
[21]). The numerator and denominator of this rational function, when expressed

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 269

in lowest terms, arise from the formulae for divisor addition, and their degrees are
bounded by the genus g of the curve when the input divisors are reduced. For this
reason, when the aim is to find the reduced composition of two reduced divisors,
NUCOMP is more efficient than composing the two divisors and subsequently ap-
plying the reduction method presented here. As mentioned earlier, our algorithm
is instead best suited to the situation when the input divisor D1 is very large, i.e.
the Mumford coefficients Q0 and P0 have degree significantly exceeding 2g.

We continue to let C be a hyperelliptic curve of genus g over Fq as given in (2.1).
Throughout this section, Q0, P0 are polynomials in Fq[x] with Q0 non-zero and Q0

dividing f + hP0 − P 2
0 . We also assume that deg(Q0) ≥ g + 1, as otherwise D1 is

already reduced. Henceforth, we restrict to the case of the regular continued fraction
expansion of P0/Q0 and make the connection to reduction. That is, P0/Q0 =
[q0, q1, . . . , qm] where qi = ⌊Ci−2/Ci−1⌋ for 0 ≤ i ≤ m, with Ci given by (3.3). We
begin with some bounds on deg(Qi).

Lemma 5.1. Let Qi, Pi (1 ≤ i ≤ m+ 1) be given by Proposition 4.1, and let r ≥ 0
be the maximal index such that

(5.1) deg(Jr) ≤ N with N =

⌊

deg(Q0) − g

2

⌋

.

Then the following hold.

1. deg(Qi) = deg(C2
i−1/Q0) ≥ g + 2 for 0 ≤ i ≤ r − 1.

2. If deg(Jr) = N and deg(Q0) − g is even, then deg(Qr) ≤ g.
3. If deg(Jr) < N , then deg(Qr) = deg(C2

r−1/Q0) ≥ g + 2 and deg(Qr+1) ≤ g.
4. If deg(Jr) = N , deg(Q0) − g is odd, and deg(f) ≤ 2g + 1, then deg(Qr) =

deg(C2
r−1/Q0) = g + 1 and deg(Qr+1) ≤ g.

5. If deg(Jr) = N , deg(Q0) − g is odd, and deg(f) = 2g + 2, then deg(Qr) =
deg(C2

r−1) = g + 1, deg(Qr+1) = deg(J2
r−1f/Q0) = g + 1, and deg(Qi) =

deg(J2
i−1f/Q0) ≥ g + 3 for r + 2 ≤ i ≤ m.

Proof. We use the formula for Qi given in Proposition 4.1 for our proof, and bound
each of the summands in that expression separately, starting with the middle sum-
mand. Since J0 = −1 and deg(Q0) ≥ g + 1, we see that deg(J0) ≤ N , so the
index r ≥ 0 as defined in (5.1) exists. We also note that deg(Q0) − g − 1 ≤ 2N ≤
deg(Q0)− g, where the first inequality is an equality if deg(Q0)− g is odd, and the
second inequality is an equality if deg(Q0) − g is even.

Recall that deg(Ji) = deg(qiJi−1) ≥ deg(Ji−1)+1 and deg(Ci−2) = deg(qiCi−1) ≥
deg(Ci−1) + 1 for 1 ≤ i ≤ m. Hence

deg

(

Ci−1Ji−1h

Q0

)

≤ deg

(

Ci−1Jih

Q0

)

− 1 = deg(h) − 1 ≤ g

for 0 ≤ i ≤ m, where the equality above follows from (3.9).
Suppose first that 0 ≤ i ≤ r − 1. Then by (3.9),

deg

(

C2
r−2

Q0

)

= deg

(

Q0

J2
r−1

)

≥ deg

(

Q0

J2
r

)

+ 2 ≥ deg(Q0) − 2N + 2 ≥ g + 2,

and

deg

(

J2
r−1f

Q0

)

≤ deg

(

J2
r f

Q0

)

− 2 ≤ 2N + (2g + 2) − deg(Q0) − 2 ≤ g.

Furthermore, deg(Ji) ≤ deg(Jr−1) for 0 ≤ i ≤ r − 1 and and deg(Ci) ≥ deg(Cr−2)
for 0 ≤ i ≤ r−2. Applying the strict triangle equality for degrees to the impression

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



270 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

for Qi given in Proposition 4.1 yields deg(Qi) = deg(C2
i−1/Q0) ≥ g + 2 for 0 ≤ i ≤

r − 1.
Next, consider Qr and Qr+1. Write 2N = deg(Q0) − g − e1 where e1 = 1 if

deg(Q0) − g is odd and e1 = 0 otherwise. Also, write deg(Jr) = N − e2 and
deg(f) = 2g + 2 − e3 with e2, e3 ≥ 0. Then by (3.9),

deg

(

C2
r−1

Q0

)

= deg

(

Q0

J2
r

)

= deg(Q0) − 2N + 2e2 = g + e1 + 2e2.

Thus, deg(Qr) ≤ g if e1 = e2 = 0, i.e. if deg(Q0) − g is even and deg(Jr) = N , and
deg(Qr) = deg(C2

r−1/Q0) ≥ g + 2 if e2 = 1. Again by (3.9),

deg

(

C2
r

Q0

)

= deg

(

Q0

J2
r+1

)

≤ deg(Q0) − 2(N + 1) = g − 2 + e1 ≤ g

and

deg

(

J2
r f

Q0

)

= 2(N − e2) + (2g + 2 − e3) − deg(Q0) = g + 2 − e1 − 2e2 − e3.

If e2 = 1, i.e. deg(Jr) < N , then deg(Qr+1) ≤ g. If e2 = 0 and e1 = 1, then
deg(Qr) = deg(C2

r−1/Q0) = g + 1 and deg(Qr+1) = deg(J2
r f/Q0) = g + 1 − e3,

which is at most g if deg(f) ≤ 2g + 1, and is equal to g + 1 if deg(f) = 2g + 2.
In the latter case, deg(Qi) = deg(J2

i−1f/Q0) ≥ deg(J2
r f/Q0) + 2 ≥ g + 3 for

r + 2 ≤ i ≤ m+ 1.

Note that r ≤ deg(Jr) ≤ N , and these inequalities are usually sharp. So we
expect that r ≈ (deg(Q0) − g)/2. As pointed out at the end of Section 3, we also
usually expect m+1 ≈ deg(Q0). So for polynomials Q0 of large degree, the index r
occurs just under halfway into the regular continued fraction expansion of P0/Q0.

Using (3.9), and noting that deg(Q0)−N = ⌈(deg(Q0) + g)/2⌉, we easily derive
the following alternate characterization of the index r of Lemma 5.1:

deg(Jr) ≤

⌊

deg(Q0) − g

2

⌋

< deg(Jr+1) ⇔ deg(Cr) <

⌈

deg(Q0) + g

2

⌉

≤ deg(Cr−1).

From Lemma 5.1, we infer the following.

Corollary 5.2. With the notation of Lemma 5.1, set Di = (Qi−1, Pi−1, (δi)). Then
the following hold:

1. Di is not reduced for 1 ≤ i ≤ r.
2. Dr+1 is reduced if and only if deg(Jr) = N and deg(Q0) − g is even.
3. If Dr+1 is not reduced, then Dr+2 is reduced unless deg(Q0) − g is odd,

deg(Jr) = N and deg(f) = 2g + 2, in which case Di is not reduced for all
1 ≤ i ≤ m+ 2.

We note the similarity of Lemma 5.1 to Lemma 8.1 and Corollary 8.1 of [14], and
that of Corollary 5.2 to Proposition 8.1 of [14].

By Lemma 5.1, deg(Qi) decreases by at least 2 whenever i increases, except for
the step just before the minimal degree (g or g+1) is encountered, which may result
in a decrease by one only. The only problem case, when none of the divisors Di

(1 ≤ i ≤ m+2) is reduced, happens when deg(f) = 2g+2, deg(Q0)− g is odd, and
deg(Jr) = N . Then Dr+1 (and also Dr+2) is as close to being reduced as possible.
We will address this last situation shortly and also revisit it in Section 8.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 271

Corollary 5.3. Let Qi, Pi (1 ≤ i ≤ m + 1) be given by Proposition 4.1, and r by
(5.1). Then qi = ⌊Pi/Qi⌋ for 0 ≤ i ≤ r − 1. In addition, if deg(Qr) ≥ g + 1, then
qr = ⌊Pr/Qr⌋.

Proof. By Lemma 4.2 and (3.9), we have

(5.2)
Pi

Qi

−
Ci−2

Ci−1
=

Ji−1f

QiCi−1
=
Ji−1Jif

Qi−1Q0
.

For 0 ≤ i ≤ r − 1, we have deg(Ji−1) < N , deg(Ji) ≤ N , and deg(Qi−1) ≥ g + 2.
By (5.2),

deg

(

Pi

Qi

−
Ci−2

Ci−1

)

< 2N + (2g + 2) − (g + 2) − deg(Q0)

≤ (deg(Q0) − g) + g − deg(Q0) = 0,

so ⌊Pi/Qi⌋ = ⌊Ci−2/Ci−1⌋ = qi.
If deg(Qr) ≥ g + 1, then by Lemma 5.1, deg(Jr) < N or deg(Q0) − g is

odd, in which case 2N < deg(Q0) − g. Either way, 2 deg(Jr) < deg(Q0) − g,
so deg(Jr−1Jr) ≤ deg(J2

r ) − 1 < deg(Q0) − g − 1. It follows from (5.2) that

deg

(

Pr

Qr

−
Cr−2

Cr−1

)

< (deg(Q0) − g − 1) + (2g + 2) − (g + 1) − deg(Q0) = 0,

so ⌊Pr/Qr⌋ = ⌊Cr−2/Cr−1⌋ = qr.

The result of Corollary 5.3 is analogous to Theorem 7.1 of [14]. It shows that
(4.1) with qi = ⌊Ci−2/Ci−1⌋ (0 ≤ i ≤ m) is in fact identical to the conventional
reduction method as described in [14]. Therefore, the divisors Di = (Qi−1, Pi−1)
produced by the algorithm of [14] are identical to those produced by (4.1) and by
Proposition 4.1.

In the case when deg(f) = 2g + 2, deg(Q0)− g odd and deg(Jr) = N , we obtain
deg(Qr) = deg(Qr+1) = g + 1 according to Lemma 5.1. In this case, a modified
version of (4.1) needs to be applied to Dr+1 = (Qr, Pr, δr+1) to obtain a reduced
divisor as follows. First, precompute an element s ∈ F

∗

q such that s2 = sgn(f) if q is

odd and s2 + s = sgn(f) if q is even, so s = sgn(y) or s = sgn(−y− h). Specifically,
s = ±1 if q is odd and s = u or u+ 1 with sgn(f) = u2 + u if q is even. Now set

(5.3) qr =

⌊

Pr + sxg+1

Qr

⌋

, P ′

r+1 = h− Pr + qrQr, Q
′

r+1 =
f + hPr+1 − P 2

r+1

Qr

.

These expressions are the analogue of Equation (8.5) of [14]. If both the pairs
(Qr, Pr) and (Qr−1, Pr−1) are available, then the full division by Qr in (5.3) can be
avoided by using the recursion

Pr + sxg+1 = qrQr +Rr, deg(Rr) < deg(Qr) (division with remainder)

P ′

r+1 = h+ sxg+1 −Rr,(5.4)

Q′

r+1 = Qr−1 + qr(Pr − Pr−1).

Lemma 5.4. Suppose that deg(f) = 2g + 2, deg(Q0) − g odd, deg(Jr) = N , and
let Q′

r+1 be given by (5.3). Then deg(Q′

r+1) ≤ g.

Proof. We have

(5.5) Q′

r+1 =
(f − shxg+1 − s2x2g+2) +Rr(h−Rr)

Qr

.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



272 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

By Lemma 5.1, deg(Qr) = g + 1, so deg(Rr) ≤ deg(Qr) − 1 = g. Therefore, both
summands in the numerator of the right hand side of (5.5) have degree at most
2g + 1. Thus, deg(Qr) = g + 1 implies deg(Qr+1) ≤ g.

We conclude this section by determining the distance of the reduced target divisor
in the case when C is real.

Theorem 5.5. Let Di+1 = (Qi, Pi, δi+1) be a reduced divisor, so either Di+1 =
Dr+1 = (Qr, Pr, δr+1) with Qr, Pr given by Proposition 4.1 (with i = r), or Di+1 =
D′

r+2 = (Q′

r+1, P
′

r+1, δ
′

r+2) with Q′

r+1, P
′

r+1 given by (5.3), as determined by Corol-
lary 5.2. Then

δi+1 = δ1 +

i−1
∑

j=1

deg(qj) − deg(Q0) + deg(Pi + y).

Proof. Recall that δi+1 = δ1 + deg(Ψi+1) with Ψi+1 given by (4.2). So we need to
compute deg(ψj) for 1 ≤ j ≤ i.

We have ψj = φjQj/Qj−1 with φj = (Pj + y)/Qj for 1 ≤ j ≤ m + 1. Thus,
deg(ψj) = deg(φj) − deg(Qj−1) + deg(Qj). Now by Corollary 5.3, deg(Pj) =
deg(qjQj) ≥ deg(Qj)+1 ≥ g+2 > deg(y), so deg(Pj+y) = deg(Pj) for 0 ≤ j ≤ i−1.
It follows that deg(φj) = deg(qj) for 0 ≤ i ≤ j − 1, and hence

δi+1 = δ1 +

i−1
∑

j=1

deg(ψj) + deg(ψi)

= δ1 +

i−1
∑

j=1

(

deg(qj) − deg(Qj−1) + deg(Qj)
)

+ deg(Pi + y) − deg(Qi−1)

= δ1 +
i−1
∑

j=1

deg(qj) − deg(Q0) + deg(Pi + y).

Theorem 5.5 is analogous to the discussion about distances on p. 228 of [14].
We point out that we generally expect deg(Pi + y) = g + 1 in the above identity.
Furthermore, the sum above can be computed concurrently with the recurrence for
Cj by initializing d1 = δ1 − deg(Q0), computing dj+1 = dj + deg(qj) alongside qj
and Cj for 1 ≤ j ≤ i, and finally setting δi+1 = di + deg(Pi + y).

We are now able to compute the Mumford representation of a reduced divisor
Di+1 that is linearly equivalent to D1, and the distance of Di+1 if C is real, directly
from D1. No intermediate divisors D2, D3, . . . are computed except in one case,
where only Di needs to be computed.

In the next section, we derive expressions for Qi and Pi that represent an alter-
native to those given in Proposition 4.1. They make use of the recurrences Ci, Ji

and Ai as given in (3.3) and (3.1), respectively, as well as another new sequence of
polynomials Ei given in (6.2) below.

6. More mumford representation formulae

The discussion of NUCOMP in [14] used four linear sequences to express the
Mumford coefficients of a divisor. Here, we proceed similarly and introduce one
more auxiliary linear sequence of polynomials to accompany the already familiar

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 273

sequences Ci and Ji of (3.3) and Ai of (3.1). Using the same notation as in the
previous section, put

(6.1) R0 =
P 2

0 − hP0 − f

Q0
= −Q−1

and define

(6.2) E−2 = R0, E−1 = h− P0, Ei = qiEi−1 + Ei−2 (0 ≤ i ≤ m).

Then

(6.3) Ei = (h− P0)Ai +R0Bi = E−1Ai + E−2Bi (−2 ≤ i ≤ m),

where Ai and Bi are as in (3.1). Two more auxiliary identities, easily verified by
applying induction to (3.1), (3.3) and (6.2), will facilitate the development of our
final formulae:

(6.4)
P0 = AiCi−1 +Ai−1Ci,

P0 − h = JiEi−1 + Ji−1Ei,
(−1 ≤ i ≤ m).

We are now ready to provide our desired expressions for Pi and Qi. These formulae
are reminiscent of (7.9) and (7.10) of [14].

Theorem 6.1. Let Q0, P0 ∈ Fq[x] with Q0 dividing f + hP0 − P 2
0 , and let Qi, Pi

(1 ≤ i ≤ m + 1) be defined by (4.1). For −2 ≤ i ≤ m, let Ci, Ji, Ai and Ei be
defined by (3.3), (3.1), and (6.2), with qi = ⌊Ci−2/Ci−1⌋ for 0 ≤ i ≤ m. Then

(6.5)
Qi+1 = AiCi + EiJi

Pi+1 = AiCi−1 + Ei−1Ji = h−Ai−1Ci + EiJi−1
(−1 ≤ i ≤ m).

Proof. From (3.5) and (3.4), we obtain

(6.6) Ai =
(−1)i−1Ci +BiP0

Q0
=

(−1)i−1

Q0
(Ci + JiP0).

Thus,

AiCi + EiJi = AiCi + ((h− P0)Ai +R0Bi)Ji by (6.3)

= Ai(Ci + (h− P0)Ji) + (−1)i−1J2
i R0 by (3.4)

=
(−1)i−1

Q0
(Ci + JiP0)(Ci + (h− P0)Ji)

+
(−1)i−1

Q0
(J2

i (P 2
0 − hP0 − f)) by (6.6) and (6.1)

=
(−1)i−1

Q0
(C2

i + CiJih− J2
i f) = Qi+1 by Proposition 4.1.

Now A−1C−2 − E−2J−1 = C−2 = P0 and h−A−2C−1 + E−1J−2 = h− E−1 = P0.
For i ≥ 0, inductively

Pi+1 = qiQi − Pi + h by (4.1)

= qi(Ai−1Ci−1 + Ei−1Ji−1) − (h−Ai−2Ci−1 + Ei−1Ji−2) + h

using the above expressions for Qi and Pi

= (qiAi−1 +Ai−2)Ci−1 + Ei−1(qiJi−1 − Ji−2)

= AiCi−1 − Ei−1Ji by (3.1) and (3.3).

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



274 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

By (6.4), we finally obtain

Pi+1 = (P0 −Ai−1Ci) − (P0 − h− EiJi−1) = h−Ai−1Ci + EiJi−1.

7. The reduction algorithm, variations, and experiments

Finding a reduced divisor linearly equivalent to D1 = (Q0, P0) now simply re-
quires applying the Euclidean algorithm to P0/Q0, i.e. computing the sequence of
quotients qi and remainders Ci, until the index r is found as defined in (5.1). Then
the Mumford coefficients Qr and Pr of the reduced or almost reduced divisor Dr+1

need to be recovered.
In the preceding sections, several options for recovering these coefficients have

been presented. These variations are distinguished by which recurrences are com-
puted along with the remainders Ci and which formulae are used at the end. Al-
though more versions are possible, we only list three below, having chosen not to
consider those that involve more than one division by the large degree Q0.

1. Compute only Ji recursively along with Ci, then compute Qr via Proposition
4.1 and Pr via the second formula of Lemma 4.2. This requires one divi-
sion by Q0 and one by the much smaller polynomial Jr, plus a number of
multiplications involving not too large operands.

2. Compute both Ai and Ji recursively along with Ci, then Er = (h− P0)Ar +
(−1)r+1R0Jr, and finally Qr+1 and Pr+1 via Theorem 6.1, using the second
of the two formulae for Pr+1. This requires one division by Q0 and one
multiplication involving two large operands, P0(h− P0), to compute R0, two
multiplications involving one small operand and one large operand, (h−P0)Ar

and (−1)r+1R0Jr, to compute Er, four multiplications involving medium size
operands for the formulae of Theorem 6.1, and two recurrences.

3. Compute all three sequences Ai, Ji, Ei recursively along with the Ci. This re-
quires one division by Q0 and one multiplication involving two large operands,
P0(h − P0), to compute E−2, four multiplications involving medium size
operands for the formulae of Theorem 6.1, and three recurrences.

It is easy to see that at least one of the sequences Ai, Ei, Ji needs to be computed
with Ci, since not all three sequences can be recovered from Ci alone. It is unknown
whether Dr+1 can be found without any polynomial divisions.

We implemented all three versions of our reduction algorithm for divisor reduc-
tion in imaginary hyperelliptic curves and compared their performance to that used
in Cantor’s algorithm. We used the computer algebra library NTL [24] for finite
field and polynomial arithmetic and the GNU C++ compiler version 4.1.2. The
computations described below were performed on an Intel Core Duo 2.66 GHz pro-
cessor running Linux. All four algorithms were implemented using curves defined
over finite prime fields Fp and characteristic 2 finite fields F2n .

For our experiments, we used finite fields Fq where q has 2, 4, 8, 16, 32, and 64
bits. The odd q were taken to be the smallest prime of the given length. For
each value of q, we selected 5 random imaginary hyperelliptic curves of genus
2–15, 20, 25, and 30. For each curve, we applied the four reduction algorithms
to random prime divisors D = (Q,P ), Q irreducible, for which deg(Q) = mg with
m ∈ {2, 4, 8, 16, 32, 64, 128, 256}. We recorded the average time required to reduce
a prime divisor of a given size using each algorithm, taken over all prime divisors
and curves for a fixed genus and q.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 275

Of the three variations of our new reduction algorithm, the first variation was
the most efficient in all cases except m = 2. In other words, the versions that
require computing more than the Ji recursively do not seem to offer any performance
improvements.

Unfortunately, the new reduction algorithm does not compare so favorably to the
basic version due to Cantor; we address a possible reason for this in the last section.
In the following tables, we give the average times per reduction (in milliseconds)
for all the genera g and scalars m listed above. Table 7.1 gives the times for
curves defined over Fp where p = 65537 is a 16-bit prime, and Table 7.2 gives the
times for curves defined over F216 . The results for the other finite fields we tested
are similar, so these data are omitted for brevity. Times are given for Cantor’s
reduction algorithm and the first version of our reduction algorithm. Shaded cells
indicate that for the given genus g and scalar m, the new reduction algorithm was
the faster of the two.

Table 7.1. Average reduction times (in ms) for imaginary hyper-
elliptic curves defined over F65537.

m

g Alg 2 4 8 16 32 64 128 256

2 Cantor 0.0012 0.0036 0.0080 0.0224 0.0640 0.2047 0.9343 2.5976

New 0.0028 0.0044 0.0104 0.0236 0.0620 0.1815 0.6769 2.1992

3 Cantor 0.0020 0.0056 0.0144 0.0412 0.1232 0.4205 1.4731 5.5248

New 0.0052 0.0080 0.0168 0.0400 0.1139 0.3677 1.2455 4.6535

4 Cantor 0.0028 0.0080 0.0216 0.0624 0.2217 0.7286 2.5484 9.6863

New 0.0052 0.0108 0.0228 0.0612 0.2085 0.6327 2.1720 8.0392

5 Cantor 0.0032 0.0104 0.0304 0.0904 0.3063 1.0549 3.8730 14.7647

New 0.0060 0.0136 0.0316 0.0856 0.2678 0.8967 3.2222 12.2941

6 Cantor 0.0044 0.0140 0.0400 0.1235 0.4249 1.4790 5.5227 21.2500

New 0.0064 0.0160 0.0392 0.1120 0.3610 1.2395 4.5455 17.3333

7 Cantor 0.0048 0.0172 0.0500 0.1580 0.5538 1.9681 7.3939 28.8889

New 0.0088 0.0200 0.0524 0.1504 0.4813 1.6733 6.1515 23.5556

8 Cantor 0.0060 0.0200 0.0616 0.2016 0.7046 2.5291 9.5600 37.2308

New 0.0092 0.0232 0.0624 0.1882 0.6177 2.1693 8.1600 30.9231

9 Cantor 0.0068 0.0240 0.0740 0.2570 0.8824 3.1892 12.1500 47.2727

New 0.0108 0.0280 0.0776 0.2438 0.7757 2.7432 10.0500 39.0909

10 Cantor 0.0080 0.0272 0.0880 0.3085 1.0540 3.8413 14.8485 58.6667

New 0.0120 0.0300 0.0880 0.2829 0.9158 3.2698 12.2424 47.7778

11 Cantor 0.0096 0.0320 0.1029 0.3563 1.2623 4.6214 17.8571 71.0000

New 0.0136 0.0360 0.1025 0.3265 1.0909 3.9612 14.9286 57.7500

12 Cantor 0.0100 0.0360 0.1175 0.4081 1.4819 5.4667 21.1667 83.6667

New 0.0148 0.0412 0.1147 0.3660 1.2530 4.5556 17.1667 68.3333

13 Cantor 0.0108 0.0416 0.1362 0.4737 1.7014 6.3896 24.6000 97.3333

New 0.0160 0.0460 0.1325 0.4173 1.4514 5.3506 20.3000 81.0000

14 Cantor 0.0136 0.0460 0.1538 0.5421 1.9370 7.3433 28.7778 114.0000

New 0.0180 0.0504 0.1476 0.4752 1.6457 6.1791 23.6667 92.4000

15 Cantor 0.0140 0.0504 0.1728 0.6343 2.2617 8.5172 32.9333 130.0000

New 0.0200 0.0572 0.1713 0.5524 1.9159 7.1034 27.2000 106.5000

20 Cantor 0.0204 0.0804 0.2921 1.0508 3.9523 14.9697 58.4444 232.0000

New 0.0300 0.0840 0.2783 0.9237 3.3175 12.3636 47.7778 189.3333

25 Cantor 0.0292 0.1173 0.4650 1.6329 6.1205 23.0909 90.3333 360.0000

New 0.0400 0.1247 0.4256 1.3734 5.0361 19.0000 74.6667 290.0000

30 Cantor 0.0380 0.1599 0.6914 2.3258 8.6207 33.3333 132.0000 522.0000

New 0.0524 0.1785 0.5725 1.9005 7.0690 27.0667 105.0000 420.0000

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



276 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

Table 7.2. Average reduction times (in ms) for imaginary hyper-
elliptic curves defined over F216 .

m

g Alg 2 4 8 16 32 64 128 256

2 Cantor 0.0076 0.0204 0.0608 0.1934 0.6640 2.4390 9.2453 36.0000

New 0.0156 0.0368 0.0804 0.2277 0.7122 2.5268 9.4340 36.5714

3 Cantor 0.0132 0.0384 0.1168 0.3949 1.4057 5.2747 20.3333 80.0000

New 0.0316 0.0608 0.1440 0.4360 1.4800 5.4286 21.0000 82.6667

4 Cantor 0.0172 0.0580 0.1912 0.6649 2.4433 9.1321 35.7143 142.5000

New 0.0384 0.0820 0.2227 0.6995 2.5025 9.4340 37.1429 145.5000

5 Cantor 0.0244 0.0832 0.2826 1.0040 3.7077 14.2941 56.0000 221.3333

New 0.0524 0.1124 0.3200 1.0482 3.8615 14.7059 58.2222 230.6667

6 Cantor 0.0304 0.1098 0.3887 1.4028 5.3118 20.4167 80.0000 319.0000

New 0.0616 0.1391 0.4170 1.4366 5.3763 21.1667 83.6667 331.0000

7 Cantor 0.0392 0.1450 0.5143 1.8797 7.0882 27.5556 108.4000 432.0000

New 0.0740 0.1792 0.5500 1.9398 7.2941 28.5556 113.2000 451.0000

8 Cantor 0.0464 0.1796 0.6468 2.4251 9.2075 35.8571 142.5000 566.0000

New 0.0820 0.2129 0.6742 2.4444 9.3208 37.0000 147.5000 582.0000

9 Cantor 0.0584 0.2221 0.8137 3.0488 11.5238 45.4545 178.6667 708.0000

New 0.0988 0.2648 0.8385 3.0488 11.8095 46.7273 186.0000 740.0000

10 Cantor 0.0660 0.2650 0.9925 3.6889 14.1765 56.0000 220.0000 880.0000

New 0.1080 0.3022 1.0037 3.7333 14.5294 57.5556 230.0000 910.0000

11 Cantor 0.0784 0.3191 1.1937 4.4643 17.1034 67.5000 266.0000 1064.0000

New 0.1260 0.3510 1.1937 4.4642 17.4483 69.2500 275.0000 1098.0000

12 Cantor 0.0888 0.3684 1.3963 5.2632 20.4167 80.0000 318.0000 1260.0000

New 0.1360 0.3958 1.3753 5.2421 20.6667 83.0000 329.0000 1306.0000

13 Cantor 0.1048 0.4352 1.6135 6.1481 24.0000 94.0000 374.0000 1490.0000

New 0.1568 0.4659 1.6074 6.1481 24.4000 97.6667 388.0000 1554.0000

14 Cantor 0.1156 0.4918 1.8737 7.0704 27.6667 108.8000 430.0000 1716.0000

New 0.1684 0.5177 1.8316 7.0423 28.0000 112.4000 450.0000 1792.0000

15 Cantor 0.1341 0.5546 2.1200 8.0645 31.7500 125.0000 496.0000 1972.0000

New 0.1929 0.5801 2.3440 8.0968 31.8750 127.5000 514.0000 2042.0000

20 Cantor 0.2154 0.9494 3.6806 14.3429 55.5556 220.6667 882.0000 3498.0000

New 0.2865 0.9494 3.5417 14.1143 57.3333 230.0000 916.0000 3676.0000

25 Cantor 0.3248 1.4428 5.6559 22.1739 87.0000 346.0000 1374.0000 5484.0000

New 0.4002 1.4179 5.4624 21.7391 88.3333 357.0000 1432.0000 5684.0000

30 Cantor 0.4535 2.0280 8.1212 31.7500 125.5000 496.0000 1980.0000 7890.0000

New 0.5290 1.9231 7.6364 31.5000 127.5000 512.0000 2050.0000 8204.0000

As can be seen from the tables, our new reduction algorithm does consistently
out-perform Cantor’s algorithm once m is sufficiently large in the odd characteristic
case. It also appears that its relative performance improves slightly as the genus
increases. Both these phenomena are what one would expect; as more reduction
steps are required, the benefits of replacing them by the cheaper Euclidean algorithm
steps should accumulate. The even characteristic case does not look as promising,
with our algorithm only out-performing Cantor’s for a few cases with relatively
large genus.

8. Eliminating the extra step – alternative real hyperelliptic curve
models

We revisit the unfortunate scenario where Proposition 4.1 does not yield a re-
duced divisor. Recall that this situation was encountered exactly when deg(Jr) =
N , deg(Q0) − g is odd, and deg(f) = 2g + 2. Suppose that C is given by (2.1)

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



Efficient reduction of large divisors on hyperelliptic curves 277

with deg(f) = 2g + 2. We generally expect deg(Jr) to increase in steps of one as i
increases, so deg(Jr) = N will likely occur. We have no influence over this. This
leaves the investigation of what to do if deg(Q0) − g is odd.

Suppose that D1 = (Q0, P0, (δ1)) is a scalar multiple of some reduced divisor
D = (Q,P, (δ)); this is a common situation in hyperelliptic curve arithmetic and
cryptography. Say D1 = mD. Then one expects deg(Q) = g and deg(Q0) = mg. If
m is odd — this is more likely to occur when the order q of the base field is odd —
then deg(Q0) − g = (m− 1)g is even, so our problem case does not happen.

The case m even, i.e. deg(Q0) − g odd, is more likely to occur over fields of
even characteristic. In this case, one can use a hyperelliptic curve model (with the
same polynomial h) that is isomorphic to C and avoids the problem scenario. For
our purposes, it suffices to ensure deg(f) ≤ 2g + 1, but it is possible to obtain a
much lower bound, namely deg(f) ≤ g. In fact, if q is odd, this also produces
an isomorphic model with a lower degree right hand side, but at the expense of
introducing a y-coefficient.

Theorem 8.1. Let C : y2+h(x) = f(x) be a real hyperelliptic curve of genus g over
any finite field Fq as given in (2.1) with deg(f) = 2g + 2. Then C is isomorphic
to a real hyperelliptic curve C′ : z2 + H(x)z = F (x) over Fq, where deg(F ) ≤ g,
deg(H) = g + 1, and Fq[x, z] = Fq[x, y].

Proof. Recall that y ∈ Fq〈x
−1〉 and deg(y) = g + 1. Set Y = ⌊y⌋, z = y − Y ,

H = h+ 2Y , and F = f − Y 2 − hY . Then Fq[x, y] = Fq[x, z], deg(y − Y ) < 0 and
deg(Y + y + h) = g + 1. Since

F = (y2 + hy) − (Y 2 + hY ) = (y − Y )(Y + y + h),

we have deg(F ) ≤ g. Substituting y = z + Y into C yields z2 + Hz = F , as
desired.

If q is even, then H = h, and C′ requires far less storage than C, namely 2g +
2 − deg(F ) ≥ g + 2 fewer elements in Fq. For q odd, there may be no reduction
in storage when switching from C to C′. The model C requires storing the 2g + 3
coefficients of f , while C′ needs space for the g+ 2 coefficients of h and up to g+ 1
coefficients of F .

In practice, finding Y requires computing the first g+1 coefficients of the Laurent
expansion of y in Fq〈x

−1〉. Write y = sxg+1 + ygx
g + · · · + y0 + y−1x

−1 + · · · with
s = sgn(y); note that s = ±1 if q is odd. Then it is easy to see that yi satisfies a
linear equation in the higher-indexed coefficients yj (i+1 ≤ j ≤ g) whose coefficients
involve s−1 as well as the coefficients of f , and of h if q is even. So finding Y requires
solving g + 1 linear equations over Fq to successively find yg, yg−1, . . . , y0. If q is
even, then a quadratic equation over Fq may also need to be solved to find s, plus
one inversion to obtain s−1.

We conclude with the remark that this kind of variable transformation has no
analog for imaginary hyperelliptic curves. In addition to eliminating the need for
an extra reduction step in our reduction algorithm, this model warrants further
investigation in that it might offer some advantages for divisor arithmetic, possibly
saving some field operations in the context of low-genus explicit formulae. For q
even, arithmetic on C′ will certainly be no slower than that on C; for q odd, it
is unclear how the two models compare. In either case, it would be interesting to
explore in detail how divisor arithmetic on C′ compares to that on C in terms of
efficiency; this is the subject of ongoing research.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279



278 Roberto Avanzi, Michael J. Jacobson, Jr. and Renate Scheidler

9. Conclusions and further work

As shown in Section 7, our reduction algorithm does offer some performance
improvements for reducing sufficiently large divisors. When using curves over prime
fields, our algorithm is faster than Cantor’s algorithm in all cases as soon as the
size of the divisor to reduce is sufficiently large. For even characteristic fields, our
results are not as convincing, with improvements realized in only a few cases.

It should be possible to improve the performance of our algorithm further. In the
number field version described in [12], the best performance is only realized when
using an accelerated partial extended GCD algorithm. An adaptation of Lehmer’s
algorithm [16] works well, especially with large operands, as it replaces most of the
multi-precision integer operations with single precision operations. The half-GCD
algorithm translates some of the ideas of Lehmer’s algorithm to the polynomial case.
A version of this algorithm that stops part-way through the computation should
greatly improve the efficiency of our reduction algorithm, and hopefully make it
more competitive in the even characteristic case.

Another open question is whether our reduction algorithm can be used to improve
the m-tuple based scalar multiplication techniques mentioned in Section 1. To
properly test this, it will be necessary to develop explicit formulae for the most
cryptographically interesting scenarios, i.e., genus at most 3 and certain specific sizes
of non-reduced divisors. In addition, these should be implemented using dedicated
finite field arithmetic routines tailored to specific fields of interest. This, as well as
the aforementioned issues, are the subject of ongoing research.

Acknowledgments

The authors thank Alf van der Poorten for first directing us to the alternative
hyperelliptic curve model presented in Section 8. We also appreciate the feedback
from an anonymous referee.

References

[1] R. Avanzi, A note on the signed sliding window integer recoding and its left-to-right analogue,
in “Selected Areas in Cryptography” (eds. H. Handschuh and M.A. Hasan), Springer, (2005),
130–143.

[2] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comput., 48 (1987),
95–101.

[3] H. Cohen, A. Miyaji and T. Ono, Efficient elliptic curve exponentiation, in “Information
and Communications Security” (eds. Y. Han, T. Okamoto and S. Qing), Springer, (1997),
282–290.

[4] V. S. Dimitrov, L. Imbert and P. K. Mishra, Efficient and secure elliptic curve point multi-

plication using double base chains, in “Advances in Cryptology - ASIACRYPT 2005” (ed. B.
Roy), Springer, (2005), 59–79.

[5] V. S. Dimitrov, G. A. Jullien and W. C. Miller, An algorithm for modular exponentiation,
Inf. Proc. Letters, 66 (1998), 155–159.

[6] K. Eisenträger, K. Lauter and P. L. Montgomery, Fast elliptic curve arithmetic and improved

Weil pairing evaluation, in “Topics in Cryptology — CT-RSA 2003” (ed. M. Joye), Springer,
(2003), 343–354.

[7] S. Galbraith, M. Harrison and D. J. Mireles Morales, Efficient hyperelliptic arithmetic using

balanced representation for divisors, in “Algorithmic Number Theory – ANTS-VIII” (eds. A.
van der Poorten and A. Stein), Springer, Berlin, (2008), 342–356.

[8] D. Gordon, A survey of fast exponentiation methods, J. Algorithms, 27 (1998), 129–146.
[9] L. Imbert, M. J. Jacobson, Jr. and A. Schmidt, Fast ideal cubing in imaginary quadratic

number and function fields, Adv. Math. Commun., 4 (2010), 237–260.

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279

http://www.ams.org/mathscinet-getitem?mr=MR2180673&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0866101&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1726152&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2236727&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1627991&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2080147&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2467851&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1613189&return=pdf


Efficient reduction of large divisors on hyperelliptic curves 279

[10] M. J. Jacobson, Jr., A. J. Menezes and A. Stein, Hyperelliptic curves and cryptography, in
“High Primes and Misdemeanors: Lectures in Honour of the 60th Birthday of Hugh Cowie
Williams” (eds. A.J. van der Poorten and A. Stein), Fields Inst. Comm., 41 (2004), 255–282.

[11] M. J. Jacobson, Jr. and A. J. van der Poorten, Computational aspects of NUCOMP, in
“Algorithmic Number Theory” (eds. C. Fieker and D.R. Kohel), Springer, Berlin, (2002),
120–133.

[12] M. J. Jacobson, Jr., R. E. Sawilla and H. C. Williams, Efficient ideal reduction in quadratic

fields, Intern. J. Math. Comp. Sci., 1 (2006), 83–116.
[13] M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic protocols on real and imaginary

hyperelliptic curves, Adv. Math. Commun., 1 (2007), 197–221.
[14] M. J. Jacobson, Jr., R. Scheidler and A. Stein, Fast arithmetic on hyperelliptic curves via

continued fraction expansions, in “Advances in Coding Theory and Cryptology” (eds. T.
Shaska, W.C. Huffman, D. Joyner and V. Ustimenko), World Scientific Publishing Co. Pte.
Ltd., Hackensack, New Jersey, (2007), 201–244.

[15] N. Koblitz, An elliptic curve implementation of the finite field digital signature algorithm,
in “Advances in Cryptology—CRYPTO ’98” (ed. H. Krawczyk), Springer, Berlin, (1998),
327–337.

[16] D. H. Lehmer, Euclid’s algorithm for large numbers, Amer. Math. Monthly, 45 (1938), 227–
233.

[17] A. J. Menezes, Y.-H. Wu and R. J. Zuccherato, An elementary introduction to hyperelliptic

curves, in “Algebraic Aspects of Cryptography,” Springer-Verlag, Berlin, (1998), 155–178.
[18] D. Mumford, “Tata Lectures on Theta II,” Birkhäuser, 1984.
[19] S. Paulus and H.-G. Rück, Real and imaginary quadratic representations of hyperelliptic

function fields, Math. Comput., 68 (1999), 1233–1241.
[20] A. J. van der Poorten, A note on NUCOMP, Math. Comput., 72 (2003), 1935–1946.
[21] R. E. Sawilla, “Fast Ideal Arithmetic in Quadratic Fields,” Master Thesis, University of

Calgary, 2004, available online at http://www.sawilla.com/docs/Sawilla_thesis.pdf .
[22] C. P. Schnorr and M. Seysen, An improved composition algorithm, unpublished manuscript,

August 1983.
[23] D. Shanks, On Gauss and composition, in “Number Theory and Applications” (ed. R.A.

Mollin), Kluwer Academic Publishers, (1989), 163–204.

[24] V. Shoup, NTL: A library for doing number theory, Software, 2001, available online at
http://www.shoup.net/ntl .

[25] J. A. Solinas, An improved algorithm for arithmetic on a family of elliptic curves, in “Ad-
vances in Cryptology CRYPTO ’97” (ed. B.S. Kaliski, Jr.), Springer, (1997), 357–371.

Received June 2009; revised March 2010.

E-mail address: roberto.avanzi@ruhr-uni-bochum.de
E-mail address: jacobs@cpsc.ucalgary.ca
E-mail address: rscheidl@math.ucalgary.ca

Advances in Mathematics of Communications Volume 4, No. 2 (2010), 261–279

http://www.ams.org/mathscinet-getitem?mr=MR2076252&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2041078&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2232302&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2306309&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2454114&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1670960&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1524250&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1610535&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0742776&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1627817&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1986813&return=pdf
http://www.sawilla.com/docs/Sawilla_thesis.pdf
http://www.ams.org/mathscinet-getitem?mr=MR1123074&return=pdf
http://www.shoup.net/ntl

	1. Introduction and motivation
	2. Overview of hyperelliptic curves
	3. Continued fraction expansions
	4. Continued fractions and hyperelliptic divisors
	5. Divisor reduction via continued fractions
	6. More mumford representation formulae
	7. The reduction algorithm, variations, and experiments
	8. Eliminating the extra step -- alternative real hyperelliptic curve models
	9. Conclusions and further work
	Acknowledgments
	References

