Corrigendum to the proof of Lemma 4.2 of "Ideal arithmetic and infrastructure in purely cubic function fields"

R. Scheidler

Lemma 4.2 Let $\mathfrak{a} = [L(\mathfrak{a}), \mu, \nu]$ be a primitive ideal where $\mu = m_0 + m_1 \rho + m_2 \omega$, $\nu = n_0 + n_1 \rho + n_2 \omega$ with $m_0, m_1, m_2, n_0, n_1, n_2 \in k[x]$. Then \mathfrak{a} has a triangular basis which can be obtained as follows. Set

$$s'' = \gcd(m_2, n_2), \qquad s' = (m_1 n_2 - n_1 m_2)/s'', \qquad s = L(\mathfrak{a}),$$

and let $a',b',t \in k[x]$ satisfy $a'm_2 + b'n_2 = s''$ and $s't \equiv a'm_1 + b'n_1 \pmod{s''}$. Set $a = a' - tn_2/s''$, $b = b' + tm_2/s''$,

$$u = \frac{m_0 n_2 - n_0 m_2}{s' s''}, \qquad v = \frac{a m_0 + b n_0}{s''}, \qquad w = \frac{a m_1 + b n_1}{s''}.$$

Then $\{s, s'(u+\rho), s''(v+w\rho+\omega)\}$ is a triangular basis of \mathfrak{a} .

Proof: Let $U = (m_0n_2 - n_0m_2)/s''$, $V = a'm_0 + b'n_0$, and $W = a'm_1 + b'n_1$. Then $U, V, W \in k[x]$, and if $\alpha = (n_2\mu - m_2\nu)/s'' = U + s'\rho$ and $\beta = a'\mu + b'\nu = V + W\rho + s''\omega$, then $\{s, \alpha, \beta\}$ is a basis of \mathfrak{a} .

Since $\alpha \rho$, $\alpha \omega$, $\beta \rho$, $\beta \omega \in \mathfrak{a}$, each of these four elements can be written as a k[x]-linear combination of α and β . By considering the coefficient of ω in these linear combinations, we see that $s'' \mid Hs'$, $s'' \mid U$, $s'' \mid WH$, and $s'' \mid V$. Moreover, by writing $\alpha \rho = A\alpha + B\beta$ with $A, B \in k[x]$ and considering the coefficients of ω and ρ , we obtain B = Hs'/s'' and U = As' + BW = s'(A + HW/s''). It follows that $s' \mid U$, implying $u = U/s' \in k[x]$.

We claim that $\gcd(s',s'')=1$. To that end, write $\beta\rho=C\rho+E\omega$ with $C,E\in k[x]$. Considering again the coefficients of ω and ρ in $\beta\rho$ shows that E=HW/s'' and V=Cs'+EW. Let $d=\gcd(s',s'')$. Then $d\mid s'\mid U$ and $d\mid s''\mid V$. Furthermore, $N(\mathfrak{a})=ss's''\mid L(\mathfrak{a})^2=s^2$ implies $s's''\mid s$, so $d\mid s$. Thus, $\gcd(d,W)=1$ since \mathfrak{a} is primitive. Then $s'\mid V-EW$ yields $d\mid EW$, and hence $d\mid E=HW/s''$. Then $d^2\mid ds''\mid HW$, so $d^2\mid H$. Since H is squarefree, we must have d=1.

It follows that t as defined in the Lemma exists, and $W \equiv s't \pmod{s''}$. Set $\gamma = \beta - t\alpha$. Then $\{s, \alpha, \gamma\}$ is a basis of \mathfrak{a} , $\alpha = s'(u + \rho)$, $s'' \mid \gamma$, and a simple computation shows that $\gamma = s''(v + w\rho + \omega)$.