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Abstract. For any prime �, it is possible to construct global function
fields whose Jacobians have high �-rank by moving to a sufficiently large
constant field extension. This was investigated in some detail by Bauer
et al. in [2]. The two main results of [2] are an upper bound on the
size of the field of definition of the �-torsion J [�] of the Jacobian, and
a lower bound on the increase in the base field size that guarantees a
strict increase in �-rank. Here, we provide improvements to both these
results, and give examples which illustrate that our techniques have the
potential to yield the correct �-rank over any intermediate field of the
field of definition of J [�], including base fields that might be too large
to be handled directly by computer algebra packages.

1 Introduction

Let q be any prime power and � a prime not dividing q. Then the Jacobian
of any function field K/Fq is a finite Abelian group that can have �-rank as large
as 2g. However, Jacobians of large �-rank, and even just positive �-rank, tend to
be rare. This statement was made precise by Achter [1], who gave for any r with
0 ≤ r ≤ 2g and any sufficiently general family of curves over Fq an explicit formula
for the proportion of curves whose Jacobians have �-rank r over Fq. For example, if
q ≡ 1 (mod �), then an elliptic curve has �-rank 0, 1, or 2 over Fq with approximate
probabilities 1 − �/(�2 − 1), 1/�, and 1/�(�2 − 1), respectively. Similar behaviour
holds for curves of higher genus.

It is thus clear that algebraic function fields of high �-rank require special
construction. For genus 2 hyperelliptic curves y2 = f(x) with f(x) ∈ Fq[x] square-
free and deg(f) = 5, the 2-rank can simply be read from the factorization of f(x)
into irreducibles over Fq [12]. In fact, the 2-rank of a quadratic function field is
generally well understood [18]. A number of constructions for hyperelliptic curves
of high 3-rank were presented in [2]; see also Chapter 7 of [16] for a somewhat
different approach to generating such fields via cubic extensions. In a sequence of
papers, Pacelli et al. found infinite families of quadratic [10, 11] and higher degree
[13, 14] function fields of large 3-rank, and more generally, n-rank.

In this paper, we focus our attention on a method that constructs arbitrary
function fields of large �-rank by enlarging the base field Fq. This procedure was first
presented in Section 5 of [2], where it was described in the context of hyperelliptic
function fields, but it is applicable to any type of function field K/Fq — and in fact,
any Jacobian variety — and any prime � � q. The technique has the advantage that
one can start with a function field K of any genus g over a very small base field Fq. It
requires the computation of the L-polynomial ofK over this small field Fq, which can
be accomplished with a computer algebra package such as Magma [4]. Using only
the factorization modulo � of the reciprocal polynomial F (t) ≡ t2gL(t−1) (mod �)
of this L-polynomial, it is possible to find an upper bound on the degree n� over
Fq of the field of definition of the full �-torsion of the Jacobian of K/Fq. This
factorization also provides lower bounds on the minimal extension degree over any
base field that guarantees an increase in �-rank, as well as a lower bound on that
�-rank increase.

The results in this article represent a number of improvements to the work of
[2, Section 5]. We provide a simpler means for finding good upper bounds on n�

and analyze the possible �-ranks over all intermediate base fields Fq ⊂ Fqn ⊂ Fqn� .
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In many cases, our results make it possible to find all these intermediate �-ranks,
requiring the computation of the L-polynomial L(t) of K over the base field Fq

only. Sometimes, the �-rank of the Jacobian over an intermediate field Fqn for very
small n may also be needed. Apart from these ingredients, our methods involve
only basic algebra and linear algebra.

We begin with an overview of the techniques of [2] in Section 3 and describe our
improvements in Sections 4, 5 and 7, illustrating them with a number of examples.
In the process, we rediscover and improve on known results for curves of genus 1
and 2 in Section 6.

2 Background and notation

For introductory reading on algebraic function fields, the reader is encouraged
to consult [15, 17]. Throughout this paper, q will denote a prime power, Fq a finite

field of order q, Fq an algebraic closure of Fq, and F
∗
q = Fq \ {0}. Furthermore,

Fq[x] and Fq(x) are the ring of polynomials and the field of rational functions,
respectively, in the indeterminate x with coefficients in Fq. For F ∈ Fq[x], deg(F )
denotes the degree of F .

An algebraic function field K/Fq (of one variable over Fq) is a finite algebraic
extension of Fq(x). If [K : Fq(x)] denotes the degree of the extension K/Fq(x),
then K = Fq(x, y) where y is the root of some polynomial F (x, Y ) ∈ Fq[x][Y ] that
is monic with respect to Y , has degree [K : Fq(x)] in Y , and is irreducible over
Fq(x). We will always assume that Fq is the (full) constant field of K; that is,
Fq is algebraically closed in K. Equivalently, the polynomial F (x, Y ) is absolutely

irreducible, i.e. irreducible over Fq.
Recall that a place p of K/Fq is the unique (principal) maximal ideal of some

discrete valuation ring O = Op of K. We denote the set of places of K/Fq by PK. A
divisor D of K/Fq is a formal sum of places, i.e. D =

∑
p∈PK

app where ap = 0 for

all but finitely many p ∈ PK. The degree of D is the integer deg(D) =
∑

p∈PK
ap.

Clearly, the divisors form an infinite Abelian group, the divisor group DK(Fq) of
K/Fq, and the divisors of degree zero form a subgroup of DK(Fq), the degree zero
divisor group D0

K
(Fq). A divisor is principal if there exists a non-zero element z ∈ K

such that D =
∑

p∈PK
vp(z)p, where vp is the discrete valuation on K associated to

the place p ∈ PK. Since every principal divisor has degree zero, the set PK(Fq) of
principal divisors is a subgroup of D0

K
(Fq).

The quotient group JacK(Fq) = D0
K
(Fq)/PK(Fq) is the (degree zero) divisor

class group of K/Fq; it is a finite Abelian group. The notation “Jac” stems from
the following fact. There exists a unique non-singular, projective, absolutely irre-
ducible, algebraic curve C so that K/Fq is the function field of C. Then JacK(Fq) is
isomorphic to the group of Fq-rational points on the Jacobian variety of C. Hence,
JacK(Fq) is sometimes simply referred to as the Jacobian of K/Fq. We denote by g
the genus of K/Fq, or equivalently, the genus of C.

When K/Fq has genus g = 1 and the set C(Fq) of points on C with coordinates
in Fq is non-empty, C is an elliptic curve. In this case C(Fq) is an abelian group,
where the addition is defined geometrically via the “chord and tangent” addition
law, described most easily via the property “any three collinear points on the curve
sum to zero”. With these conditions, JacK(Fq) is isomorphic to C(Fq). Indeed, as
an algebraic variety, an elliptic curve is isomorphic to its Jacobian, while for curves
of higher genus this is no longer the case.
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The divisor group of K/Fq is closely related to the zeta function of K/Fq, i.e.

the function ζ(s) =
∑

D∈DK(Fq)
q−s deg(D). Here, s is a complex variable. If we set

t = q−s, then for all s ∈ C with Re(s) > 1,

ζ(s) =
∑

D∈DK(Fq)

tdeg(D) =
L(t)

(1− t)(1− qt)
,

where L(t) = a0 + a1t + · · · + a2gt
2g is called the L-polynomial of K/Fq. It is a

polynomial of degree 2g with integer coefficients satisfying a0 = 1 and qg−iai =
a2g−i for 0 ≤ i ≤ g − 1. The reciprocals of the roots of L(t) are algebraic integers
of absolute value

√
q — this is generally referred to as the Riemann hypothesis for

function fields, although it was in fact proved by Weil — and we have | JacK(Fq)| =
L(1). This implies the Hasse-Weil bounds

(
√
q − 1)2g ≤ | JacK(Fq)| ≤ (

√
q + 1)2g ,

which show that JacK(Fq) is a very large group even for function fields of modest
size. As a result, computing the structure of JacK(Fq), or even just its order, gener-
ally tends to be a difficult problem. For small function fields, however, it is possible
to compute the zeta function, L-polynomial, and possibly even the Jacobian, using
for example a computer algebra package such as Magma.

For any prime �, we denote the �-rank of JacK(Fq) by �-rank(JacK(Fq)). It is
the dimension of the F�-module JacK(Fq)/� JacK(Fq), which is also the minimum
number of generators of the �-Sylow subgroup of JacK(Fq) when viewed as a finite
Abelian group. An upper bound on the �-rank of JacK(Fq) is 2g if � � q and g
if � | q. Here, we will only consider the former case and henceforth exclude the
scenario where � is the characteristic of Fq.

3 Increasing the �-rank via enlarging the base field

For completeness, we provide an overview of the aforementioned method given
in Section 5 of [2]; for details and proofs, the reader is referred to that source.
We continue to let K/Fq be an algebraic function field and JacK(Fq) its Jacobian.

Consider the field K = KFq, the compositum of K and Fq. Then K/Fq is an
unramified function field extension of K/Fq of the same genus as K/Fq. Since Fq

is algebraically closed in K, we see that if we write K = Fq(x, y) with y ∈ K, then

K = Fq(x, y) and [K : Fq(x)] = [K : Fq(x)].

Similarly, for any n ∈ N, set Kn = KFqn = Fqn(x, y) ⊂ K; then [Kn : Fqn(x)] =

[K : Fq(x)]. If L(t) =
∏2g

i=1(1 − ωit) is the L-polynomial of K/Fq, with ωi ∈ C for

1 ≤ i ≤ 2g, then the L-polynomial of Kn/Fqn is
∏2g

i=1(1− ωn
i t).

For brevity, set J = Jac
K
(Fq) and Jn = JacKn

(Fqn). As before, let � be any
prime not dividing q, and denote the �-torsion of J and Jn by J [�] and Jn[�],
respectively. Then Jn[�] ⊂ Jkn[�] for all k ∈ N, and J [�] ∼= (Z/�)2g. In fact,
there exists a smallest field Fqn� such that J [�] ⊆ Jn�

[�]; this field is the field of
rationality or field of definition of J [�]. It follows that Jn�

[�] ∼= (Z/�)2g, and hence
�-rank(Jn�

) = 2g is maximal. The method in [2, Section 5] provided partial answers
to the following questions:

1. What is the exact value of n�? Is it at least possible to find an upper bound
b on n�?
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2. For any n ∈ N, is it possible to ascertain if �-rank(Jn) > �-rank(J1)? If
yes, is it possible to find (lower bounds on) such a value of n as well as the
increase from �-rank(J1) to �-rank(Jn)?

The upper bound b on n� given in [2] requires a potentially tedious search, which
is eliminated by the results of this paper. Moreover, we extend the answer given in
[2] to Question 2 above by considering a more general scenario. In particular, this
will allow us to deduce �-ranks over large base fields, which might be too big for
computers to handle, from those over smaller base fields.

The Galois group Gal(Fq/Fq) acts on the �-torsion J [�] of J , whence we obtain

a representation ρ� : Gal(Fq/Fq) → Aut(J [�]). This representation factors through
Gal(Fqn�/Fq). For any choice of F�-basis of J [�], we thus obtain

ρ� : Gal(Fqn� /Fq) ↪→ GL2g(F�) .

The Galois group Gal(Fqn� /Fq) above is generated by the restriction πq,n�
of the

Frobenius automorphism πq on Fq to Fqn� . This is the automorphism that sends
every element in Fqn� to its q-th power. Thus, the image of πq,n�

under ρ� is a
matrix M� ∈ GL2g(F�) of order n�. In order to determine n� = ord(M�), we define
ρ� in terms of a basis for which M� is in primary rational canonical form.

The explanation of the primary rational canonical form requires a brief excur-
sion into linear algebra. Let V be a vector space over some field K and φ a linear
transformation on V . In our context, we will have K = F�, V = Jn�

[�] ∼= F
2g
� , and

φ = πq,n�
; note that since πq,n�

acts on the places of Kn�
/Fqn� , this action extends

naturally to Jn�
and hence to Jn�

[�].
Recall that theminimal polynomial of φ is the unique monic polynomialGφ(t) ∈

K[t] of minimal degree with Gφ(φ) = 0; it divides all other polynomials F (t) ∈ K[t]
with F (φ) = 0, including the characteristic polynomial Fφ(t) of φ whose roots are
the eigenvalues of φ with appropriate multiplicities. In fact, Fφ(t) and Gφ(t) have
the same roots, but potentially with different multiplicities.

For any monic polynomial F (t) = tm + am−1t
m−1 + · · ·+ a0 ∈ K[t], the com-

panion matrix of F (t) is the m×m matrix

AF =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
0 0 0 0 · · · 0 1

−a0 −a1 −a2 −a3 · · · −am−2 −am−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Note that F (t) is both the minimal and the characteristic polynomial of its
own companion matrix AF .

A subspace W of V is said to be φ-cyclic if it spanned by the vectors φi(v),
i ≥ 0, for some v ∈ V . Then W is φ-cyclic if and only if W has an ordered basis
relative to which the matrix associated to the restriction φ|W of φ to W is the
companion matrix of the minimal polynomial of φ|W .

Finally, for any finite collection of square matrices A1, A2, . . . , Ar, we denote
by diag(A1, A2, . . . , Ar) the matrix that has the sub-matrices A1, A2, . . . , Ar along
its diagonal and zeros everywhere else; it is a square matrix whose size is the sum
of the sizes of the Ai, 1 ≤ i ≤ r. We make use of the following decomposition
theorem:
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Theorem 3.1 (Theorem 5.1 of [2], based on results of [8]) Let φ : V → V be a
linear transformation on a vector space V over a field K. Then there exist distinct
monic irreducible polynomials P1, P2, . . . , Ps ∈ K[t] with the following properties:

1. For each i with 1 ≤ i ≤ s, there exist ki ∈ N and φ-cyclic subspaces
Vi1, Vi2, . . . , Viki

such that V is the direct sum of the Vij (1 ≤ i ≤ s, 1 ≤
j ≤ ki).

2. For each i with 1 ≤ i ≤ s and each j with 1 ≤ j ≤ ki, the minimal polynomial
of the restriction of φ to Vij is of the form P

mij

i where the integers mij satisfy
mi1 ≥ mi2 ≥ · · · ≥ miki

≥ 1. In particular, dim(Vij) = mij deg(Pi).
3. V has a basis relative to which the matrix of φ is of the form

Aφ = diag(AP
m11
1

, . . . , A
P

m1k1
1

, . . . , AP
ms1
s

, . . . , A
P

msks
s

) , (3.1)

where A
P

mij
i

is the companion matrix of P
mij

i for 1 ≤ i ≤ s and 1 ≤ j ≤ ki.

4. The minimal polynomial of φ is Gφ = Pm11
1 Pm21

2 · · ·Pms1
s .

5. The characteristic polynomial of φ is Fφ = Pm1
1 Pm2

2 · · ·Pms
s where mi =

∑ki

j=1mij for 1 ≤ i ≤ s.

The polynomials P
mij

i (1 ≤ i ≤ s, 1 ≤ j ≤ ki) are uniquely determined by V
and φ and are called the elementary divisors of φ (or of any matrix representing
φ). The matrix Aφ is said to be the primary rational canonical form of φ (or of
any matrix representing φ).

If Aφ has finite order in GLdim(V )(K) — this is the case in our context — then

ord(Aφ) = lcm {ord(A
P

mij
i

) | 1 ≤ i ≤ s, 1 ≤ j ≤ ki} ,

which is easy to compute if dim(V ) is not too large and each companion matrix
has sufficiently small order. Thus, if we were able to obtain the elementary divi-
sors of πq,n�

, then we could easily obtain n� = ord(Aπq,n�
). Unfortunately, it is

unclear how to obtain these elementary divisors. It is however possible to obtain
the characteristic polynomial Fπq,n�

(t) ∈ F�[t] from the L-polynomial of K/Fq via

Fπq,n�
(t) ≡ t2gL(t−1) (mod �). In other words, if we compute the L-polynomial

of K/Fq — using Magma, for example — and factor its reciprocal modulo � to
obtain Fπq,n�

(t) = Pm1
1 Pm2

2 · · ·Pms
s with P1, P2, . . . , Ps ∈ F�[t] monic and irre-

ducible, then we can construct all possible matrices Aπq,n�
as given in (3.1) (with

φ = πq,n�
) for all 1 ≤ i ≤ s and 1 ≤ j ≤ mi. One of these is the primary rational

canonical form of πq,n�
, and although it is unknown which candidate matrix is the

correct one, the maximum of their orders is an upper bound on n�. Moreover,
in the case when Fπq,n�

(t) is square-free, i.e. mi = 1 for 1 ≤ i ≤ s, we see that

Aπq,n�
= diag(AP1

, AP2
, . . . , APs

) is uniquely determined. This is actually the case
for many curves, and particularly for most hyperelliptic curves; see the work of
Chavdarov [5] and Kowalski [9, Section 6].

We now summarize the main results of [2, Section 5]. The first provides a
partial answer to Question 1 above.

Proposition 3.2 (Theorem 5.2 of [2]) Let L(t) be the L-polynomial of a func-
tion field K/Fq of genus g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Let
F = Pm1

1 Pm2
2 · · ·Pms

s be the factorization of F (t) into powers of distinct monic
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irreducibles Pi(t) ∈ F�[t] and define a set S as follows:

S =
{
(P

mij

i ) | 1 ≤ i ≤ s, 1 ≤ j ≤ ki, mi1 ≥ · · · ≥ miki
≥ 1,

and

ki∑

j=1

mij = mi for 1 ≤ i ≤ s
}

.

For any tuple P = (P
mij

i ) ∈ S, define the matrix

AP = diag(AP
m11
1

, . . . , A
P

m1k1
1

. . . , AP
ms1
s

, . . . , A
P

msks
s

) ,

where A
P

mj
i

is the companion matrix of P
mij

i . Set

b = max{ord(AP) | P ∈ S} ,

and let Fqn� be the field of rationality of J [�]. Then n� ≤ b, with equality if F (t) is
square-free.

We will improve this result in Theorem 4.3 below; in particular, we will note
that in order to determine the maximum of all the ord(AP) with P ∈ S, it suffices
to consider only the trivial partitions consisting of just one summand mi1 = mi

(1 ≤ i ≤ s).
The following appears as a short discussion on pp. 521-522 of [2]. It can be

useful if a lower bound on the �-rank of JK(Fq) is a priori known; for example, if K
was obtained via one of the special constructions referred to in Section 1. For any
two polynomials P (t), G(t) ∈ F�[t] with P (t) irreducible, we let vP (G) denote the
exact power of P (t) that divides G(t).

Proposition 3.3 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Suppose that �-rank(JK(Fq)) ≥
r. Then (t− 1)r divides F (t), and if vt−1(F ) = r, then �-rank(JK(Fq)) = r.

If �-rank(JK(Fq)) ≥ r, then each polynomial Pmi
i (1 ≤ i ≤ s) is a product of

at least r elementary divisors Pmij of πq,n�
.

Finally, [2] provided the following partial answer to Question 2 above.

Proposition 3.4 (Theorem 5.6 of [2]) Let L(t) be the L-polynomial of a
function field K/Fq of genus g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t].
Suppose F (t) has an irreducible factor P (t) ∈ F�[t] different from t − 1. Let
AP ∈ GLdeg(P )(F�) be the companion matrix of P , and set n = ord(AP ). Then
�-rank(Jn) ≥ �-rank(Jk) + deg(P ) for any proper divisor k of n.

The next four sections contain new results and improvements on the proposi-
tions from [2] presented above. Specifically, Section 4 gives a more explicit expres-
sion for the bound b on n� of Proposition 3.2 that eliminates the need to compute
the maximum of the orders of all the matrix candidates. Section 5 provides a simple
upper bound on (and multiple of) b. Section 6 applies our results to curves of genus
1 and 2, and Section 7 adds to Proposition 3.3 and improves on Proposition 3.4.

4 An explicit expression for the bound b

In order to further investigate the bound b on the degree n� of the field of
rationality of J [�] over Fq, we require some additional linear algebra. Recall that
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an elementary Jordan matrix over some field K is an m×m matrix of the form

Jm,λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
. . .

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1)

Let A ∈ GLm(K). Over an algebraic closure K of K, the elementary divisors of
A are of the form (t − λi)

mij with λi ∈ K and 1 ≤ i ≤ s, 1 ≤ j ≤ ki, and the
Jordan canonical form of A (or of the linear transformation represented by A) is
the matrix

JA = diag(Jmij ,λi
)1≤i≤s, 1≤j≤ki

.

In particular, the companion matrix AF of a polynomial F (t) ∈ K[t] with roots
λ1, λ2, . . . , λr ∈ K of respective multiplicities m1,m2, . . . ,mr has Jordan canonical
form JAF

= diag(Jm1,λ1
, . . . , Jmr,λr

).
We begin with two basic results on elementary Jordan matrices and companion

matrices. As usual, for any real number R, let �R� denote the ceiling of R, i.e. the

smallest integer that is greater than or equal to R. Furthermore, for any γ ∈ F
∗
� ,

let ord�(γ) denote the order of γ in F
∗
� ; note that since γ ∈ F

∗
�d for some d ∈ N,

ord�(γ) divides �
d − 1 and is hence finite and not divisible by �.

Lemma 4.1 Let � be a prime and λ ∈ F
∗
� . Then ord(Jm,λ) = ��log�(m)� ord�(λ).

Proof For brevity, set n = �log�(m)�. Then �n−1 < m ≤ �n. Induction yields

J i
m,λ =

⎛

⎜
⎜
⎜
⎝

λi
(
i
1

)
λi−1

(
i
2

)
λi−2 · · ·

(
i

i−1

)
λ 1 0 0 · · · 0

0 λi
(
i
1

)
λi−1 · · ·

(
i

i−2

)
λ2

(
i

i−1

)
λ 1 0 · · · 0

...
...

...
...

...
0 0 0 · · · 0 0 0 0 · · · λi

⎞

⎟
⎟
⎟
⎠

for i ∈ N. Note that for i ≥ m, all the entries on and above the main diagonal of
J i
m,λ have the form

(
i
j

)
λi−j with 0 ≤ j ≤ m− 1.

Recall that the exact power of � dividing a binomial coefficient
(
i
j

)
is the number

of carries that occur when j is added to i− j in base �. For i = �n and 1 < j < �n,

at least one such carry occurs, so
(
�n

j

)
≡ 0 (mod �). Since �n ≥ m, we have

J�n

m,λ = λ�nIm, where Im is the m×m identity matrix.

Since ord�(λ) is not divisible by �, it follows that

ord(J�n

m,λ) = ord�(λ
�n) =

ord�(λ)

gcd(ord�(λ), �n)
= ord�(λ) .

On the other hand, ord(J�n

m,λ) = ord(Jm,λ)/ gcd(�
n, ord(Jm,λ)), so it suffices to

show that �n | ord(Jm,λ) to complete the proof.
To that end, let r be the exact power of � dividing ord(Jm,λ), and write

ord(Jm,λ)/�
r = a� + b with a ≥ 0 and 0 < b < �. Then ord(Jm,λ) − �r =

a�r+1 + (b − 1)�r with 0 ≤ b ≤ � − 1. Thus, adding �r to ord(Jm,λ) − �r in

base � produces no carries, so
(
ord(Jm,λ)

�r

)

≡ 0 (mod �). If r < n, then 1 ≤ �r ≤

�n−1 ≤ m− 1, so this would result in a non-zero entry above the main diagonal of
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J
ord(Jm,λ)
m,λ = Im, a contradiction. Hence r ≥ n. It follows that �n | ord(Jm,λ), and

hence ord(Jm,λ) = �n ord�(λ).

Lemma 4.2 Let � be a prime, P (t) ∈ F�[t] an irreducible polynomial, and AP

the companion matrix of P . Then ord(APm) = ��log�(m)� ord(AP ) for all m ∈ N.

Proof Let d = deg(P ). Then P decomposes into linear factors over F∗
�d , say

P (t) = (t− λ1)(t− λ2) · · · (t− λd) ,

with λ1, λ2, . . . , λd ∈ F
∗
�d distinct. The Jordan canonical forms of the companion

matrices AP and APm are

JAP
= diag(λ1, λ2, . . . , λd) ,

JAPm = diag(Jm,λ1
, Jm,λ2

, . . . , Jm,λd
) ,

respectively. Since λ1, λ2, . . . , λd ∈ F
∗
�d are Galois conjugates, they all have the same

order in F
∗
�d ; call this order r. Thus, ord(JAP

) = lcm(ord�(λ1), . . . , ord�(λd)) = r.
Furthermore, by Lemma 4.1, ord(Jm,λi

) = �n ord�(λi) = �nr for 1 ≤ i ≤ d, where
as before, n = �log�(m)�. Since similar matrices have the same order, we have

ord(APm) = ord(JAPm ) = lcm(ord(Jm,λi
)|1 ≤ i ≤ s)

= �nr = �n ord(JAP
) = �n ord(AP )

as claimed.

We can now give a simpler expression for the bound b of Proposition 3.2 that can
be gleaned directly from the L-polynomial of K/Fq and avoids computing ord(AP)
for the entire collection of P ∈ S. We also observe that b is in fact a multiple of n�.

Theorem 4.3 With the notation of Proposition 3.2, we have

n� | b = ord(AF ) = ��log�(max{mi|1≤i≤s})� · lcm
(
ord(APi

) | 1 ≤ i ≤ s
)
,

where AF is the companion matrix of F (t).

Proof Note that for any integers μ, ν,M,N with μ, ν ≥ 0 and M,N not divis-
ible by �, we have lcm(�μM, �νN) = �max{μ,ν} lcm(M,N).

Recall that ord(APi
) is equal to the order of each of the roots of Pi in F�deg(Pi)

and is thus coprime to any power of �. Let P = (P
mij

i ) ∈ S. Then by Lemma 4.2,

ord(AP) = lcm
(
ord(A

P
mij
i

)
)
= lcm

(
��log�(mij)� ord(APi

)
)

= �max{�log�(mij)�} lcm
(
ord(APi

)
)
= ��log�(mi1)� lcm

(
ord(APi

)
)
,

where the last equality above follows from the fact that mi1 ≥ mi2 ≥ . . .miki
for

all i with 1 ≤ i ≤ s. Hence, in order to find b, we need to maximize the above
expression over all P ∈ S. Since lcm(ord(APi

)) is fixed for each P ∈ S, this amounts
to finding for each i with 1 ≤ i ≤ s the maximum value mi1 for all partitions of mi.
Clearly, this maximum is attained for the one-term partition mi = mi1, in which
case P = (Pmi

i ) corresponds to F (t).
It is also clear that ord(AP) divides b for all P ∈ S; in particular, n� | b.

Finally, we note that the matrices AF and diag(AP
m1
1

, . . . , APms
s

) have the same

Jordan canonical form, and hence the same order b.

To illustrate the above bound, we revisit Example 5.5 of [2].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

154 L. Berger, J. L. Hoelscher, Y. Lee, J. Paulhus, and R. Scheidler

Example 4.4 Consider q = 179, the hyperelliptic function field K = F179(x, y)
of genus 4 with

y2 = x9 + 151x8 + 168x7 + 10x6 + 32x5 + 141x4 + 110x3 + 35x2 + 160x+ 2 ,

and � = 3. With the aid of Magma, we found that the zeta function of K is
ζ(t) = L(t)/(179 t2 − 180 t+ 1) with

L(t) = 1794 t8 − 17 · 1793 t7 + 315 · 1792 t6 − 3041 · 179 t5 + 56275 t4

− 3041 t3 + 315 t2 − 17 t+ 1 .

Reducing t8L(t−1) modulo 3, we obtain F (t) = t8+t7+t5+t4+2 t3+2 t+1 ∈ F3[t].
Over F3, F (t) factors as F = P1P2P

2
3P4 where

P1(t) = t+ 1, P2(t) = t+ 2, P3(t) = t2 + 1, P4(t) = t2 + t+ 2

are all irreducible over F3. Using Proposition 3.2, it was necessary to compute the
maximum of the orders of the two matrices

diag(AP1
, AP2

, AP3
, AP3

, AP4
) and diag(AP1

, AP2
, AP 2

3
, AP4

) .

Using Theorem 4.3, we simply compute �log3(2)� = 1, and ord(AP1
) = 2, ord(AP2

) =
1, ord(AP3

) = 4, ord(AP4
) = 8. Thus, n3 is a divisor of b = 3 · lcm(2, 1, 4, 8) = 24.

Alternatively, we could have computed ord(AF ) = 24.

We state some simple special cases of Theorem 4.3:

Corollary 4.5 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Let b = ord(AF ), where AF is
the companion matrix of F . Then the following hold:

1. If F (t) splits into distinct irreducible factors in F�[t], all of which have de-
grees dividing d ∈ N, then

n� = b = lcm(ord�(αi)) | �d − 1 ,

where the αi ∈ F�d run through all the roots of F .
2. If F (t) is a product of powers of linear factors in F�[t], and the largest

exponent of any such linear factor is m > 1, then

n� | b = ��log�(m)� lcm(ord�(αi)) | ��log�(m)�(�− 1) ,

where the αi ∈ F�d run through all the roots of F .

Proof Recall that n� = b if F (t) is square-free by Proposition 3.2. The corol-
lary now follows from Theorem 4.3 and the fact that for any irreducible polynomial
P ∈ F�[t] and any root α of P (t), ord(AP ) = ord�(α) | �deg(P ) − 1.

5 A simple bound on b = ord(AF )

It is at times desirable to have a bound on nl that does not require any matrix
order computation. In order to present such a bound, we further investigate the
irreducible factors of the L-polynomial.

Lemma 5.1 Let P (t) ∈ F�[t] be an irreducible polynomial, and suppose there
exists α ∈ F� such that α2 
= q and P (α) = P (q/α) = 0. Then the map ψ : F� → F�

via ψ(γ) = q/γ is a permutation of order 2 on the roots of P (t), so deg(P ) is even.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

The �-Rank Structure of a Global Function Field 155

Proof Let d = deg(P ). Note that since P (t) has at least two distinct roots α
and q/α, we have d ≥ 2.

The Frobenius on F� sends elements to their �-th powers. Since this Frobenius

acts transitively on the roots of P (t), these roots are of the form αi = α�i for

0 ≤ i ≤ d−1. Let q/α = α�j . Then j 
= 0 as otherwise α2 = q. Hence 1 ≤ j ≤ d−1.
Now for all i with 0 ≤ i ≤ d− 1,

ψ(αi) =
q

αi
=

q

α�i
=

( q

α

)�i

= (α�j )�
i

= α�j+i

= αi+j (mod d) ,

so ψ maps any root αi of P (t) to another root of P (t). It follows that ψ is a
permutation on the roots of P (t) whose order divides 2. Moreover, since 0 < j < d
implies i 
≡ i + j (mod d), the order of ψ is exactly 2. In particular, for i = 0, we
obtain α0 = ψ(ψ(α0)) = α2j (mod d), so d | 2j. Since 1 ≤ j ≤ d − 1, we see that
d = 2j is even.

Corollary 5.2 With the notation and assumptions of Lemma 5.1, if AP is the
companion matrix of P , then ord(AP ) divides (�deg(P )/2 + 1) ord�(q).

Proof From the proof of Lemma 5.1, we see that q/α = α�j with 2j = d =

deg(P ). Thus, α�j+1 = q, and hence α(�j+1) ord�(q) = 1. Since ord(AP ) = ord�(α),
the claim follows.

Definition 5.3 Let P (t) ∈ F�[t] be monic and irreducible. Then P (t) is said
to be of

• type 1 if P (t) is the minimal polynomial of a square root of q;
• type 2 if there exists α ∈ F� such that α2 
= q and P (α) = P (q/α) = 0;
• type 3 otherwise.

Proposition 5.4 Let G(t) ∈ F�[t] be a monic polynomial of even degree with
G(0) 
= 0, such that for every root α of G(t), q/α is also a root of G(t). Then
G(t) = G1(t)G2(t)G3(t) where

• G1(t) is a (possibly empty) product of powers of type 1 irreducibles; specifi-
cally:

– if q is a square modulo �, say q = α2 with α ∈ F
∗
� , then G1(t) =

(t− α)2j−(t+ α)2j+ for some j+, j− ≥ 0;
– if q is a non-square modulo �, then G1(t) = (t2 − q)j for some j ≥ 0;

• G2 is a (possibly empty) product of powers of type 2 irreducibles;
• G3 is a (possibly empty) product of powers of polynomials of the form P (t)Q(t)
where P (t) and Q(t) are type 3 irreducibles of the same degree with disjoint
root sets such that q/α is a root of Q(t) whenever α is a root of P (t).

Proof For any root α of G(t), let Pα(t) denote the minimal polynomial of α.
Let G1(t) and G2(t) denote the product of all type 1 and type 2 irreducible factors
of G(t), respectively, and set G3(t) = G(t)/G1(t)G2(t). Then G3(t) consists of type
3 irreducible factors of G(t) only. Moreover, every root α of G1(t) satisfies α = q/α,
every root of G2(t) satisfies α 
= q/α and Pα(t) = Pq/α(t), and every root of G3(t)
satisfies α 
= q/α and Pα(t) 
= Pq/α(t).

Let α be any root of G3(t), and set d = deg(Pα). Then αi = α�i , 0 ≤ i ≤ d−1,

are the roots of Pα(t); see the proof of Lemma 5.1. Therefore, q/αi = (q/α)�
i

,
0 ≤ i ≤ d − 1, are all the roots of Pq/α(t), so deg(Pq/α) = d. Moreover, no αi is
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a root of Pq/α(t), otherwise Pα(t) = Pαi
(t) = Pq/α(t). Hence G3(t) is of the form

described above.
Now deg(G3) is even, and by Lemma 5.1, deg(G2) is also even. Thus, deg(G1)

must be even. Every root of G1(t) is a square root of q. If q is a non-square modulo
�, then Pα(t) = t2 − q, so G1(t) is as specified above. If q is a square modulo �, say
q = α2 with α ∈ F

∗
�d , then Pα(t) = t ± a. Thus, G1(t) = (t − a)n−(t + a)n+ with

n−, n+ ≥ 0. Then n− + n+ = deg(G1) is even. Now

G1(0) =
G(0)

G2(0)G3(0)
= q(deg(G)−deg(G2)−deg(G3))/2 = qdeg(G1)/2 = αdeg(G1) .

On the other hand, G1(0) = (−α)n−αn+ = (−1)n−αn−+n+ = (−1)n−αdeg(G1). It
follows that n− is even, and hence n+ is also even.

Note that it is easy, given the irreducible factors of G(t), to determine which
are of type 2, as any such factor P (t) = td + ad−1t

d−1 + · · · + a1t + a0 satisfies
a0 = qd and ai = ad−iq

d−i for 1 ≤ i ≤ d/2− 1.
The above results lead to a bound on b, with b as given in Proposition 3.2 and

Theorem 4.3, and hence on nl, that can be read solely from the factorization of
F (t) over F�. Hence, one can avoid computing any matrix orders.

Theorem 5.5 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Set b = ord(AF ), where AF is
the companion matrix of F (t). For i = 1, 2, 3, put li = 1 whenever F (t) has no type
i irreducible factor; otherwise, put li = ��log�(mi)�Ni, where

mi = max{vP (F ) | P is a type i irreducible factor of F} (i = 1, 2, 3) ,

N1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ord�(α) if q = α2 is a square modulo �

and vt+α(F ) = 0,

ord�(−α) if q = α2 is a square modulo �

and vt−α(F ) = 0,

max{ord�(α), ord�(−α)} if q = α2 is a square modulo �

and vt+α(F ) · vt−α(F ) 
= 0,

2 ord�(q) if q is a non-square modulo �,

N2 = ord�(q) lcm(�deg(P )/2 + 1 | P is a type 2 irreducible factor of F ) ,

N3 = lcm(�deg(P ) − 1 | P is a type 3 irreducible factor of F ) .

Then b divides lcm(l1, l2, l3).

Proof Assume l1, l2, l3 > 1. From the proof of Theorem 4.3, we obtained
b = lcm(��log�(vP (F ))� ord(AP )) where the lcm runs over all the irreducible factors
P of F . Thus, b = lcm(b1, b2, b3) where

bi = lcm(��log�(vP (F ))� ord(AP ) | P is a type i irreducible factor of F )

for i = 1, 2, 3. As before, the power of � in the lcm is just the largest power of �
occurring in any term. Furthermore, for any irreducible polynomial P (t) and any
root α of P (t), ord(AP ) = ord�(α) divides |F∗

�deg(P ) | = �deg(P ) − 1 if P (t) is of type

3, and ord(AP ) | (�−1)(�deg(P )/2+1) if P (t) is of type 2 by Corollary 5.2. It follows
that b3 | l3 and b2 | l2.
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We use Proposition 5.4 to analyze b1. Suppose first that q = α2 is a square in F
∗
� .

If vt+α(F ) = 0, then the only type 1 irreducible factor of F (t) is P (t) = t− α with
companion matrix AP = (α). So by Lemma 4.2, b1 = ��log�(vt−α(F ))� ord�(α) = l1.
If vt+α(F ) 
= 0, then set nα = ord�(α), n−α = ord�(−α), and assume without loss
of generality that n−α ≥ nα. Then n−α = nα or n−α = 2nα, so lcm(n−α, nα) =
n−α = max{nα, n−α}. It follows again by Lemma 4.2 that

b1 = lcm(��log�(vt−α(F ))�nα , ��log�(vt+α(F ))�n−α) = �m1 max{nα, n−α} = l1 .

Finally, if q is a non-square modulo �, then At2−q has eigenvalues ±√
q, both of

order 2 ord�(q). Thus, again b1 = l1.

Corollary 5.6 With the notation of Theorem 5.5, b divides lcm(l′1, l
′
2, l3), where

for i = 1, 2, l′i = 1 if F (t) has no type i irreducible factors; else

l′1 =

{
��log�(m1)�(�− 1) if q is a square modulo � ,

2 ��log�(m1)�(�− 1) if q is a non-square modulo � ,

l′2 = ��log�(m2)�(�− 1) lcm(�deg(P )/2 + 1 | P is a type 2 irreducible factor of F ) .

Proof This follows from the simple fact that the order of every element in F
∗
�

divides �− 1.

The bound on b in Theorem 5.5 can be sharp:

Example 5.7 We revisit Example 4.4. We have � = 3 and q = 179 ≡
−1 (mod 3), so q is a non-square modulo � that has order 2. P3(t) = t2 + 1 is
the only type 1 factor of F (t) and k = vP3

(F ) = 2. So l1 = l′1 = 2 · 3 · 2 = 12.
P4(t) is the only type 2 factor of F (t), so l2 = l′2 = 2 · (31 + 1) = 8. Finally,
P1(t) = t + 1 and P2(t) = t + 2 form a pair of type 3 factors, so l3 = 3 − 1 = 2.
Hence, b | lcm(12, 8, 2) = 24, and in fact b = 24 from Example 4.4.

Once again, we state a simple special case:

Corollary 5.8 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Suppose that F (t) is irreducible
over F�, and let AF be the companion matrix of F (t). Then

ord(AF ) | ord�(q)(�g + 1) | (�− 1)(�g + 1) .

Proof This follows immediately from Theorem 5.5 or Corollary 5.2, since F (t)
is a type 2 polynomial.

6 Genus 1 and 2 curves

In the case of elliptic (i.e. genus 1) curves, it is well-known that ord�(q) | n�,
which gives a lower bound on n�. In fact, for q 
≡ 1 (mod �), the Balasubramanian-
Koblitz Theorem [3] states that J [�] ⊆ Fqn if and only if ord�(q) | n. Proposition
6.1 below is a slightly more precise statement than Lemma 2.1 of [6].

Proposition 6.1 Let L(t) be the L-polynomial of an elliptic function field
K/Fq, and set F (t) = t2L(t−1) (mod �), F (t) ∈ F�[t]. Let n� be the degree of the
field of rationality of J [�] over Fq. Then the following hold:

1. If F (t) = (t−α)(t− q/α) splits into two distinct linear factors in F�[t], then
n� = ord�(α) | �− 1.

2. If F (t) is irreducible in F�[t], then n� | �2 − 1.
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3. If F (t) = (t−α)2 is the square of a linear factor in F�[t], then n� | � ord�(α) |
�(�− 1). This can only occur if q is a square modulo �.

Proof This is immediate from Corollaries 4.5 and 5.8. Note also that if F (t) =
(t− α)2 with α ∈ F�, then F (0) = α2 = q, so q must be a square modulo �.

We point out that F (t) is a product of 2 (linear) type 3 polynomials in case 1,
a type 2 polynomial in case 2, and a square of a type 1 polynomial in case 3. So the
above results could also have been obtained through Theorem 5.5 and Corollary 5.6.
We also note that every factorization described above can happen, as evidenced by
the example below. Here, q = 5 and � = 11. The first column in the table below
lists a cubic polynomial D(x) ∈ F5[x] so that y2 = D(x) is an elliptic curve over
F5. The second column provides the factorization of F (t) ≡ t2L(t−1) (mod 11),
F (t) ∈ F11[t], into monic irreducibles over F11. The third column specifies which of
the cases in Proposition 6.1 this factorization corresponds to.

D(x) ∈ F5[x] Factorization of F (t) over F11 Case in Prop. 6.1

x3 + 2x+ 1 (t+ 3)(t+ 9) 1
x3 + 1 t2 + 5 2
x3 + x+ 1 (t+ 7)2 3

For genus 2 curves, bounds on the field of rationality of the �-torsion can be
found in [7, Proposition 6.2]. That source assumes that the function field has
complex multiplication by the ring of integers of a quartic CM field. Our result has
no such restriction and is an improvement on [7] in some cases.

Proposition 6.2 Let L(t) be the L-polynomial of a function field K/Fq of
genus 2, and set F (t) = t4L(t−1) (mod �), F (t) ∈ F�[t]. Let n� be the degree of the
field of rationality of J [�] over Fq.

1. Suppose first that F (t) is square-free.
(a) If F (t) splits into four (distinct) linear factors in F�[t], then

n� = lcm(ord�(αi)) | �− 1 ,

where the αi ∈ F� run through all the roots of F .
(b) If F (t) splits into either two or three distinct irreducible factors in

F�[t], then n� | �2 − 1.
(c) If F (t) is irreducible in F�[t], then n� | ord�(q)(�2 + 1) | (�− 1)(�2 + 1).

2. Suppose now that F (t) is not square-free.
(a) If F (t) has a quadratic irreducible factor in F�[t], then n� | �(�2 − 1).
(b) If F (t) is the fourth power of a linear factor in F�[t], then for the root

α of F (t),

n� | ��log�(4)� ord�(α) |
{
�2(�− 1) if � = 2 or � = 3 ,

�(�− 1) if � ≥ 5 .

This can only occur when q is a square modulo �.
(c) In every other case, we have

n� | lcm(ord�(αi)) | �(�− 1),

where the αi ∈ F� run through all the roots of F .

Proof First note that F (t) cannot have an irreducible factor of degree 3, as
such a factor would be a type 2 factor, which cannot have odd degree by Lemma
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5.1. Neither can F (t) split into a cube of a linear factor and a second different linear
factor. To see this, suppose that three of the roots of F (t) in F

∗
� are identical, say

α = β = q/α. Then α = β implies q/β = q/α, so all four roots must be identical.
Hence the list above exhausts all possible cases.

The claim for irreducible F (t) follows from Corollary 5.8. The other results are
a consequence of Theorem 4.3, or of Theorem 5.5 and Corollary 5.6. Note again
that if F (t) = (t − α)4 with α ∈ F�, then the coefficient of t in F (t) is equal to q
times that of t3. Thus, −4αq = −4α3, which implies that q = α2 must be a square
modulo �.

Once again, each of the above factorizations can occur: in the example below,
q = 11 and � = 7. The first column lists a polynomial D(x) ∈ F11[x] of degree
5 so that y2 = D(x) is a hyperelliptic curve of genus 2 over F11. The second
and third columns are analogous to those of the previous table, with column 3
specifying which of the cases in Proposition 6.2 the factorization case of F (t) over
F7 corresponds to.

D(x) ∈ F11[x] Factorization of F (t) over F7 Case in Prop. 6.2

x5 + x4 + x3 + x2 + 6x+ 10 (t+ 1)(t+ 3)(t+ 4)(t+ 6) 1 (a)
x5 + x4 + x3 + x2 + x+ 6 (t2 + t+ 3)(t2 + 6t+ 3) 1 (b)
x5 + x4 + x3 + x2 + x+ 3 (t+ 3)(t+ 6)(t2 + 6t+ 4) 1 (b)
x5 + x4 + x3 + x2 + x+ 1 t4 + 4t3 + 6t2 + 2t+ 2 1 (c)
x5 + x4 + x3 + x2 + x+ 2 (t+ 5)2(t2 + 6t+ 4) 2 (a)
x5 + x4 + x3 + x2 + 3x+ 8 (t2 + t+ 4)2 2 (a)
x5 + x4 + x3 + x2 + x (t+ 2)2(t+ 5)2 2 (b)
x5 + x4 + x3 + x2 + x+ 10 (t+ 2)2(t+ 3)(t+ 6) 2 (b)
x5 + x4 + x3 + x2 + x+ 4 (t+ 5)4 2 (c)

We point out that the last line of the above table represents an example where
Theorem 4.3 (and hence Theorem 5.5 as well) do not give a sharp bound on n�.
Both theorems yield the multiple 42 of n7, whereas computations of the �-rank of
the Jacobian in Magma reveal that n7 = 21.

7 Incremental increases in �-rank

Rather than achieving full �-rank 2g, we now turn to the question of incremental
increases in �-rank that was already addressed in Proposition 3.4. We provide an
improvement to that proposition. In particular, we will see how to achieve multiple
such increases over intermediate base fields Fq ⊆ Fqn ⊆ Fqn� . We begin with some
useful preliminary results.

Lemma 7.1 Let � be a prime, λ ∈ F
∗
� , and m ∈ N with m ≥ 2. Then for any

n ∈ N, the eigenspace of the Jordan matrix Jn
m,λ ∈ GLm(F�) has dimension 1 if

and only if � � n.

Proof The matrix Jn
m,λ has λn as its only eigenvalue, and the corresponding

eigenspace is the null space of the matrix Jn
m,λ − λnIm. This matrix is of the form

(
0 A
0 0

)

, where A is an (m−1)× (m−1) matrix whose i-th row (1 ≤ i ≤ m−1)

has the form

( 0 0 . . . 0
(
n
1

)
λn−1

(
n
2

)
λn−2 · · ·

(
n

m−i

)
λn−m+i ) .
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Here, for ease of notation, we adopt the convention
(
n
j

)
= 0 for j > n. Thus, A is

an upper triangular matrix of determinant (nλn−1)m−1. So A has maximal rank
(i.e. trivial null space) if and only if � � n, and this holds exactly when the null
space of Jn

m,λ − λnIm has dimension 1.

Corollary 7.2 With the notation of Lemma 7.1, if � � n and ord�(λ) | n, then
Jn
m,λ is similar to Jm,1.

Lemma 7.3 Let P ∈ F�[t] be an irreducible polynomial, m ∈ N, and AP ,
APm the companion matrices of P and Pm, respectively. Then for any multiple
n of ord(AP ), the matrix An

Pm has 1 as its only eigenvalue. The corresponding
eigenspace contains a direct sum of deg(P ) one-dimensional spaces, and is equal to
this direct sum if m = 1 or � � n.

Proof For brevity, set d = deg(P ). Then over F�, A
n
P is similar to the d × d

identity matrix Id, and thus has 1 as its only eigenvalue, with d linearly indepen-
dent eigenvectors. Since An

P and Id have entries in F�, so does the kernel of their
difference ker(An

P − Id). Thus, dimF�
ker(An

P − Id) = d and the result holds for
m = 1.

Now suppose m ≥ 2. Then over F�, APm is similar to its Jordan canonical
form JAPm = diag(Jm,λ1

, Jm,λ2
, . . . , Jm,λd

), where λ1, λ2, . . . , λd ∈ F� are the roots

of P (t). So APm has d distinct eigenvalues λj ∈ F�, 1 ≤ j ≤ d, each of which

corresponds to a one-dimensional eigenspace Wj over F�. Since ord�(λj) = ord(AP )
divides n for 1 ≤ j ≤ d, each power Jn

m,λj
has 1 as its only eigenvalue. It follows

that the only eigenvalue of An
Pm is 1, and An

Pm acts trivially on each Wj for 1 ≤
j ≤ d. Therefore, dim

F�
ker(An

Pm − Imd) ≥ d, where Imd is the md ×md identity

matrix. Since An
Pm and Imd have entries in F�, so does ker(An

Pm − Imd). Thus,
dimF�

ker(An
Pm − Imd) ≥ d, and the eigenspace of An

Pm corresponding to 1 contains

the direct sum W =
⊕d

j=1 Wj .

If � � n, then Corollary 7.2 implies that Jn
m,λj

is similar to Jm,1 for all 1 ≤ j ≤ d.

So over F�, A
n
Pm is similar to the matrix diag(Jm,1, Jm,1, . . . , Jm,1), and thus has 1

as its only eigenvalue, with d Jordan blocks. Therefore, dim
F�
ker(An

Pm − Imd) = d.

Again, since An
Pm and Imd both have entries in F�, we have dimF�

ker(An
Pm−Imd) =

d, and the eigenspace of An
Pm corresponding to the only eigenvalue 1 is equal to W .

We can now ascertain lower bounds on the �-rank of Jn = JacKn
(Fqn) for any

n ∈ {1, 2, . . . , n�}, and sometimes even the exact �-rank.

Theorem 7.4 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, and set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t]. Let P1, P2, · · · , Ps ∈ F�[t] be the
collection of distinct monic irreducible factors of F (t), with respective companion
matrices APi

, 1 ≤ i ≤ s. Let n ∈ N, and set

In = {i | 1 ≤ i ≤ s and ord(APi
) divides n} .

Then the following hold:

1. �-rank(Jn) ≥
∑

i∈In

deg(Pi), with equality if vPi
(F ) = 1 for all i ∈ In.

2. �-rank(J1) ≥ 1 if and only if t − 1 | F (t). Moreover, �-rank(J1) = 1 if
vt−1(F ) = 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

The �-Rank Structure of a Global Function Field 161

3. Suppose ord(APi
) � n for all 1 ≤ i ≤ s such that Pi(t) 
= t−1. If vt−1(F ) ≤ 1

or � � n, then �-rank(Jn) = �-rank(J1).

Proof We note that an element of J [�] is defined over Fqn , i.e. belongs to
Jn[�], if and only if it is fixed by the Frobenius πn

q,n�
acting on J [�].

Let P
mij

i (1 ≤ i ≤ s, 1 ≤ j ≤ ki) be the elementary divisors of πq,n�
. Then the

primary rational canonical form of πq,n�
is Aπq,n�

= diag(A
P

mij
i

). Thus, the n-th

power πn
q,n�

of πq,n�
has a matrix representation An

πq,n�
= diag(An

P
mij
i

). By Lemma

7.3, for i ∈ In, An
P

mij
i

has 1 as its only eigenvalue, and the corresponding eigenspace

Wij contains a subspace that is isomorphic to F
deg(Pi)
� . It follows that πn

q,n�
has

1 as an eigenvalue, and the corresponding eigenspace W =
⊕

i,j Wij contains a

subspace that is F�-isomorphic to F
dn

� , where dn =
∑

i∈In
deg(Pi). Moreover, the

eigenvalue 1 results in a trivial action of πn
q,n�

on W , so wqn = w for all w ∈ W .
Hence, elements in W must be defined over Fqn , implying that W ⊆ Jn[�]. Thus,
�-rank(Jn) ≥ dn, yielding the inequality of part 1.

To obtain equality in the case when F (t) is square-free, note that ki = mi1 = 1

for 1 ≤ i ≤ s. Thus, each Wi1 is isomorphic to F
deg(Pi)
� by Lemma 7.3, and hence

W ∼= F
dn

� . Moreover, for i /∈ In, the matrix An
P

mi1
i

has only eigenvalues distinct

from 1, so πn
q,n�

does not act trivially on any element outside W . It follows that
�-rank(Jn) = dn.

For part 2 of Theorem 7.4, if t− 1 | F (t), then �-rank(J1) ≥ deg(t− 1) = 1 by
part 1 of the theorem applied to n = 1. Conversely, if �-rank(J1) ≥ 1, then t− 1 |
F (t) by Proposition 3.3 (with r = 1). Similarly, vt−1(F ) = 1 implies t − 1 | F (t),
and hence �-rank(J1) ≥ 1. Then the same proposition yields �-rank(J1) = 1.

For part 3, suppose first that t− 1 � F (t). Then neither πq,n�
nor πn

q,n�
has 1 as

an eigenvalue, so neither map acts trivially on any non-zero element of J [�]. Thus,
�-rank(J1) = �-rank(Jn) = 0.

Now assume that t − 1 | F (t). Then In = I1. If vt−1(F ) = 1, then by parts
1 and 2 of the theorem, �-rank(Jn) = �-rank(J1) = 1. If (t − 1)2 | F (t), then let
(t−1)mj , 1 ≤ j ≤ k, be the elementary divisors of πq,n�

corresponding to the factor
t − 1 of F (t). Then Aπq,n�

is similar to diag(Jm1,1, . . . , Jmk,1, B), where B is a
matrix whose eigenvalues are all distinct from 1. By Corollary 7.2, Aπn

q,n�
is similar

to diag(Jm1,1, . . . , Jmk,1, C), where C also has only eigenvalues distinct from 1. It
follows that πq,n�

and πn
q,n�

act trivially on k-dimensional subspaces of J1[�] and
Jn[�], respectively, but do not act trivially on any elements outside these respective
subspaces. So �-rank(Jn) = �-rank(J1) = k.

For brevity, we henceforth refer to the tuple of �-ranks of the Jacobians Jn,
1 ≤ n ≤ n�, as the �-rank structure of the extension K/Fq. The results of Theorem
7.4, combined with Theorem 4.3 (or Theorem 5.5) can sometimes yield the entire
�-rank structure of a given function field. Before we illustrate this, we discuss a
particularly simple case.

Corollary 7.5 Let L(t) be the L-polynomial of a function field K/Fq of genus
g, set F (t) ≡ t2gL(t−1) (mod �), F (t) ∈ F�[t], and let AF be the companion matrix
of F (t). If F (t) is irreducible, then �-rank(Jord(AF )) = 2g and �-rank(Jk) = 0 for
any k < ord(AF ).
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Proof �-rank(Jord(AF )) = deg(F ) = 2g by part 1 of Theorem 7.4. Since F (t) is
irreducible and deg(F ) is even, we have t−1 � F (t), so �-rank(Jk) = �-rank(J1) = 0
for any k < ord(AF ) by parts 3 and 2 of Theorem 7.4.

We revisit Example 5.4 of [2] to apply this corollary:

Example 7.6 Consider q = 373, the hyperelliptic function field K = F373(x, y)
of genus 4 with

y2 = x9+245x8+175x7+340x6+122x5+70x4+196x3+210x2+316x+337 ,

and � = 3. With the aid of Magma, we found that ζ(t) = L(t)/(373 t2 − 374 t+ 1)
is the zeta function of K with

L(t) = 3734 t8 + 33 · 3733 t7 + 347 · 3732 t6 − 3785 · 373 t5 − 188703 t4

− 3785 t3 + 347 t2 + 33 t+ 1 .

Then F (t) = t8 + 2 t6 + t5 + t3 + 2 t2 + 1 is irreducible over F3, and ord(AF ) = 41.
By Corollary 7.5, �-rank(J41) = 8, and �-rank(Jk) = 0 for 1 ≤ k ≤ 40.

We now illustrate with two examples how our previous results can be employed
to obtain the complete �-rank structure of a function field K/Fq. In fact, knowing
the L-polynomial of K will often yield this entire structure; at times, it is also
necessary to find the �-rank of Jn for one or a few very small values of n via direct
computation, for example, using Magma. Generally, it is even possible to deduce
the elementary divisors of πq,n�

using these techniques.

Example 7.7 We first revisit Example 5.5 of [2], which was already discussed
in Examples 4.4 and 5.7. Here, K = F(x, y) with y as given in Example 4.4 is a
genus 4 hyperelliptic function field over F179. We wish to determine the 3-rank
structure of K/F179, i.e. the 3-rank of Jn with 1 ≤ n ≤ n3. Theorems 4.3 and 5.5
yield n3 | 24.

Recall that F = P1P2P
2
3P4 ∈ F3[t] where

P1(t) = t+ 1, P2(t) = t+ 2, P3(t) = t2 + 1, P4(t) = t2 + t+ 2

are all irreducible over F3, and ord(AP1
) = 2, ord(AP2

) = 1, ord(AP3
) = 4,

ord(AP4
) = 8.

By part 2 of Theorem 7.4, 3-rank(J1) = 1, and by part 3 of the same theorem,
3-rank(Jn) = 1 for all odd n. Using the notation of Theorem 7.4, we obtain the
following sets In:

n 1 (mod 2) 2 (mod 4) 4 (mod 8) 0 (mod 8)
In {2} {1, 2} {1, 2, 3} {1, 2, 3, 4}

By part 1 of Theorem 7.4, 3-rank(Jn) = deg(P2) = 1 for n odd (which we already
observed), 3-rank(Jn) = deg(P1) + deg(P2) = 2 for n ≡ 2 (mod 4), 3-rank(Jn) ≥ 4
for n ∈ {4, 12, 20}, and 3-rank(Jn) ≥ 6 for n ∈ {8, 16, 24}. From Theorems 4.3 and
5.5, 3-rank(J24) = 8. This leaves the 3-ranks of Jn for n = 4, 8, 12, 16 and 20 only
partially determined.

We first analyze n = 12; this will resolve all the ambiguous cases. The primary
rational canonical form of π179,n3

is one of

A1 = diag(AP1
, AP2

, AP3
, AP3

, AP4
) or A2 = diag(AP1

, AP2
, AP 2

3
, AP4

) .
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By considering the orders of the diagonal sub-matrices in A1 and A2, is easy to see
that A12

1 = A12
2 = diag(I6,−I2). It follows that π

12
179,n3

acts trivially on a subspace
of J [3] of dimension exactly 6. So 3-rank(J12) = 6.

Note that F17912 is the largest proper subfield of F17924 , so this implies that
n3 = 24. Since A1 has order 8, it follows that the primary rational canonical form
of π179,n3

must be A2.
Now An

P1
= An

P2
= (1) for all n even, and both these matrices have a one-

dimensional eigenspace. By Lemma 7.3, An
P 2

3
has 1 as its only eigenvalue, with

a 2-dimensional eigenspace, for n = 4, 8, 16, 20. Since ord(AP4
) = 8, A4

P4
= A20

P4

has a double eigenvalue −1. A4
2 and A20

2 have 1 as a 6-fold eigenvalue with a 4-
dimensional eigenspace, and −1 as a double eigenvalue. Hence, π4

179,n3
acts trivially

on a subspace of J [3] of dimension 4. Thus, 3-rank(J4) = 3-rank(J20) = 4. Sim-
ilarly, A8

P4
= A16

P4
= I2, so A8

2 and A16
2 each have 1 as their only eigenvalue, with

a 6-dimensional eigenspace. Thus, 3-rank(J8) = 3-rank(J16) = 6. This yields the
following 3-rank structure for K/F179:

n 3-rank
odd 1
2, 6, 10, 14, 18, 22 2
4, 20 4
8, 12, 16 6
24 8

To check our results, we used Magma to compute the 3-Sylow subgroups of Jn for
all proper divisors n of 24, and for a few other values of n, and found

Syl3(J1) ∼= Syl3(J3) ∼= Z/9,

Syl3(J2) ∼= Syl3(J10) ∼= (Z/9)2, Syl3(J6) ∼= (Z/27)2,

Syl3(J4) ∼= Syl3(J20) ∼= (Z/9)4,

Syl3(J8) ∼= Syl3(J16) ∼= (Z/3)2 × (Z/9)4, Syl3(J12) ∼= (Z/3)2 × (Z/27)4.

We were unable to compute Syl3(J24) with Magma due to limited computer mem-
ory.

Example 7.8 Consider q = 149, the hyperelliptic function field K = F149(x, y)
of genus 4 with

y2 = x9 + 43x8 + 35x7 + 11x6 + 22x5 + 38x4 + 75x3 + 28x2 + 61x+ 5 ,

and � = 5. With the aid of Magma, we computed the L-polynomial L(t) of K/F149

and obtained F (t) ≡ t8L(t−1) (mod 5). We found that

F (t) = t8 + 4t7 + 3t6 + 2t5 + 2t4 + 3t3 + 3t2 + t+ 1 ∈ F5[t]

factors as F = P1P2P
2
3P4P5, where

P1(t) = t+ 4, P2(t) = t+ 1, P3(t) = t+ 3, P4(t) = t2 + t+ 2, P5 = t2 + 2t+ 3

are all irreducible over F5. One easily verifies that ord(AP1
) = 1, ord(AP2

) = 2,
ord(AP3

) = 4, and ord(AP4
) = ord(AP5

) = 24. Both Theorems 4.3 and 5.5 imply
n5 | 120.

As in the previous example, we deduce that 5-rank(Jn) = 1 for n odd and
obtain
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n 1 (mod 2) 2 (mod 4) 4, 8, 12, 16, 20 (mod 24) 0 (mod 24)
In {1} {1, 2} {1, 2, 3} {1, 2, 3, 4, 5}

By part 1 of Theorem 7.4, 5-rank(Jn) = 1 for n odd, 5-rank(Jn) = 2 for n ≡
2 (mod 4), 5-rank(Jn) ≥ 3 for n ≡ 4, 8, 16, 20 (mod 24), and 5-rank(Jn) ≥ 7 for
n ≡ 0 (mod 24). Also, from Theorems 4.3 and 5.5, 5-rank(J120) = 8. This leaves
the 5-ranks of Jn for n ≡ 0 (mod 4) with n < 120 only partially determined.

The primary rational canonical form Aπ149,n5
of π149,n5

is one of

A1 = diag(AP1
, AP2

, AP3
, AP3

, AP4
, AP5

) or

A2 = diag(AP1
, AP2

, AP 2
3
, AP4

, AP5
) .

Hence, n5 = ord(A1) = 24 or n5 = ord(A2) = 120.
We consider multiples n of 20 less than 120; note that ord(AP 2

3
) = 20 by Lemma

4.1. For such n, we have An
1 = An

2 = diag(I4, A
n
P4
, An

P5
), and An

P4
and An

P5
do not

have 1 as an eigenvalue. It follows that πn
149,n5

acts trivially on a subspace of J [5]
of dimension exactly 4. So 5-rank(Jn) = 4 for these n.

Note that by Lemma 7.3, A4
P 2

3
has 1 as its only eigenvalue, with a one-dimensional

eigenspace. Also, A4
P4

and A4
P5

do not have 1 as an eigenvalue. Hence, 5-rank(J4) =
4 if Aπ149,n5

= A1 and 5-rank(J4) = 3 if Aπ149,n5
= A2. At this point, it is unclear

how to resolve this ambiguity, so we resort to Magma to determine 5-rank(J4). We
obtain 5-rank(J4) = 3, so Aπ149,n5

= A2 and n5 = 120. This resolves the rest of
the 5-rank structure completely as follows.

Since 7 ≤ 5-rank(Jn) < 5-rank(J120) = 8 for n ≡ 0 (mod 24) and n < 120,
we have 5-rank(Jn) = 7 for such n. Also, for any multiple n of 4 not divisible
by 20, An

P 2
3
has 1 as its only eigenvalue, with a one-dimensional eigenspace. So

5-rank(Jn) = 3 for n ≡ 0 (mod 4), n 
≡ 0 (mod 20), n 
≡ 0 (mod 24). This yields
the following 5-rank structure for K/F149:

Congruence class of n, 1 ≤ n ≤ 120 5-rank
n ≡ 1 (mod 2) 1
n ≡ 2 (mod 4) 2
n ≡ 0 (mod 4), n 
≡ 0 (mod 20), n 
≡ 0 (mod 24) 3
n ≡ 0 (mod 20), n < 120 4
n ≡ 0 (mod 24), n < 120 7
n = 120 8

Again, we used Magma to compute Jn[5] for most of the divisors n of 120, and
found

5-rank(J1) = 5-rank(J3) = 5-rank(J5) = 5-rank(J15) = 1,
5-rank(J2) = 5-rank(J6) = 5-rank(J10) = 5-rank(J30) = 2,
5-rank(J4) = 5-rank(J8) = 5-rank(J12) = 3,
5-rank(J20) = 4,
5-rank(J24) = 7.

We again could not compute 5-rank(Jn) for n = 40, 60, 120 using Magma because
of limited memory.

8 Conclusion

For any function field K/Fq of genus g, we have provided several tools for
analyzing the �-ranks of the Jacobians of constant field extensions Kn/Fqn , with
n ∈ N and � a prime not dividing q. This includes the determination of the field
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of definition of the absolute �-torsion, or at least an upper bound on the extension
degree of this field over Fq.

Our investigation extends the previous results of [2]. Of key importance is
the factorization of F (t) ∈ F�[t] into monic irreducibles over F�, where F (t) ≡
t2gL(t−1) (mod �) and L(t) is the L-polynomial L(t) of K/Fq. Assuming that L(t)
can be computed, our method can often determine the entire �-rank structure of
K/Fq. This is always true if F (t) is square-free, and also in some other cases when
F (t) only contains small and few powers. In fact, oftentimes, our approach is able
to identify the elementary divisors of the q-th power Frobenius, which in turn yield
the complete �-rank structure. At times, when F (t) is not square-free, it may
additionally be necessary to determine the �-rank of Jn for one or a few very small
values of n.

Apart from the L-polynomial, all the ingredients of our method stem from basic
algebra and linear algebra. Obtaining L(t) can be difficult and represents the main
practical and computational obstacle to this approach. Magma computes the zeta
function, and hence the L-polynomial, of a hyperelliptic function field of moderate
size reasonably efficiently. For small �, it can also find the �-Sylow subgroups of
an Abelian group quite quickly. Thus, our approach is very suitable for not too
large base fields Fq and small values of �, and is especially fruitful for hyperelliptic
curves. Unfortunately, it is unclear whether it is possible to obtain F (t) without
computing L(t), or to ascertain the elementary divisors of the Frobenius via some
other means.
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