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Abstract

An S-necklace of length n is a circular arrangement of the integers 0, 1, 2, . . . , n− 1
such that the absolute difference of two neighbors always belongs to S. Focusing in
particular on the case |S| = 2, we prove that, subject to certain conditions on the
two elements in S, the number of S-necklaces obeys a linear homogeneous recurrence
relation. We give an algorithm for computing the corresponding generating function
and compute generating functions and explicit recurrence relations for several small
sets S. Our methods extend to sets S of any size.
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1 Introduction

Let n ≥ 3 be a positive integer and [n] denote the set {0, 1, . . . , n−1}. A circular permutation
of [n] is an arrangement of the elements of [n] on a circle. Two circular permutations on [n]
are equal if one can be obtained by rotating or flipping the other.

Now let S be a finite set of positive integers. An S-(difference) necklace of length n is a
circular permutation of [n] such that the absolute difference between adjacent terms belongs
to S. A {4, 7}-necklace of length 11 is depicted in Figure 1.1.
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Figure 1.1: A {4, 7}-necklace of length 11. Any two neighbors differ by ±4 or ±7.

Our primary goal is to analyze the count of difference necklaces of length n. The problem
of counting and enumerating permutations according to the containment or avoidance of
particular patterns is the subject of intense research; see, for example, the seminal paper by
Simion and Schmidt [6] or the more recent article by Gray, Lanning, and Wang [2]. Most
previous work on circular permutations explores relative increases and decreases of elements.
In contrast, we consider the absolute difference between successive terms. It is expedient to
cast difference necklaces in the language of graph theory. To that end, we define GS(n) to be
the graph on [n] where two vertices x, y are adjacent if and only if |x− y| ∈ S; we show an
example in Figure 1.2. Then the S-difference necklaces are precisely the Hamiltonian cycles
of GS(n). Note that GS(n) can be obtained by deleting certain edges from the undirected
Caley graph on Z/nZ with generating set S.

Let NS(n) denote the number of difference necklaces of length n, or equivalently, the
number of Hamiltonian cycles in GS(n). Then our main result is the following.

Theorem 1.1. Let S be a non-empty finite set of positive integers. Then the sequence
(NS(n))n∈N obeys a homogeneous linear recurrence relation with constant coefficients. That
is, there exist a positive integer d and integers c1, c2, . . . , cd, depending on S, such that

NS(n) =
d

∑

i=1

ciNS(n− i).

In previous work [10], we presented a highly technical construction for “growing” S-
necklaces via walks in a digraph, which, in particular, implies this theorem. Here, we provide
a substantially streamlined and much more useful proof of Theorem 1.1. The key feature of
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our proof herein is that it offers a general algorithm for finding the generating function of
(NS(n))n∈N. We focus in particular on the case |S| = 2 and explicitly compute the generating
functions for several two-element sets S as well as the set S = {1, 2, 3}. For ease of notation,
we omit set brackets in NS(n) and GS(n) when listing the elements of S explicitly. For
example, when S = {1, 5}, we write N1,5(n) and G1,5(n) instead of N{1,5}(n) and G{1,5}(n).
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Figure 1.2: The graph G1,5(18). Any two adjacent vertices differ by ±1 or ±5.

Figure 1.2 shows the graph G1,5(18). The drawing bears striking resemblance to a grid
graph, i.e., a graph that is the Cartesian product of two path graphs. The proof of The-
orem 1.1 and the resulting method for obtaining generating functions for (NS(n))n∈N bear
similarities to prior literature on counting Hamiltonian cycles in grid graphs. This is a dif-
ficult problem that has received significant attention and has to date only been solved in
certain special cases. The current best explicit results are due to Stoyan and Strehl [9] who
determined the generating functions for the number of Hamiltonian cycles in an m× k grid
graph for m ≤ 8.

Berlekamp and the second author [1] investigated permutations where the sum (as op-
posed to the difference) of two neighbors is a number of a particular type, such as a prime,
square, cube, or triangular number. They illustrated how a search for such permutations
can be facilitated by considering paths of billiard balls on a rectangular or other polygonal
billiard table. Using this technique, they gave necessary and sufficient conditions for the
existence of (non-circular) permutations where adjacent terms sum to a Fibonacci or Lucas
number. We provide a comprehensive survey of related literature in our prior work [10].

1.1 Existence of S-necklaces

Previously, we conducted an in-depth investigation of the existence of S-necklaces for the
case |S| = 2 [10]. Put S = {a, b} with 0 < a < b. Then {a, b}-necklaces exist only when
gcd(a, b) = 1, and their smallest possible length is a + b. For completeness, we restate the
main existence result and briefly outline the road map of its proof.

3



Proposition 1.2 ([10, Theorem 2.4]). Let a and b be positive coprime integers with 2a ≤ b.
Then {a, b}-necklaces of length n exist for all sufficiently large n, unless abn is odd, in which
case there are no {a, b}-necklaces of length n.

Since Ga,b(n) is bipartite, there are no {a, b}-necklaces of odd length n. For a = 1, a
Hamiltonian cycle in G1,b(n) can easily be found by tracing a “snake pattern” through the
grid. For a ≥ 2, the proof of Proposition 1.2 proceeds as follows. Firstly, the graph Ga,b(a+b)
is readily seen to be the circulant graph on jumps a, b, which is a cycle and hence an {a, b}-
necklace of length a+ b. Secondly, an {a, b}-necklace of length 3a+ b can be constructed by
“stringing together” residue classes modulo a in a suitable manner when 2a ≤ b. Thirdly, an
{a, b}-necklace of length m+n can be formed from two {a, b}-necklaces of respective lengths
m,n by “gluing” along a pair of suitable links. Thus, {a, b}-necklaces exist of every length
x(a+ b) + y(3a+ b) with x, y ≥ 0. Noting that gcd(a+ b, 3a+ b) = 1 when gcd(a, b) = 1, we
can invoke Frobenius’ Coin Problem [4, Theorem 2.1.1] to infer the existence of sufficiently
long {a, b}-necklaces for all integers a, b subject to the conditions of Proposition 1.2. We also
provided explicit lower bounds on n that guarantee their existence [10].

The existence of {a, b}-necklaces for 2a > b is an open problem. We conjecture that they
also exist for every sufficiently large length n in this case, subject to the aforementioned
necessary conditions on a, b, and n. Unfortunately, our construction [10] of {a, b}-necklaces
of length 3a+ b fails when a and b are too close together.

1.2 Organization of the paper

In Section 2, we provide a constructive proof of Theorem 1.1 which is used to obtain ex-
plicit recurrence relations for NS(n) when S = {1, 2}, {1, 3}, {2, 3}, {1, 4}, and {1, 2, 3} in
Section 3. In Section 4, we present algorithms for computing the generating functions for
NS(n) when S = {a, b} (i.e., S contains two elements), and give their explicit expressions,
along with some numerical data, for several small pairs {a, b}. Some concluding remarks are
offered in Section 5.

2 Linear recurrence for Na,b(n)

This section contains a proof of our main result (Theorem 1.1), namely the fact that for every
finite set S of absolute difference values, the sequence (NS(n))n∈N obeys a linear recurrence.
We present a proof in the case |S| = 2, but the reasoning generalizes easily to larger sets S;
see the remarks and example in Section 3.5. As in Section 1.1, put S = {a, b} with 0 < a < b.
The proof of Theorem 1.1 is based on two key ideas.

(A) For every graph H on [b], we can explicitly construct graphs H ′, H ′′ on [b] from H such
that the number of Hamiltonian cycles in Ga,b(n) containing H depends only on the
number of Hamiltonian cycles in Ga,b(n− 1) containing H ′ or H ′′.
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(B) Since there are finitely many graphsH on b vertices, (A) yields a finite system of coupled
difference equations, one of which is satisfied by Na,b(n).

Definition 2.1. Let H be a graph with vertex set [b]. Define the graph GH
a,b(n) to have

vertex set [n] and edge set E(Ga,b(n)) ∪ E(H). Let C(GH
a,b(n)) denote the collection of all

Hamiltonian cycles of GH
a,b(n) containing H.
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Figure 2.1: A graph H on the left and two members of C(GH
1,3(5)) on the right.

Note that for the independent graph Ib, C(G
Ib
a,b(n)) is precisely the set of {a, b}-necklaces

of length n. If H has maximum degree exceeding 2, then C(GH
a,b(n)) is empty. Figure 2.1

depicts a graph H with vertex set [3] and two members of C(GH
1,3(5)).

To prove Theorem 1.1, we establish a recursive property held by |C(GH
a,b(n))|. For every

graph H on [b] with maximum degree 2, we show that there exist suitable graphs H ′, H ′′

with vertex set [b] and maximum degree 2 such that

|C(GH
a,b(n))| = 0 or

|C(GH
a,b(n))| = |C(GH′

a,b(n− 1))| or

|C(GH
a,b(n))| = |C(GH′

a,b(n− 1))|+ |C(GH′′

a,b (n− 1))|.

(2.1)

This implies that the collection of sequences (|C(GH
a,b(n))|)n≥b satisfies a system of cou-

pled simultaneous linear recurrences. Applying standard techniques for decoupling linked
difference equations (see [3], for example) produces a single linear recurrence relation for
|CIb

a,b(n)| = Na,b(n) as asserted in Theorem 1.1.
For brevity, let degG(v) denote the degree of a vertex v in a graph G and ∆(G) the

maximum degree of G.

Proof of Theorem 1.1. Let H be a graph on [b]. If ∆(H) > 2, then C(GH
a,b(n)) is empty, so

assume that ∆(H) ≤ 2. We consider three cases, according to the degree of vertex 0 in H.

Case 1. Suppose degH(0) = 0. Then every C ∈ C(GH
a,b(n)) contains the path a, 0, b and

can hence contain at most one edge in H incident with a. Thus, |C(GH
a,b(n))| = 0 when

degH(a) = 2. So assume now that degH(a) ≤ 1. We form a graph H ′ on the vertices in [b]
with ∆(H ′) ≤ 2 by performing the following operations on H:

(i) add the vertex b and the edge a, b;

(ii) delete the vertex 0;
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(iii) shift all vertex labels down by 1.

An example of this construction is depicted in Figure 2.2.
We establish a bijection between C(GH

a,b(n)) and C(GH′

a,b(n − 1)). Every C ∈ C(GH
a,b(n))

contains the path a, 0, b. Replacing this path with the edge a, b and then shifting all vertex
labels of C down by 1 yields a Hamiltonian cycle in C(GH′

a,b(n − 1)). Conversely, every

C ∈ C(GH′

a,b(n − 1)) contains the edge a − 1, b − 1. Shifting all vertex labels of C up by 1
and then replacing the edge a, b by the path a, 0, b in the resulting labeled cycle produces a
Hamiltonian cycle in C(GH

a,b(n)).

H H ′

−→
All cycles contain

path 1, 0, 4

Replace path with edge

Shift labels down
−→

0

1

2

3

0

1

2

3

4 0

1

2

3

Figure 2.2: Example for Case 1 with a = 1, b = 4.

Case 2. Suppose degH(0) = 1. Let u ∈ [b] be the neighbor of 0 in H. We consider two
subcases.

Case 2.i. Suppose u = a. Then every C ∈ C(GH
a,b(n)) contains the path a, 0, b and we

can construct a graph H ′ just as in Case 1.

Case 2.ii. Suppose u 6= a. For x ∈ {a, b}, define the two graphs Ha, Hb on [b] by
performing the following operations on H:

(i) add the edge {u, x};

(ii) delete the vertex 0;

(iii) shift all vertex indices down by 1;

(iv) add vertex b− 1.

We will show that

|C(GH
a,b(n))| = |C(GHa

a,b (n− 1))|+ |C(GHb

a,b(n− 1))|. (2.2)

Partition C(GH
a,b(n)) into two sets Sa and Sb consisting of the cycles containing the paths

u, 0, a and u, 0, b, respectively. Every cycle C ∈ Sa corresponds to a cycle in C(GHa

a,b (n− 1))
via the following operations:

(i) replace the path u, 0, a with the edge u, a;

(ii) delete the vertex 0;
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(iii) shift all vertex labels down by 1.

This process can be inverted, so there is a bijection between Sa and C(GHa

a,b (n − 1)). An

analogous bijection exists between Sb and C(GHb

a,b(n − 1)), thus proving (2.2). Figure 2.3
shows an example of this construction.

H

|C(GH
a,b(n))|

Ha

|C(GHa

a,b (n− 1))|

Hb

|C(GHb

a,b(n− 1))|

−→−1
Edges replace paths
Labels shifted down

=

+

+

0

1

2

3

0

1

2

3

0

1

2

3

Figure 2.3: Example for Case 2.ii with a = 1, b = 4.

Since ∆(H) ≤ 2 we have ∆(Hb) ≤ 2. Similarly, ∆(Ha) ≤ 2 if and only if degH(a) ≤ 1; if
degH(a) = 2, then ∆(Ha) > 2 and hence C(GHa

a,b (n− 1)) is empty.

Case 3. Suppose degH(0) = 2. Let u, v ∈ [b] be the two neighbors of 0 in H. Build a graph
H ′ on [b] by performing the following operations on H:

(i) add the edge {u, v};

(ii) delete the vertex 0;

(iii) shift all vertex indices down by 1 by relabeling;

(iv) add vertex b− 1.

Similar reasoning as in the previous cases shows that there is a bijection between C(GH
a,b(n))

and C(GH′

a,b(n− 1)) because the path u, 0, v in every Hamiltonian cycle of C(GH
a,b(n)) can be

exchanged with the edge u− 1, v − 1 in every Hamiltonian cycle of C(GH1

a,b(n− 1)).
The above construction establishes a system of simultaneous recurrence relations of the

form (2.1) for every graph H on [b]. Applying this result to the special case H = Ib proves
that Na,b(n) = |C(GIb

a,b(n))| satisfies a homogeneous linear recurrence relation.

In the next section, we explicitly construct the sequence of graphs and the system of
recurrence relations of the above proof for some small pairs {a, b} and for the set S = {1, 2, 3}.
The number of recurrences grows exponentially as a, b increase, rendering by-hand analysis
impractical even for modest values of a, b. We have computerized the process of building
these recurrences and discuss our implementation and some numerical data in Section 4.

7



3 Explicit S-necklace counts

In this section, we apply the technique from Section 2 to obtain explicit linear recurrence
relations for Na,b(n) when {a, b} ∈

{

{1, 2}, {1, 3}, {2, 3}, {1, 4}
}

and for NS(n) when S =
{1, 2, 3}. To that end, we derive coupled recurrences as given in (2.1) and construct graphs
as described in the proof of Theorem 1.1. We begin each construction with H0 = Ib, the
independent graph with vertex set [b], and let H1, H2, . . . denote the graphs obtained through
repeated application of the constructions in the proof of Theorem 1.1. We use the pictorial
style of Figures 2.2 and 2.3 to represent these recurrences and the corresponding graphs. Not
surprisingly, the recurrence diagrams become increasingly complicated as a and b increase;
already for parameters as small as a = 1 and b = 4, the process is quite involved.

Recall that Na,b(n) = 0 for n < a+ b, so we provide initial values for Na,b(n) starting at
n = a+ b. Recall also that Na,b(n) = 0 when abn is odd.

3.1 Counting {1, 2}-necklaces

We begin with H0 = I1. This is an instance of Case 1 in the proof of Theorem 1.1. Following
the construction described there, we obtain the graph H1 on {0, 1} with one edge; see
Figure 3.1.

−→−1

=|C(GH0

1,2(n))| |C(GH1

1,2(n− 1))|

0

1

Figure 3.1: Recurrence diagram for {1, 2}-necklaces: part 1.

Now we apply (2.1) with H = H1. This is an instance of Case 2.i in the proof of
Theorem 1.1. The construction in this case yields the graph H2 = H1, as seen in Figure 3.2.

−→−1

=|C(GH1

1,2(n))| |C(GH2

1,2(n− 1))|

0

1

Figure 3.2: Recurrence diagram for {1, 2}-necklaces: part 2.

Since N1,2(3) = 1, we conclude that

N1,2(n) = 1 for all n ≥ 3.
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This result can also be obtained directly by recognizing that up to flips and rotations, the
only way of constructing a {1, 2}-necklace is by tracing a cycle starting at 0, moving along all
the even numbers up to n−1 in ascending order, followed by all the odd numbers from n−1
down to 1 in descending order, and finally moving back to 0 to close the cycle.

3.2 Counting {1, 3}-necklaces

Starting with H0 = I2, we display the sequence of identities derived from (2.1) and the
graphs obtained via the proof technique for Theorem 1.1 in Figure 3.3.

−→−1

|C(GH0

1,3(n))| = |C(GH1

1,3(n− 1))|

0

1

2
−→−1

+

|C(GH1

1,3(n))| = |C(GH2

1,3(n− 1))|+ |C(GH3

1,3(n− 1))|

−→−1

|C(GH2

1,3(n))| = |C(GH1

1,3(n− 1))|

−→−1 −→−1

|C(GH3

1,3(n))| = |C(GH4

1,3(n− 1))| = |C(GH2

1,3(n− 2))|

Figure 3.3: Recurrence diagram for {1, 3}-necklaces.

To obtain a recurrence relation for N1,3(n), note that 0 and 1 are adjacent in all {1, 3}-
necklaces, so |C(GH0

1,3(n))| = |C(GH2

1,3(n))|. From the identities in Figure 3.3 we deduce that

|C(GH2

1,3(n))| = |C(GH2

1,3(n− 2))|+ |C(GH2

1,3(n− 4))|.

It is easy to check that N1,3(4) = 1 and N1,3(6) = 2, so

N1,3(n) =

{

Fn/2, if n ≥ 4 is even;

0, if n ≥ 5 is odd,

where Fn is the nth Fibonacci number (with F0 = 0 and F1 = 1). The Fibonacci numbers
interspersed with zeroes appear in the Online Encyclopedia of Integer Sequences (OEIS) [7]
as A079977, a note on {1, 3}-necklaces is included in this entry.

3.3 Counting {2, 3}-necklaces

As before, we begin with H0 = I3 and show the relevant equations of the form (2.1) and the
corresponding graphs in Figure 3.4.
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−→−1

|C(GH0

2,3(n))| = |C(GH1

2,3(n− 1))|

0

1

2
−→−1

|C(GH1

2,3(n))| = |C(GH2

2,3(n− 1))|

−→−1

|C(GH2

2,3(n))| = |C(GH3

2,3(n− 1))|

−→−1

|C(GH3

2,3(n))| = |C(GH4

2,3(n− 1))|

−→−1
+

|C(GH4

2,3(n))| = |C(GH4

2,3(n− 1))|+ |C(GH5

2,3(n− 1))|

−→−1

|C(GH5

2,3(n)| = |C(GH1

2,3(n− 1))|

Figure 3.4: Recurrence diagram for {2, 3}-necklaces.

n 5 6 7
N2,3(n) 1 0 0

Table 3.1: Initial values of N2,3(n).

In all {2, 3}-necklaces, vertices 0 and 2 are adjacent, soN2,3(n) = |C(GH0

2,3(n))|= |C(GH5

2,3(n))|.
Making the appropriate substitutions for the quantities derived in Figure 3.4, we obtain

N2,3(n) = N2,3(n− 1) +N2,3(n− 5).

It is easy to find initial values of N2,3(n) by hand; they are shown in Table 3.1. We remark
that the sequence given by N2,3(n) is A017899 in OEIS; the entry points out the connection
to {2, 3}-necklaces. In addition, A003520 is the same sequence modulo a shift. Note that the
denominator of the generating function of N2,3(n), given in Table 4.1, is irreducible. Hence
N2,3(n) does not satisfy a linear recurrence of order less than 5.

3.4 Counting {1, 4}-necklaces

Starting with H0 = I4, Figure 3.5 shows the counts and graphs involved in deriving a
recurrence relation for N1,4(n).

As in the previous subsection, is possible to combine the equations in Figure 3.5 to find
a recurrence relation containing only terms in the sequence (C(GH0

a,b(n))n. Instead, we show
a more mechanical strategy that is well suited for computer implementation. The equations
in Figure 3.5 yield the transition matrix equation (3.1); to reduce the notational burden, we
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n 5 6 7 8 9 10 11 12 13 14 15
N1,4(n) 1 0 1 1 1 3 2 3 6 5 10

Table 3.2: Initial values of N1,4(n).

put Ti(n) = C(GHi

1,4(n)) for 0 ≤ i ≤ 11.


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
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











0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0


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
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T0(n− 1)
T1(n− 1)
T2(n− 1)
T3(n− 1)
T4(n− 1)
T5(n− 1)
T6(n− 1)
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T8(n− 1)
T9(n− 1)
T10(n− 1)
T11(n− 1)
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
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




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T0(n)
T1(n)
T2(n)
T3(n)
T4(n)
T5(n)
T6(n)
T7(n)
T8(n)
T9(n)
T10(n)
T11(n)


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
















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. (3.1)

The characteristic polynomial of the matrix in (3.1) is the characteristic polynomial of
the recurrence for N1,4(n). The initial values N1,4(n), 5 ≤ n ≤ 15, can be found by hand
or by computer and are displayed in Table 3.2. The generating function corresponding to
N1,4(n), obtained via the technique [8, Theorem 4.1.1], for example, is

∞
∑

n=0

N1,4(n)x
n =

x5 − x12

1− x2 − x3 − x5 + x7 + x10

=
x5 + x6 + x7 + x8 + x9 + x10 + x11

1 + x− x3 − x4 − 2x5 − 2x6 − x7 − x8 − x9
,

with associated linear recurrence

N1,4(n) = −N1,4(n− 1) +N1,4(n− 3) +N1,4(n− 4) + 2N1,4(n− 5)

+ 2N1,4(n− 6) +N1,4(n− 7) +N1,4(n− 8) +N1,4(n− 9).

Note that the generating function can be reduced to an expression with an irreducible
denominator of degree 9. Therefore N1,4(n) satisfies a degree 9 recurrence, and 9 is the lowest
order of a recurrence satisfied by N1,4(n).

3.5 Counting {1, 2, 3}-necklaces

The technique of finding a system of linear recurrences as in Theorem 1.1 can be extended
to sets of arbitrarily many differences. The underlying idea is to partition necklaces of a
particular length n into subsets depending on the two neighbors of vertex 0, and then shift
all labels down by 1, so the count of length n necklaces depends on the count on length n−1

11



−→−1

|C(GH0

1,4(n))| = |C(GH1

1,4(n− 1))|

0

1

2

3
−→−1

+

|C(GH1

1,4(n))| = |C(GH2

1,4(n− 1))|+ |C(GH3

1,4(n− 1))|

−→−1
+

|C(GH2

1,4(n))| = |C(GH4

1,4(n− 1))|+ |C(GH5

a,b(n− 1))|

−→−1

|C(GH3

1,4(n))| = |C(GH6

1,4(n− 1))|

−→−1

|C(GH4

1,4(n))| = |C(GH1

1,4(n− 1))|

−→−1

|C(GH5

1,4(n))| = |C(GH7

1,4(n− 1))|

−→−1
+

|C(GH6

1,4(n))| = |C(GH8

1,4(n− 1))|+ |C(GH9

1,4(n− 1))|

−→−1

|C(GH7

1,4(n))| = |C(GH10

1,4 (n− 1))|

−→−1

|C(GH8

1,4(n))| = |C(GH4

1,4(n− 1))|

−→−1

|C(GH9

1,4(n))| = |C(GH6

1,4(n− 1))|

−→−1

|C(GH10

1,4 (n))| = |C(GH11

1,4 (n− 1))|

−→−1

|C(GH11

1,4 (n))| = |C(GH2

1,4(n− 1))|

Figure 3.5: Recurrence diagram for {1, 4}-necklaces.

necklaces. The main distinction in considering 3 or more differences instead of 2 is that there
are more choices for neighbors of vertex 0. The algebraic consequence is that in the system
of linear recurrences analogous to (2.1), the right-hand sides may have more than two terms.
In Figure 3.6, we explicitly give the system of recurrences and the sequence of associated
graphs when the set of differences is S = {1, 2, 3} . Note that in the first line of the figure,
the set of all {1, 2, 3}-necklaces is partitioned into three subsets containing the path 1, 0, 2,
the path 1, 0, 3 and the path 2, 0, 3, respectively.

We can find the generating function of NS(n) = N1,2,3(n) by the same method used for
{1, 4}-necklaces. The initial values can be obtained by hand or computer search and are
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−→ + +−1

|C(GH0

1,2,3(n)| = |C(GH1

1,2,3(n− 1))|+ |C(GH2

1,2,3(n− 1))|+ |C(GH3

1,2,3(n− 1))|

0

1

2

−→−1 +

|C(GH1

1,2,3(n))| = |C(GH1

a,b(n− 1))|+ |C(GH2

1,2,3(n− 1))|

−→−1 +

|C(GH2

1,2,3(n))| = |C(GH1

1,2,3(n− 1))|+ |C(GH3

1,2,3(n− 1))|

−→−1

|C(GH4

1,2,3(n)| = |C(GH1

1,2,3(n− 1))|

−→−1 +

|C(GH3

1,2,3(n))| = |C(GH4

1,2,3(n− 1))|+ |C(GH5

1,2,3(n− 1))|

−→−1

|C(GH5

1,2,3(n)| = |C(GH4

1,2,3(n− 1))|

Figure 3.6: Recurrence diagram for {1, 2, 3}-necklaces.

n 3 4 5 6 7 8
N1,2,3(n) 1 3 6 10 17 31

Table 3.3: Initial values of N1,2,3(n).

displayed in Table 3.3. The generating function is

∞
∑

n=0

N1,2,3(n)x
n =

x3 + 2x4 + 2x5 + x6

1− x− x2 − x4 − x5
,

and the corresponding linear recurrence is

N1,2,3(n) = N1,2,3(n− 1) +N1,2,3(n− 2) +N1,2,3(n− 4) +N1,2,3(n− 5).

The denominator of the generating function above is irreducible, so no recurrence of order
less than 5 exists for N1,2,3(n).

4 Counting {a, b}-necklaces via computer

The process of obtaining a system of recurrences of the form (2.1), as described in the proof
of Theorem 1.1 and carried out for special cases in Section 3, can be automated. In this

13



section, we describe our algorithms for computing the numerator and denominator of the
generating function

∞
∑

n=0

Na,b(n)x
n =

fa,b(x)

ga,b(x)
(4.1)

associated with the count of {a, b}-necklaces. Note that the polynomials fa,b(x) and ga,b(x)
found by our method need not be relatively prime, as the example {a, b} = {1, 4} in Sec-
tion 3.4 illustrates. Furthermore, fa,b(x) is always a multiple of xa+b as Na,b(n) = 0 for
0 ≤ n < a+ b.

4.1 Algorithm for finding the generating function of Na,b(n)

We partition the computation of the generating function of Na,b(n) into four separate algo-
rithms. Our first algorithm (Algorithm 4.1) is an auxiliary routine that constructs the col-
lection of graphs H and associated recurrence relations for |C(GH

a,b(n))| as described in (2.1).

Algorithm 4.1 (System of Recurrences).

Input: Relatively prime positive integers a, b with a < b.

Output: A list H list consisting of pairs (H,RH) where H is a graph on [b] with ∆(H) ≤ 2
and RH is the recurrence relation in (2.1) satisfied by |C(GH

a,b(n))|.

Step 1: Initialize H list with the pair (Ib, RIb) where Ib is the independent graph on [b] and
RIb = unassigned.

Step 2: While H list contains entries (H,RH) with RH = unassigned, do

Step 2.1: Choose the first pair (H,RH) in H list with RH = unassigned.

Step 2.2: Identify the correct recurrence relation for |C(GH
a,b(n))| in (2.1), according

to the cases in the proof of Theorem 1.1, and assign it to RH .

Step 2.3: If the recurrence relation for |C(GH
a,b(n))| involves a graph(s) Ĥ that do

not yet appear in any pair in H list, append the pair(s) (Ĥ, RĤ) with
RĤ = unassigned to H list.

Step 3: Return H list.

Algorithm 4.1 terminates because the number of pairs in H list is finite.
The next algorithm (Algorithm 4.2) uses the list of graph/recurrence relation pairs ob-

tained by Algorithm 4.1 and computes the transition matrix for the system of recurrences
as well as the denominator of (4.1). As in (3.1), for brevity, we put Ti(n) = |C(GHi

a,b(n))| for
the i-th pair (Hi, RHi

) in H list.
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Algorithm 4.2 (Denominator).

Input: The list H list =
(

(H0, RH0
), . . . , (Hr, RHr

)
)

output by Algorithm 4.1.

Output: The transition matrix M for the system of recurrence relations RHi
, 0 ≤ i ≤ r,

and the denominator polynomial ga,b(x) of the generating function (4.1).

Step 1: From the sequence RHi
, 0 ≤ i ≤ r, construct the transition matrix M such that











T0(n)
T1(n)

...
Tr(n)











= M











T0(n− 1)
T1(n− 1)

...
Tr(n− 1)











.

Step 2: Compute the characteristic polynomial PM(x) of M .

Step 3: Put ga,b(x) = xdeg(PM )PM(1/x).

Step 4: Return M and ga,b(x).

In Step 1, M is a square 0, 1-matrix of dimension r + 1 with at most two ones per
row. The characteristic polynomial PM(x) of M is also the characteristic polynomial of
T0(n) = Na,b(n), which immediately yields a recurrence relation for Na,b(n).

The numerator polynomial fa,b(x) of the generating function is obtained using the stan-
dard technique of symbolically multiplying (4.1) by ga,b(x) and comparing coefficients of the
appropriate powers of x, as was done in Sections 3.3 and 3.4. Specifically, if

ga,b(x) = g0 + g1x+ · · ·+ gdx
d, fa,b(x) = xa+b(f0 + f1x+ · · ·+ fdx

d),

then the coefficients of fa,b(x) are

fk =
k

∑

j=0

gjNa,b(a+ b+ k − j) (0 ≤ k ≤ d). (4.2)

To compute these coefficients, we require the initial values Na,b(a+ b+ j) for 0 ≤ j ≤ d. We
compute these values as combinations of the quantities Ti(b) = |C(GHi

a,b(b))|, the number of

Hamiltonian cycles in GHi

a,b(b) containing Hi for 0 ≤ i ≤ r, using the following framework.
Let W be a multiset consisting of graphs from the set {H0, H1, . . . , Hr} and define

TW (n) =
∑

Hj∈W

Tj(n).

Writing M = (Mjk)0≤j,k≤r, define a function on such multisets W as

S(W ) =
⋃

Hj∈W

{

Hk ∈ {H0, H1, . . . , Hr} | Mjk = 1
}

,
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where the union is taken over the multiset W . Thus, each set under the union contains at
most two graphs, indexed by those column(s) of M where the j-th row of M has ‘1’ entries.
The key relationship between W and S(W ) is

TW (n+ 1) = TS(W )(n). (4.3)

Example 4.3. Suppose H list =
(

(H0, RH0
), (H1, RH1

), (H2, RH2
)
)

with the recurrence
relations

RH0
: T0(n) = T1(n− 1),

RH1
: T1(n) = T0(n− 1) + T2(n− 1),

RH2
: T2(n) = T0(n− 1).

The associated transition matrix is

M =





0 1 0
1 0 1
1 0 0



 .

Now consider the multiset W = {H0, H1, H1, H2}. Then

S(W ) = {H1} ∪ {H0, H2} ∪ {H0, H2} ∪ {H0} = {H0, H0, H0, H1, H2, H2},

and we have

TW (n+ 1) = T0(n+ 1) + 2T1(n+ 1) + T2(n+ 1)

= T1(n) + 2
(

T0(n) + T2(n)
)

+ T0(n)

= 3T0(n) + T1(n) + 2T2(n)

= TS(W )(n),

as asserted in (4.3).

To compute the initial values Na,b(a + b + j) for 0 ≤ j ≤ d, put W0 = {H0} and
recursively define Wi+1 = S(Wi) for i ≥ 0. Then Na,b(b) = T0(b) = TW0

(b) , and from (4.3)
we inductively obtain

Na,b(b+ i) = TWi
(b) (i ≥ 0). (4.4)

It remains to determine the quantities Ti(b) for 0 ≤ i ≤ r. We prove that Ti(b) ∈ {0, 1},
i.e., each graph GHi

a,b(b) has at most one Hamiltonian cycle containing Hi. The proof is
constructive and leads to a simple algorithm for computing Ti(b).

Lemma 4.4. Let H be a graph with vertex set [b] such that ∆(H) ≤ 2. Then GH
a,b(b) has at

most one Hamiltonian cycle containing H.
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Proof. We show that there is at most one way to add successive edges to H to form a
Hamiltonian cycle in GH

a,b(b) containing H. Let C be a subgraph of GH
a,b(b) containing H

with ∆(C) ≤ 2, and let x ∈ [b] be the smallest vertex with degC(x) ≤ 1. If x < a, then the
only vertex adjacent to x in Ga,b(b) is x + a. If a ≤ x ≤ b − 1, then degC(x − a) = 2, so
adding the edge x, x− a to C would cause the vertex x− a to have degree 3 in the resulting
graph. Either way, there is at most one choice of edge incident with x in GH

a,b(b) such that
C ∪ {e} has maximum degree at most 2, namely the edge e joining x to x+ a, and this edge
belongs to every Hamiltonian cycle in GH

a,b(b).
So beginning with C = H, successively identify the minimal vertex x of degree at most 1

and add the edge x, x + a to C if it does not already belong to C and the degree of x + a
is at most 1. Continue this process until either all vertices in C have degree 2, or it is not
possible to add an edge in this way. This process terminates with a unique subgraph C
of GH

a,b(b) of maximum degree 2 containing H, which may or may not be a Hamiltonian cycle
in GH

a,b(b).

We present the process described in the proof of Lemma 4.4 in algorithmic form as
Algorithm 4.5.

Algorithm 4.5 (Hamiltonian Cycle in GH
a,b(b)).

Input: A graph H on [b] with ∆(H) ≤ 2.

Output: The number of Hamiltonian cycles (0 or 1) in GH
a,b(b).

Step 1: Initialize C = H.

Step 2: For x = 0, 1, . . . , b− 1 do

Step 2.1: If degC(x) = 0, output 0 and quit;

Step 2.2: Else if degC(x) = 1 and any of the following hold: i) x+a ≥ b, ii) (x, x+a)
is an edge in C, iii) degC(x+ a) = 2, then output 0 and quit;

Step 2.3: Else if degC(x) = 1 and x+ a < b, add the edge x, x+ a to C.

Step 3: If C is a Hamiltonian cycle on [b], return 1, else return 0.

We now have all the ingredients for computing the numerator polynomial fa,b(x) of (4.1),
described in Algorithm 4.6.

Algorithm 4.6 (Numerator).

Input: Relatively prime positive integers a, b with a < b, the list H list =
(

(Hi, RHi
) |

0 ≤ i ≤ r)
)

output by Algorithm 4.1, the transition matrix M = (Mjk)0≤j,k≤r and the
denominator polynomial ga,b(x) = g0+g1x+· · ·+gdx

d (gd 6= 0) output by Algorithm 4.2.

Output: The numerator polynomial fa,b(x) of the generating function (4.1).
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Step 1. For i = 0, 1, . . . , r, compute Ti(b), the number of Hamiltonian cycles in GHi

a,b(b), using
Algorithm 4.5.

Step 2. Initialize W0 = {H0}.

Step 3. For i = 1, 2, . . . , d+ a do

Step 3.1: Compute Wi = S(Wi−1) =
⋃

Hj∈Wi−1
{Hk | Mjk = 1}.

Step 3.2: Compute TWi
(b) =

∑

Hj∈Wi
Tj(b).

Step 4. For i = 0, 1, . . . , d do

Step 4.1: Compute fi = g0TWa+i
(b) + g1TWa+i−1

(b) + · · ·+ giTWa
(b).

Step 5. Return f(x) = f0x
a+b + f1x

a+b+1 + · · ·+ fdx
a+b+d.

The coefficients computed in Step 4 of Algorithm 4.6 are correct by (4.2) and (4.4).

4.2 Data on generating functions

We implemented the algorithms of Section 4.1 using SageMath [5]; our code is available from
the first author upon request. In Table 4.1 we display the (relatively prime) numerator and
denominator polynomials fa,b(x) and ga,b(x) as given in (4.1) for several small values of a, b.
The table ends at {a, b} = {3, 5} because for larger pairs a, b, fa,b(x) and ga,b(x) contain too
many terms for easy display.

Table 4.2 lists the minimal order of a recurrence relation for Na,b(n), given by deg(ga,b(x)),
for all the pairs {a, b} from Table 4.1 and some larger ones. The table also shows the zero(s)
of ha,b(x) = xdeg(ga,b)ga,b(1/x) that are largest in absolute value and thus determine the
exponential growth rate of Na,b(n).

Recall that Na,b(n) = 0 for all odd n when a and b are both odd. In this case, ha,b(x)
cannot have a unique absolutely maximal zero. Indeed, for all such pairs a, b included in
Table 4.2, ha,b(x) has two such zeros ±λ, both real. Hence Na,b(2n) grows as |2λ|n in this
case. For all the pairs a, b of opposite parity appearing in Table 4.2, ha,b(x) has a unique
maximal positive real zero λ, so Na,b(n) has growth rate λn here. These data supports our
conjecture that {a, b}-necklaces of every sufficiently large length also exist when 2a > b.

In the proof of Theorem 1.1 we formed a system of linear recurrences, each of them the
sum of one or two terms. Hence every row in the transition matrix representing the system
of recurrences contains one or two ‘1’s and all its other entries are 0. Equation (3.1) gives an
example of this behavior for the case {a, b} = {1, 4}. An m×m matrix M whose rows consist
of 0’s except for at most two ‘1’s cannot have an eigenvalue λ of absolute value exceeding
2; else, the matrix M − λIm is diagonally dominant and hence invertible. It follows that for
every pair {a, b}, all the zeros of ha,b(x) are bounded above in absolute value by 2. Table 4.2
shows that the largest zero of ha,b(x) is approximately 1.4, but seems to exhibit a modest
increase as a and b increase.
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f1,2(x) x3

g1,2(x) 1− x

f1,3(x) x4 + x6

g1,3(x) 1− x2 − x6

f2,3(x) x5 − x6

g2,3(x) 1− x− x5

f1,4(x) x5 + x6 + x7 + x8 + x9 + x10 + x11

g1,4(x) 1 + x− x3 − x4 − 2x5 − 2x5 − x7 − x8 − x9

f3,4(x) x7 − x9 − x12 − x13 − 2x14 − x15 + x16 + x17 + x19 + x20

g3,4(x) 1− x2 − x5 − x6 − 3x7 − x8 + 2x9 + x10 + 2x12 + 2x13 + x14 − x16 − x19

f1,5(x) x6 + x8 + x10 + x12 + 2x14 + 2x16 + x18 + x20 + x22

g1,5(x) 1− x4 − 3x6 − 2x8 − 3x10 − 2x12 − 3x14 − 2x16 − x18 − x20

f2,5(x) x7 − x8 + x11 − x12 − 2x14 + x15 − 2x18 + x19 + x21 + x25

g2,5(x) 1− x− x6 − 4x7 + 4x8 − x9 − 3x10 + 2x11 + x12 − x13 + 5x14

−2x15 + x16 + 2x17 − x19 + 2x20 − 3x21 + x24 − x25 + x28

f3,5(x) x8 − x12 − x14 − 5x16 − 4x18 − x20 + 3x24 + 3x26 + x28 − x32

g3,5(x) 1− x4 − x6 − 7x8 − 6x10 − x12 − x14 + 7x16 + 8x18

+2x20 − 4x24 − 3x26 − x28 + 2x32

Table 4.1: Generating functions for various counts Na,b(n).

5 Concluding remarks

Several natural and interesting problems on difference necklaces remain open. As described
in Proposition 1.2, we have established the existence of {a, b}-necklaces for all sufficiently
large lengths n when gcd(a, b) = 1, 2a ≤ b, and abn is even. Although our constructive
existence proof [10] requires the restriction 2a ≤ b, it seems highly likely that this condition
can be removed. It may be possible to prove the general existence result using properties of
the transition matrix created in the proof of Theorem 1.1. For example, demonstrating that
the transition matrix has a unique largest eigenvalue when abn is even would be sufficient
for this purpose.

Table 4.2 suggests that the order of the recurrence relation satisfied by Na,b(n) is a
function that is monotonically increasing in both a and b. The order of the recurrence is
bounded by the number of rows in the transition matrix in the proof of Theorem 1.1, which
is in turn bounded by the number of labelled acyclic graphs on b vertices with maximum
degree 2. However, the number of such graphs seems to grow much faster than the order of
the recurrence of Na,b(n), so perhaps a better asymptotic estimate on the order is possible.
This is another possible subject for future work.
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a, b Order Largest zero(s) of ha,b a, b Order Largest zero(s) of ha,b(x)

1, 2 1 1 5, 6 232 1.44097085878288
1, 3 4 ±1.27201964951407 1, 7 112 ±1.43153399139975
2, 3 5 1.32471795724475 2, 7 153 1.43674405558324
1, 4 9 1.35393824208368 3, 7 154 ±1.43660604737112
3, 4 19 1.39439617374762 4, 7 293 1.44321501158368
1, 5 20 ±1.39434068621703 5, 7 346 ±1.44408397641332
2, 5 28 1.40714337368192 1, 8 304 1.44272948175431
3, 5 32 ±1.41001750346218 3, 8 482 1.44609178016640
4, 5 67 1.42558715174949 1, 9 654 ±1.44749911396199
1, 6 48 1.41951932571718

Table 4.2: Properties of the recurrence relation Na,b(n).

Lastly, we conjecture that the characteristic polynomial ha,b(x) of Na,b(n) has a unique
largest zero whenever a, b are of different parity. If a, b are both odd, then ha,b(x) should
have two largest zeros in absolute value of the form ±λ. These zeros are bounded by 2
in absolute value, but the values of |λ| shown in Table 4.2 seem to be significantly smaller
than 2. It would be interesting to obtain an improved estimate on the largest zero or at least
an asymptotic estimate as a, b grow.
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