
Improved Exponentiation and Key Agreement

in the Infrastructure of a Real Quadratic Field

Vanessa Dixon�, Michael J. Jacobson Jr.��, and Renate Scheidler

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
vanessa.dixon@gmail.com, {jacobs,rscheidl}@ucalgary.ca

Abstract. We describe improvements to the performance of a key agree-
ment protocol based in the infrastructure of a real quadratic field through
investigating fast methods for exponentiating ideals. We present adap-
tations of non-adjacent form and signed base-3 exponentiation and com-
pare these to the binary method. To adapt these methods, we introduce
new algorithms for squaring, cubing, and dividing w-near (f, p) represen-
tations of ideals in the infrastructure. Numerical results from an imple-
mentation of the key agreement protocol using our new algorithms and
all three exponentiation methods are presented, demonstrating that non-
adjacent form exponentiation improves the speed of key establishment
for most of the currently recommended security levels.

Keywords: real quadratic field, infrastructure, (f, p) representation,
non-adjacent form exponentiation, signed base-3 exponentiation, cryp-
tographic key agreement.

1 Introduction

In 1988, Buchmann and Williams [3] presented a key establishment protocol
analogous to that of Diffie-Hellman [6], but performed in the class group of an
imaginary quadratic field. Interestingly, the security of this key agreement is
related to computing the class number of the field, which is known to be at
least as hard as integer factorization [15, p. 360]. The following year, Buchmann
and Williams proposed a method for performing an analogous key agreement
protocol in the infrastructure of the principal class of a real quadratic field [4],
an abelian group-like structure that was discovered by Shanks in 1972 [18]. This
contribution was noteworthy because it represented the first such protocol for
which the underlying structure is not a group. Furthermore, the security of
this protocol is believed to be independent of the hardness assumptions used in
other public-key systems, such as the difficulty of extracting discrete logarithms
on algebraic curves or in finite fields. Thus, although such systems are known
to sucumb to quantum algorithms, they are nevertheless a viable alternative

� The results in this paper are from the first author’s M.Sc. thesis.
�� The second and third authors are supported in part by NSERC of Canada.

A. Hevia and G. Neven (Eds.): LATINCRYPT 2012, LNCS 7533, pp. 214–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Exponentiation and Key Agreement in the Infrastructure 215

to other widely used public-key cryptosystems that can be used in the event
that efficient classical algorithms are found for discrete logarithm computation
or integer factorization.

The infrastructure is comprised of the set of reduced principal ideals in the
maximal order of a real quadratic field, each paired with an approximation of a
floating-point distance that keeps track of the ideal’s position in the infrastruc-
ture. The challenge is to maintain sufficient accuracy throughout the key estab-
lishment protocol to make sure that both parties obtain a shared key ideal at
the end. One method for handling this problem is to use a concept called w-near
(f, p) representations. These were introduced in [15], based on ideas originally
presented in [13].

In this paper, we consider three methods for exponentiation of w-near (f, p)
representations: binary exponentiation (BINEXP), non-adjacent form exponen-
tiation (NAFEXP), and a signed base-3 exponentiation (SB3EXP). The first
of these was previously investigated in [15], while the other two are new. The
non-adjacent form of an integer is sparser than its binary form, so NAFEXP re-
quires fewer multiplication/division steps than BINEXP on average. The base-3
representation of an integer is shorter than its binary form, so SB3EXP requires
fewer cubings than BINEXP requires squarings. Hence, if cubing and division
have similar time requirements to squaring and multiplying, we would expected
that these algorithms improve the speed at which exponentiation can be done.

A major ingredient of all our exponentiation techniques is the efficient mul-
tiplication method for w-near (f, p) representations given as Algorithm 11.3
on pp. 275-276 of [15]. Algorithms for squaring, cubing, and division of (f, p)-
representations are also required for NAFEXP and SB3EXP and are newly in-
troduced herein. A comparative precision analysis is provided for each of these
new algorithms and for key agreement using each of our three exponentiation
methods. All relevant algorithms were implemented in C using the GNU Multi-
precision Arithmetic Library, and test trials were run to examine their efficiency.
Our timing results show that NAFEXP mostly outperforms BINEXP, whereas
SB3EXP does not.

2 Infrastructure of a Real Quadratic Field

For a general introduction to real quadratic fields and their infrastructure, the
reader is referred to [15]. Throughout this paper, we fix a positive square-free
integer D > 1, and set r = 2 if D ≡ 1 (mod 4), r = 1 otherwise. The field
and 2-dimensional Q-vector space K = Q ⊕ Q

√
D is a real quadratic field . Its

discriminant is Δ = 4D/r2, and its maximal order is the subring and rank 2
Z-module O = Z⊕ Zω, where ω = (r − 1 +

√
D)/r.

2.1 Ideals and Infrastructure

An O-ideal (or ideal for short) is an additive subgroup of O that is closed under
multiplication by elements in O. An O-ideal a is principal if it consists of all the

216 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

O-multiples of some element α ∈ O, called a generator of a; we write a = (α).
It will at times be useful to consider fractional principal ideals a = (α) with
α ∈ K, which are no longer subsets of O, but (d)a ⊆ O for some d ∈ Z. Two
non-zero O-ideals a and b are equivalent is there exists a non-zero θ ∈ K with
b = (θ)a. Note that the non-zero principal O-ideals are exactly the O-ideals that
are equivalent to O.

The non-zero O-ideals are exactly the rank 2 Z-submodules of O of the form
a = ZSQ/r ⊕ ZS(P +

√
D)/r with S,Q, P ∈ Z, S,Q > 0, r dividing Q and

rQ dividing D−P 2. Here, S and Q are unique and P is unique modulo Q. The
norm of a is the positive integer N(a) = S2Q. An O-ideal a is primitive if S = 1,
in which case we simply write a = (Q,P). The conjugate of a primitive ideal
a = (Q,P) is the primitive ideal a = (Q,−P); note that aa = (N(a)) = (Q).

A primitive ideal a = (Q,P) is reduced if P can be taken modulo Q so that
0 <
√
D − P < Q <

√
D + P . This forces 0 < P <

√
D and 0 < Q < 2

√
D, so

P and Q are bounded. Consequently, the number of reduced O-ideals is finite.
The infrastructure of K is the set R of all reduced principal O-ideals. Each

infrastructure ideal a is associated with its unique distance δ(a) = logα ∈ R≥0,
where α ∈ O is the smallest generator of a that is at least 1. The infrastructure
is thus a finite set that is ordered by distance, where the first ideal is O and
has distance 0. Baby steps move cyclically through the infrastructure, obtaining
from any infrastructure ideal a the next infrastructure ideal ρ(a) in the distance
ordering, along with the relative distance δ(ρ(a))− δ(a) ∈ R>0.

The product ab of two reduced principal ideals a, b is generally a non-reduced
(and even non-primitive) principal O-ideal; more exactly, ab = (S)c with S ∈ Z+

and c a primitive O-ideal. Reduction applies the same arithmetic as the baby
step operation to c, producing a reduced ideal equivalent to ab. Suppose a and b
are infrastructure ideals, and let r = (θ)ab ∈ R, with θ ∈ K, be the first reduced
ideal thus obtained. Then the operation that computes r and θ from a and b is a
giant step. Instead of using multiplication with subsequent reduction, giant steps
can be performed more efficiently using the NUCOMP algorithm first proposed
by Shanks [19]. The distance “error” log θ = δ(r) − δ(a)− δ(b) ∈ R is generally
very small compared to the distances of a and b. It follows that under the giant
step operation, the infrastructure behaves almost like a finite abelian group,
where the identity is O and the “inverse” operation is conjugation; associativity
fails, but only barely since the distance is nearly additive under giant steps.

2.2 (f, p) Representations

When performing infrastructure arithmetic, one needs to keep track of the rel-
ative distances of ideals which are real numbers. These are approximated using
w-near (f, p) representations of ideals, a concept first introduced in [13] and
subsequently developed in [14].

Definition 1. [15, Definition 11.1, p. 267 and Section 11.2, p. 270] Let p ∈
Z+, f ∈ R≥1 and a an O-ideal. An (f, p) representation of a is a triple of
parameters (b, d, k) where

Improved Exponentiation and Key Agreement in the Infrastructure 217

1. b is an O-ideal equivalent to a, d ∈ Z+ with 2p < d ≤ 2p+1, k ∈ Z, and
2. there exists θ ∈ K such that b = (θ)a with |2p−kθ/d− 1| < f/2p.

The (f, p) representation (b, d, k) is reduced if b is a reduced O-ideal, and is
w-near if in addition

3. k < w and
4. if ρ(b) = (φ)b, then there exist k′, d′ ∈ Z with k′ ≥ w and 2p < d′ ≤ 2p+1

such that |2p−k′
θφ/d′ − 1| < f/2p.

The intuition behind (f, p)-representations is that d2k−p is an approximation of
the (generally unknown) relative generator θ of b with respect to the (generally
unknown) ideal a with an accuracy of f2−p. In this respect, p can be regarded as
the precision of the approximation which will be fixed throughout our computa-
tions, and f as a measure of the error which will increase with each computation
(error propagation). Also, since 2p < d ≤ 2p+1 and d2k−p ≈ θ, k represents a
rough approximation of the relative distance log θ from b to a.

Property 4 of Definition 1 implies that if (b, d, k) is a w-near (f, p) represen-
tation of a, then (ρ(b), d′, k′) is a reduced (but not necessarily w-near) (f, p)
representation of a. In this case, the bounds in Lemma 11.3, p. 270, of [15]
imply that qualitatively, θ and k are approximated by 2w and w, respectively.
Moreover, if (c, g, h) is another w-near (f, p) representation of a, then by [15,
Theorem 11.4, p. 271], b ∈ {ρ−2(c), ρ−1(c), c, ρ(c), ρ2(c)}. Hence, any two w-
near (f, p) representations of the same ideal are within a few baby steps of one
another. When exponentiation of w-near (f, p) representations is used in crypto-
graphic key agreement, the preservation of the w-near property throughout the
exponentiation algorithm will thus guarantee that the keys computed by Alice
and Bob will be close to each other in the infrastructure. Experimentally it has
been verified that if f is much less than 2p, it is most often the case that b = c
(see also [15, Theorem 11.5, p. 272]).

Using w-near (f, p) representations also leads to computational improvements
when performing infrastructure arithmetic. Each giant step r = (θ)ab performed
on infrastructure ideals a and b produces a distance error log θ which is gener-
ally negative. Qualitatively, this means that a small distance shortfall of log θ is
introduced in each giant step. By calculating the average distance lost due to
reduction following ideal multiplication, the number of operations required to ac-
count for this lost distance can be decreased. One purpose of using w-near (f, p)
representations is to counter this “head wind”: the approximations of the dis-
tances of a and b after a giant step are adjusted (increased) so that the distance
lost during the giant step is added back, thereby reducing the computational
overhead required when exponentiation and key agreement are performed.

We now provide a summary of known and new results on basic arithmetic in-
volving (f, p) representations. Our first theorem gives parameters for the product
of two such representations.

Theorem 1. [15, Theorem 11.2, p. 268] Let (b′, d′, k′) be an (f ′, p) representa-
tion of an O-ideal a′ and (b′′, d′′, k′′) an (f ′′, p) representation of an O-ideal a′′.

218 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

If d′d′′ ≤ 22p+1, put e =
d′d′′/2p� and h = k′ + k′′, else put e =
d′d′′/2p+1�
and h = k′ + k′′ + 1. Then (b′b′′, e, h) is an (f, p) representation of a′a′′ where
f = f ′ + f ′′ + 2−pf ′f ′′ + 1.

Given an (f, p) representation of some ideal, we can compute a w-near (f +
9/8, p) representation of the same ideal using an algorithm called WNEAR. The
complete algorithm can be found in [15, Algorithm 11.2, pp. 454-456].

Multiplication of two w-near representations, obtaining a w-near representa-
tion of the product, is achieved using the WMULT algorithm [15, Algorithm 11.3,
pp. 275-276]. WMULT first computes the ideal product followed by some reduc-
tion steps along with the necessary parameters for a reduced representation of
that product. This increases the f -value of Theorem 1 by 9/8; see [15, Algorithm
11.1, p. 269]. Now the w-near property is re-established for the resulting repre-
sentation of the product using WNEAR, which increases the f -value by another
9/8. Hence, given (f ′, p) and (f ′′, p) representations (b′, d′, k′) and (b′′, d′′, k′′)
of a′ and a′′, respectively, WMULT computes a w-near (f, p) representation of
a′a′′, where f = f ′ + f ′′ + 2−pf ′f ′′ + 13/4. For the complete algorithm, see [15,
Algorithm 11.3, pp. 275-276].

Squaring is the special case of multiplication applied to two identical inputs
and requires a′ = a′′, b′ = b′′, d′ = d′′ and k′ = k′′ in Theorem 1. The corre-
sponding algorithm, WDUPL, is presented in the Appendix as Algorithm A.3.
It contains simplifications over the general WMULT algorithm which achieve
some computational improvements when performing exponentiation on (f, p)
representations.

3 Cubing and Division with (f, p) Representations

An integer expressed in terms of a larger base has fewer terms compared to a
smaller base, thus requiring fewer steps when used as an exponent in exponen-
tiation. For example, it might be desirable to represent the exponent in base-3.
This type of exponentiation in turn requires a cubing method for (f, p) repre-
sentations and, in case signed digits are allowed, a division technique for (f, p)
representations.

An algorithm for cubing ideals can be found in [11, Algorithm 4, p. 16].
This technique outputs an ideal that is at most two steps away from being
reduced. The following theorem gives the parameters of an (f, p) representation
((b′)3, e, h) of (a′)3, given an (f ′, p) representation of a′. This result is attributed
to A. Silvester; a proof will appear in his doctoral dissertation [20].

Theorem 2. Let (b′, d′, k′) be an (f ′, p) representation of an O-ideal a′. If
(d′)3 ≤ 23p+1, put e =
(d′)3/22p� and h = 3k′. If 23p+1 < (d′)3 ≤ 23p+2,
put e =
d′3/22p+1� and h = 3k + 1. If (d′)3 > 23p+2, put e =
(d′)3/22p+2�
and h = 3k′ + 2. Then ((b′)3, e, h) is an (f, p) representation of (a′)3, where
f = 3f ′ + 2−p3(f ′)2 + 2−2p(f ′)3 + 1.

Obtaining a w-near representation of a cube proceeds analogous to multiplication
or squaring: first compute the ideal cube, then apply reduction and compute the

Improved Exponentiation and Key Agreement in the Infrastructure 219

parameters of the corresponding reduced representation, then restore the w-near
property and again compute the parameters of the resulting w-near represen-
tation. The overall algorithm, called WCUBE, is presented as Algorithm A.4
in the Appendix. Note that some minor mistakes from [11, Algorithm 4, p. 16]
have been corrected.1 As before, given an (f ′, p) representation (b′, d′, k′) of
an O-ideal a′, WCUBE computes a w-near (f, p) representation of (a′)3, where
f = 3f ′ + 2−p3(f ′)2 + 2−2p(f ′)3 + 13/4.

In order to implement exponentiation using signed digits such as NAF or
signed base-3 exponentiation, we require a division algorithm for (f, p) repre-
sentations. First, we give a brief overview of how ideal division is accomplished.
Let b′ = (θ′)a′ and b′′ = (θ′′)a′′ with O-ideals a′, a′′, b′, b′′ and relative gen-
erators θ′, θ′′ ∈ K. Then b′b′′(θ′′)a′′ = b′b′′b′′ = b′(N(b′′)) = (θ′)a′(N(b′′)).
Suppose that a′′ divides a′, i.e. there exists an O-ideal c such that a′ = ca′′.
For example, in our context, we will always have a′ = (a′′)n for some n ∈ Z+.
Then b′b′′ = (θ′N(b′′)/θ′′)c. Thus, when “dividing” an (f ′, p) representation
(b′, d′, k′) of a′ by an (f ′′, p) representation (b′′, d′′, k′′) of a′′, the resulting (f, p)
representation should approximate the new relative generator θ = θ′N(b′′)/θ′′

of b′b′′ with respect to c. The following theorem provides the exact parameters.
Its proof is rather long and detailed, so for the sake of brevity, we only state the
result here; the complete proof can be found in [7, Theorem 3.6.2].

Theorem 3. [7, Theorem 3.6.2, p. 51] Let (b′, d′, k′) be an (f ′, p) representation
of an O-ideal a′ and (b′′, d′′, k′′) an (f ′′, p) representation of an O-ideal a′′ divid-
ing a′, with a′ = ca′′ for some O-ideal c. Define κ ∈ Z via 2κ < N(b′′) ≤ 2κ+1 and
d∗ = d′N(b′′)/(2κd′′). If 1/2 < d∗ ≤ 1, put e =
2p+1d∗� and h = k′−k′′+κ−1.
If 1 < d∗ ≤ 2, put e =
2pd∗� and h = k′−k′′+κ. If 2 < d∗ < 4, put e =
2p−1d∗�
and h = k′ − k′′ + κ+ 1. Then (b′b′′, e, h) is an (f, p) representation of c where
f = f ′ + f ′′/(1− f ′′/2p) + f ′f ′′/(2p − f ′′) + 1.

WDIV performs division on w-near representations, followed by WNEAR. It
takes as input a w-near (f ′, p) representation (b′, d′, k′) of a′ and a w-near (f ′′, p)
representation (b′′, d′′, k′′) of a′′ where a′′ divides a′, and computes a w-near (f, p)
representation of the quotient ideal, with f = f ′ + f ′′/(1− f ′′/2p) + f ′f ′′/(2p−
f ′′) + 13/4. It is presented in the Appendix as Algorithm A.5.

4 Non-adjacent Form and Signed Base-3 Exponentiation

To explore how to improve the performance of key agreement in the infra-
structure of a real quadratic field, we examine various exponentiation algorithms
and adapt them to the setting of w-near (f, p) representations. The well known
method of binary exponentiation (BINEXP) was already presented in [15]; it is

1 The algorithm as presented in [11] computes N = Q′/S, L = NQ′/r2, K = R0v1(2+
v1(v1(Q0/r)(R0/r)(2P0)/r)) (mod L) on line 3 and M2 = (Ri(P

′ + P ′′) + R′S)/L
on line 19. The corrections herein are attributed to M. Jacobson, A. Silvester, and
V. Dixon.

220 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

given for the sake of completeness as Algorithm A.6 in the Appendix. Here, we
investigate non-adjacent form exponentiation (NAFEXP) and a signed base-3
exponentiation method (SB3EXP) for w-near (f, p) representations.

The non-adjacent form (NAF) of an integer is the signed base-2 representation
for which no two adjacent digits are both non-zero. Given a positive integer n,
the non-adjacent form of n is n =

∑�N
i=0 ni2

�N−i where n0 = 1, ni ∈ {−1, 0, 1},
and nini−1 = 0 for 1 ≤ i ≤
N . The NAF of an integer can be computed using
for example [10, Algorithm 3.30, p. 98].

The NAF has several useful properties that make it amenable for exponentia-
tion; see [10, Theorem 3.29, p. 98] for example. The average number of required
operations decreases from (3/2) logn to (4/3) logn as compared to BINEXP.
However, because the binary digits are signed, both multiplication and division
steps are required. If our division algorithm WDIV is approximately as fast as
the multiplication algorithm WMULT, then we expect an improvement.

The algorithm NAFEXP, using non-adjacent form to exponentiate w-near
(f, p) representations of O-ideals, is given in the Appendix as Algorithm A.7.
It is an adaptation of [10, Algorithm 3.31, p. 99], a binary NAF method for
point multiplication on elliptic curves, adapted to work in the infrastructure of
a real quadratic field. Theorem 3.29 of [10] implies that, compared to BINEXP,
NAFEXP requires at most one more squaring, but reduces the average number
of multiplications from
B/2 to
N/3 ≤ (
B +1)/3 multiplications and divisions;
here
B + 1 is the binary length.

In order to use NAFEXP for key establishment, we must determine bounds
on the error estimate f in the final w-near (f, p) representation of an ideal an.
The proof is again long and very technical, so we only quote the final result. It
establishes an upper bound ai, given recursively in terms of ai−1, on the value
f = fi after the i-th step of the exponentiation. Solving the recurrence for ai
provides an upper bound a�N on the final value f = f�N . The complete proof
can be found in [7, Section 4.2.1].

Theorem 4. [7, Theorem 4.2.4, p. 73] Let p ≥ 8, n ≥ 2, h ≥ max{16, log2 n}
and f0 < 2p−4. Put m = 3.54f0 + 10.72. If hmn < 2p, then after NAFEXP
has executed on input an (f0, p) representation and an exponent n, the resulting
(f, p) representation satisfies f < mn, and hence f < 2p/h ≤ 2p−4.

Both the binary form and the non-adjacent form of an integer are base-2 rep-
resentations. A base-3 representation could be advantageous because it has a
shorter length. However, cubing an (f, p) representation is a more costly opera-
tion than squaring. This led us to investigate if using a signed base-3 exponen-
tiation would provide advantages over the binary method of exponentiation.

The signed base-3 representation of an integer n is n =
∑�S

i=0 ni3
�S−i, where

n0 = 1 and ni ∈ {−1, 0, 1} for 1 ≤ i ≤
S. This representation can be computed
by repeatedly dividing by 3 and choosing the remainders in {−1, 0, 1}. The
premier advantage of this representation is its shorter length compared to the
NAF or binary representation, namely
S ≤ log3 n + 1 = log2 n/ log2 3 + 1.
However, unlike NAF, it is not generally true that no two adjacent digits are
non-zero. Since every digit in the signed base-3 representation can be either 0, 1

Improved Exponentiation and Key Agreement in the Infrastructure 221

or −1 with an expected uniform distribution, the average density of non-zero bits
is 2/3. So the number of multiplication and division operations is on average

2
S/3 ≤ (2 log3 n+ 1)/3 = (2 log2 n)/(3 log2 3) + 1/3 ≈ 0.42 log2 n+ 0.33.

The average number of operations for SB3EXP is thus less than that required
for BINEXP, but greater than that required for NAFEXP.

SB3EXP employs a signed base-3 representation of the exponent in a cube and
multiply/divide method for exponentiating w-near (f, p) representations, using
the algorithms WCUBE, WMULT and WDIV from the previous two sections.
The algorithm is given in the Appendix as Algorithm A.8. The precision analysis
and proof proceed analogously to that of NAFEXP. Again, we only quote the
final result; the complete proof can be found in [7, Section 4.3.1].

Theorem 5. [7, Theorem 4.3.3, p. 84] Let p ≥ 8, n ≥ 2, h ≥ max{16, log2 n}
and f0 < 2p−4. Put m = 13.7f0 + 41.3. If hmn < 2p, then after SB3EXP
has executed on input an (f0, p) representation and an exponent n, the resulting
w-near (f, p) representation satisfies f < mn, and hence f < 2p/h ≤ 2p−4.

5 Key Agreement Protocols

NAFEXP and SB3EXP can be used in a Diffie-Hellman type key agreement
protocol in which two parties, Alice and Bob, establish a shared secret crypto-
graphic key suitable for use in a block cipher such as AES. The protocol is based
on the key agreement procedure presented by Buchmann and Williams [4]. Alice
and Bob agree on a real quadratic field K, an ideal g in the infrastructure of K,
and an exponent bound B. Informally, the protocol proceeds as follows.

Protocol 6. (Infrastructure cryptographic key agreement [15, p. 365])

1. Alice secretly generates a random integer a with 0 < a < B. She computes
an infrastructure ideal a = (θa)g

a with θa ≈ 1 and sends a to Bob.
Bob secretly generates a random integer b with 0 < b < B. He computes an
infrastructure ideal b = (θb)g

b with θb ≈ 1 and sends b to Alice.
2. Alice computes ka = (θα)b

a, where θα ≈ 1.
Bob computes kb = (θβ)a

b, where θβ ≈ 1.

Clearly, ka and kb are both equivalent to gab. Ensuring that the relative gener-
ators in each step are close to 1 guarantees that ka = (α)gab and kb = (β)gab

where α, β ≈ 1. By tracking the relative generators with enough precision, it
is possible to ensure that ka = kb. However, if the precision requirements are
relaxed, then the computation speed and memory requirements of the protocol
may be improved. In this case, the key ideal ka computed by Alice may not be
the same as Bob’s key ideal kb, but will instead be within a few baby steps of kb,
resulting in a small set of possible key ideals. The ambiguity arising from this
can be resolved by encrypting and decrypting a message [15, p. 369].

222 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Approximating the relative generators can be accomplished using w-near
(f, p) representations. We adapt the key agreement protocol from [15, Pro-
tocol 14.1, pp. 368-369] to use the exponentiation algorithms NAFEXP and
SB3EXP from the previous section. In this protocol, Alice and Bob agree on
a discriminant Δ, a w-near (f, p) representation (g0, d0, k0) of some reduced
principal ideal in the infrastructure of Q(

√
Δ), an exponent bound B and a pre-

cision value p which depends on the exponentiation algorithm used and must be
chosen large enough so that Alice’s and Bob’s keys are close to each other in
the infrastructure (see Theorem 8 below). As described in [7, p. 88], the value
w =
(logΔ)/4� is selected in order to minimize the number of required adjust-
ment steps in the infrastructure. We also use the fact that by [15, Lemma 14.2,
p. 367], if (b, d, k) is a w-near (f, p) representation of some O-ideal and r < p,
then (b, d′, k) is a w-near (f + 2r, p) representation of the same O-ideal with
d′ = 2r
2−rd�. This means that d-values can be truncated by r bits at the
expense of an error increase of 2r. In the protocol, EXP is one of BINEXP,
NAFEXP or SB3EXP, and r = �log2 B
.
Protocol 7. (Key agreement using (f, p) representations)

1. Alice secretly generates a random integer a with 0 < a < B, computes
(a, da, ka) = EXP((g0, d0, k0), a, w, p), and sends (a,
2−rda�, ka) to Bob.
Bob secretly generates a random integer b with 0 < b < B, computes
(b, db, kb) = EXP((g0, d0, k0), b, w, p), and sends (b,
2−rdb�, kb) to Alice.

2. Alice computes (k, d, k) = EXP((a, 2r
2−rda�, ka), b, w, p).
Bob computes (m, e, h) = EXP((b, 2r
2−rdb�, kb), a, w, p).

If all parameters are chosen appropriately, then we generally expect that k = m,
which is the shared key ideal. In general, by Theorem 8 below, k is within two
baby steps of m in either direction, and a common key ideal can be established
through a test encryption/decryption as mentioned above.

The security of Protocol 7 rests on the assumption that the principal ideal
problem is hard. Given an O-ideal a, the principal ideal problem is to determine
whether a is principal and, if so, compute an approximation of logα where
a = (α); see [15, Definition 13.21, p. 331]. Using an algorithm described in [15,
Section 13.5, pp. 331-333], it has been established [15, Theorem 13.24, p. 332]
that assuming the Generalized Riemann Hypothesis and the Extended Riemann
Hypothesis, the principal ideal problem in a real quadratic field of discriminant
Δ ≥ 42 can be solved in expected time

LΔ[1/2,
√
2 + o(1)] = exp

(
(
√
2 + o(1))(log |Δ|)1/2(log log |Δ|)1/2).

6 Error Analysis for Key Agreement

In order for Protocol 7 to be successful, the precision p must be sufficiently
high to ensure that Alice and Bob’s keys are within two baby steps (backwards
or forwards) of each other. For BINEXP, this was analyzed in [15], while the
corresponding results for NAFEXP and SB3EXP are new. The proofs are very
technical and are thus omitted herein.

Improved Exponentiation and Key Agreement in the Infrastructure 223

Theorem 8. Let p,B ∈ Z+ with B ≥ 14 and set r = �log2 B
. Let a, b,∈ Z with
0 < a, b < B, and let (g0, d0, k0) be a
(logΔ)/4�-near (17/8, p) representation
of a reduced principal ideal g. Set

C =

⎧
⎪⎨

⎪⎩

66 if EXP = BINEXP,

68 if EXP = NAFEXP,

982 if EXP = SB3EXP.

If 2p ≥ CB2 max{16, log2 B}, then (k, d, k) and (m, e, h) as given in round 2
of Protocol 7 are w-near (f, p) representations of gab with f < 2p−4. Hence
k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.
Proof. For BINEXP, see [15, Theorem 14.3, p. 367, and Theorem 14.4, p. 368].
For NAFEXP, see [7, Theorems 5.3.1, p. 93, and Theorem 5.3.2, p. 94]. Finally,
for SB3EXP, see [7, Theorem 5.4.1, p. 96, and Theorem 5.4.2, p. 97].

Theorem 8 can be used directly for key agreement: Alice and Bob simply use
a precision value p such that p ≥ log2(CB2 max{16, log2 B}) where C is the
appropriate value as specified in the theorem. Note that the above bounds on p
imply that NAFEXP requires at most one more bit of precision than BINEXP,
and SB3EXP at most 15 bits more, to guarantee the result of Theorem 8.

7 Numerical Results

The algorithms BINEXP, NAFEXP and SB3EXP were implemented in C on a
Dell Power Edge R910 server provided by the Department of Mathematics and
Statistics at the University of Calgary. This server has 64 logical CPUs Intel(R)
Xeon(R) CPU X7550 @ 2.00GHz with 128G RAM. The operating system is
Red Hat Enterprise Linux Server 5.6. The GNU Multiple Precision Arithmetic
Library (GMP) [8] was used for integer arithmetic.

We used discriminants with the bit lengths recommended in [2], which provide
the same level of security as block ciphers with 112, 128, 192, and 256 bit keys as
recommended by NIST [1]. We also used the exponent bound B = 22k where k
is the number of bits in the corresponding block cipher (112, 128, 192, 256) [15,
pp. 372-373]. This bound ensures that an attack on the protocol using a baby-
step giant-step method would take time approximately 2k, which is roughly the
same time required to solve the principal ideal problem (which is believed to be
hard) using index calculus [15, p. 372]. The values of p and w were computed as
described in the previous section. The parameters used in Protocol 7 that were
not trial dependent are listed in Table 1.

The choice of the discriminant Δ of K is important for cryptographic security.
Heuristically, to ensure that the infrastructure has a cardinality of order

√
Δ,

the best choices are prime discriminants Δ ≡ 1 (mod 4); see the discussion on
p. 371 of [15]. Hence, for each trial, we generated a random probable prime
value Δ = D ≡ 1 (mod 4) using random number generating and probable prime
finding algorithms in GMP.

224 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Table 1. Parameters for the trials. The values of pB , pN , pS correspond to the precision
values of BINEXP, NAFEXP, and SB3EXP, respectively.

log2 B log2 Δ w pB pN pS

224 1341 335 462 462 446
256 1818 454 527 527 530
384 3586 896 783 783 787
512 5957 1489 1040 1040 1043

For better performance, the partial GCD steps (lines 7-12 of WDUPL and
lines 11-16 of WCUBE) were implemented using Lehmer’s algorithm [16,17];
this is not reflected in the pseudocode as it appears in the Appendix .

The entries in Table 2 are the result of 10 000 trials for each discriminant
size. We used a w-near (17/8, p) representation of ρ5(O), obtained by running
WNEAR on input the reduced (1, p) representation (ρ5(O), 2p + 1, 0) of ρ5(O),
as the input ideal in each trial. Two exponents a, b < B were also generated
randomly for each trial. The time required to perform Protocol 7 (double expo-
nentiation) was recorded, and we took the average over all trials. Columns 3, 4
and 6 record these times using BINEXP, NAFEXP and SB3EXP, respectively.
Columns 5 and 7 show the percentage difference between the new methods (NAF-
EXP and SB3EXP) and BINEXP, computed using the formula 100%·(tB−t)/tB
where tB is the average CPU time from column 3 of Table 2 and t is the aver-
age CPU time from column 4 for NAFEXP or column 6 for SB3EXP from the
same table. We see that NAFEXP is initially faster than BINEXP on average,
as is SB3EXP for the smallest discriminant bit length, but as the size of the dis-
criminant grows, the computational advantage diminishes. We conjecture that,
especially in the SB3EXP case, this may be due to the relative costs of WDIV
and WCUBE with respect to WMULT and WDUPL; further investigation is re-
quired to determine this and reduce any observed discrepancies. Another factor
may be that the binary expansion does not require pre-computation or storage,
whereas the NAF and SB3EXP must be pre-computed. Using a “right-to-left”
variant of NAF may alleviate this problem.

Table 2. Average CPU times (in seconds) per key agreement per partner with Lehmer’s
partial GCD algorithm for 1000 trials

log2 B log2 Δ BINEXP NAFEXP % diff SB3EXP % diff

224 1341 0.122770 0.109070 11.2 0.119250 2.9
256 1818 0.193320 0.169720 7.8 0.197480 -2.2
384 3586 0.712660 0.674110 5.4 0.823520 -15.6
512 5957 1.932860 2.029010 -5.0 2.593800 -32.4

Improved Exponentiation and Key Agreement in the Infrastructure 225

It is of interest to find out how often Alice and Bob might not compute the
same key ideal using the methods described above. For 10 000 trials using a 1341-
bit discriminant, no mismatches were found for the ideals computed with any of
the three exponentiation methods. The number of mismatches for BINEXP was
found to decrease with discriminant size in previous work [15, Table 14.1, p. 369].

We also wished to determine whether the precision bounds established in our
analysis herein were tight. Using 200 trials, we determined for each exponen-
tiation method the minimum precision value for which all of the 200 trial key
agreements were successful (i.e. established ideals that were within ±2 baby steps
of each other). We found that BINEXP required 15-16 fewer bits of precision
than the theoretical lower bound. For NAFEXP we could use 14-17 fewer bits
of precision, and for SB3EXP, 17-19 fewer bits of precision were sufficient. The
precision results of these trials are listed in [7, Table 5.9]. The 200 precision
tests were timed in order to determine if an improved precision analysis could
change our efficiency results. We found that the timings with the reduced pre-
cision followed the same trends as those of Table 2, and that the performance
improvement was negligible. These results are listed in [7, Table 5.10].

8 Conclusions

We investigated methods for exponentiation in the infrastructure of a real qua-
dratic field that were used in a key agreement protocol. We found that using the
non-adjacent form exponentiation method for w-near (f, p) representations im-
proved the computing time for most discriminant sizes tested and, according to
our analysis, typically did not increase the precision requirements compared to
the corresponding binary exponentiation method. However, it remains an open
problem to determine why NAFEXP slows in comparison to BINEXP as the dis-
criminant size increases. Our preliminary investigation of this behavior showed
that the time devoted to computing the non-adjacent form of the exponents
did not fully account for why NAFEXP slowed down in comparison to BIN-
EXP. Similar further work is required for SB3EXP. It remains to be determined
whether this observed slowing is a result of the implementation of the methods
or if it is a property of the methods themselves.

There are exponentiation methods that improve on NAFEXP. One could em-
ploy a sliding window NAF method [10, Algorithm 3.38, p. 101] which uses
pre-computations to decrease the number of operations in the actual algorithm.
An adaptation of a double-base method such as the ternary/binary method de-
scribed in [5] would also be of interest as this could limit the use of the cubing
steps compared to SB3EXP while still reducing the overall number of operations
compared to BINEXP. To use these methods, an investigation of the precision
requirements would be needed.

Further optimization of our algorithms and their implementations is possible.
For example, the NUCOMP and WNEAR methods could be combined in such
a way so that NUCOMP passes certain values to WNEAR, thereby reducing
computation effort. Our precision analysis assumed a worst case scenario, so the

226 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

required precision is not tight in practice. It is also worthwhile to investigate
whether w = (logΔ)/4 is the best choice of w for SB3EXP; if this choice of w is
not optimal, then the performance of our ternary algorithm could be improved.

Recent results from hyperelliptic curve cryptography, particularly those from
[12], employ scalar multiplication methods in which a large number of giant steps
is replaced by a series of (much faster) baby steps. These could potentially be
adapted to the real quadratic field infrastructure setting.

Section 7 established that using NAFEXP improved the efficiency of infras-
tructure based key agreement compared to using BINEXP, which is not the
case, for example, in the original Diffie-Hellman protocol [6]. Improvements of
this kind are important for practical use. It is essential to have a varied set
of cryptographic protocols for key agreement due to the constant pressure of
technology and advancement of cryptographic attacks. The methods developed
herein could also be used to develop a signature scheme similar to that of Guillou
and Quisquater [9], which would expand the breadth of cryptographic protocols
available for use.

References

1. Barker, E., Barker, W., Polk, W., Smid, M.: Recommendation for key management
- part 1: General (revised). NIST Special Publication 800-57, National Institute of
Standards and Technology (NIST) (March 2007),
http://csrc.nist.gov/groups/ST/toolkit/documents/

SP800-57Part1 3-8-07.pdf

2. Biasse, J.-F., Jacobson Jr., M.J., Silvester, A.K.: Security Estimates for Quadratic
Field Based Cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 233–247. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1926211.1926229

3. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology 1, 107–118 (1988)

4. Buchmann, J., Williams, H.C.: A Key Exchange System Based on Real Quadratic
Fields. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 335–343.
Springer, Heidelberg (1990),
http://dl.acm.org/citation.cfm?id=646754.705067

5. Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading inversions for multiplica-
tions in elliptic curve cryptography. Designs, Codes and Cryptography 39, 189–206
(2006)

6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7. Dixon, V.: Fast Exponentiation in the Infrastructure of a Real Quadratic Field.
Master’s thesis, University of Calgary, Calgary, Alberta (2011)

8. Free Software Foundation: The GNUMultiple Precision Arithmetic Library (2011),
http://gmplib.org

9. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://dl.acm.org/citation.cfm?id=1926211.1926229
http://dl.acm.org/citation.cfm?id=646754.705067
http://gmplib.org

Improved Exponentiation and Key Agreement in the Infrastructure 227

10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography,
pp. 98–99. Springer Science and Buisness Media, LLC (2004)

11. Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary
quadratic number and function fields. Advances in Mathematics of Communica-
tions 4(2), 237–260 (2010)

12. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic aspects of real hyper-
elliptic curves. Tatra Mountains Mathematical Publications 45, 1–35 (2010)

13. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: The efficiency and security of a
real quadratic field based key exchange protocol. In: Public Key Cryptography and
Computational Number Theory (Warsaw 2000), pp. 89–112. Walter de Gruyter,
Berlin (2001)

14. Jacobson Jr., M.J., Scheidler, R., Williams, H.C.: An improved real quadratic field
based key exchange procedure. Journal of Cryptology 19, 211–239 (2006)

15. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in
Mathematics. Springer (2009) iSBN 978-0-387-84922-5

16. Jebelean, T.: A double-digit Lehmer-Euclid algorithm for finding the GCD of long
integers. Journal of Symbolic Computation 19, 145–157 (1995)

17. Lehmer, D.H.: Euclid’s algorithm for large numbers. The American Mathematical
Monthly 45(4), 227–233 (1938)

18. Shanks, D.: The infrastructure of real quadratic fields and its applications. In:
Proc. 1972 Number Theory Conf., Boulder, Colorado, pp. 217–224 (1972)

19. Shanks, D.: On Gauss and composition I, II. In: Proceedings NATOASI on Number
Theory and Applications, pp. 163–204. Kluwer, Dordrecht (1989)

20. Silvester, A.: Doctoral Dissertation, University of Calgary (in progress, 2012)

A Appendix

For reference, pseudocode for our new algorithms is listed below. WDUPL,
WCUBE, and WDIV all require the sub-algorithms REMOVE (for adjusting
the relative generator approximation obtained after the operation) and WNEAR
(for adjusting the output to satisfy the definition of a w-near (f, p) representa-
tion). The specifications of these algorithms are listed for convenience, together
with references to their descriptions. Complete descriptions of the remaining
algorithms can be found in [7].

Algorithm A.1. REMOVE [15, Algorithm A.1, p. 448]

Input: (b, e, h), T, C, s, p, where ((μ)b, e, h) is an (f, p) representation of some
ideal a with μ = |(A + B

√
D)/C| ≥ 1 (A,B,C ∈ Z and C �= 0), T =

2sA+B�2s√D
, and s ∈ Z≥0 with 2s|C| > 2p+4|B|.
Output: An (f + 9/8, p) representation (b, e′, h′) of a.

Algorithm A.2. WNEAR [15, Algorithm 11.2, pp. 454-456]

Input: (b, d, k), w, p, where (b, d, k) is an (f, p) representation of some O-ideal
a. Here, b =

[
Q/r, (P +

√
D)/r

]
, where P +

√
D ≥ Q, 0 ≤ �√D
 − P ≤ Q.

Output: A w-near (f + 9/8, p) representation (c, g, h) of a.

228 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.3. WDUPL

Input: (b′, d′, k′), w, p, where (b′, d, k) is a w-near (f ′, p) representation of some
ideal a. Here b′ = [Q′/r, (P ′ +

√
D)/r].

Output: A reduced w-near (f, p) representation (c, d, k) of a2 where f = 2f ′ +
2−p(f ′)2 + 13/4.

/* Finding a reduced b and μ = |(A + B
√
D)/C| ∈ K satisfying (μ)b =

(b′)2. */
1: Compute S = Z(Q′/r)+Y (2P ′/r) where S = gcd(Q′/r, 2P ′/r) for S, Y ∈ Z.
2: Set N = Q′/(Sr), L = Q′/S, K = Y R′ (mod L).
3: Set R−1 = L, R0 = K, C−1 = 0, C0 = −1 and i = 0.

4: if R−2 < �
√
2rD1/2
 then

5: Put Qi+1 = (Q′)2/(rS2) and Pi+1 ≡ P ′ + Y R′Q′/(rS) (mod Qi+1).
6: else

7: while Ri >
√
2r|D|1/4 do

8: i← i+ 1
9: q = �Ri−2/Ri−1

10: Ri = Ri−2 − qiRi−1

11: Ci = Ci−2 − qiCi−1

12: end while
13: M2 = (Ri2P

′ + rSR′Ci)/L
14: Qi+1 = (−1)i−1(R2

i /r − CiM2)
15: Pi+1 = (NRi +Qi+1Ci−1)/Ci − P ′

16: end if
/* Final reduction steps */

17: j = 1
18: Q′

i+1 = |Qi+1|
19: ki+1 = �(√D − Pi+1)/Q

′
i+1

20: P ′
i+1 = ki+1Q

′
i+1 + Pi+1

21: σ = sign(Qi+1)
22: Bi−1 = σ|Ci−1|
23: Bi−2 = |Ci−2|.
24: if P ′

i+1 + �
√
D
 < Q′

i+1 then
25: j = 2
26: qi+1 = �(Pi+1 + �

√
D
)/Q′

i+1

27: Pi+2 = qi+1Q

′
i+1 − pi+1, Qi+2 = (D − P 2

i+2)/Q
′
i+1

28: Q′
i+2 = |Qi+2|

29: ki+2 = �(√D − Pi+2)/Q
′
i+2

30: P ′
i+2 = ki+2Q

′
i+2 + Pi+2

31: Bi+1 = qi+1Bi +Bi+1.
32: if P ′

i+2 + �
√
D
 < Q′

i+2 then
33: j = 3
34: qi+2 = �(Pi+2 + �

√
D
)/Qi+2

35: Pi+3 = qi+2Qi+2 − pi+2

Improved Exponentiation and Key Agreement in the Infrastructure 229

36: Qi+3 = (D − P 2
i+3)/Qi+2

37: Q′
i+3 = |Qi+3|

38: ki+3 = �(√D − Pi+3)/Q
′
i+3

39: P ′
i+3 = ki+3Q

′
i+3 + Pi+3

40: Bi+2 = qi+2Bi+1 +Bi+2.
41: end if

42: end if
43: Put b = [Q′

i+j/r, (P
′
i+1 +

√
D)/r], A = S(Qi+jBi+j−2 + Pi+jBi+j−1),

B = −SBi+j−1, and C = Qi+j .

/* Using Theorem 1 with equal inputs */
44: if (d′)2 ≤ 22p+1 then

45: Put e = �(d′)2/2p
, h = 2k′.
46: else

47: Put e = �(d′)2/2p+1
, h = 2k′ + 1.
48: end if

/* Bounding μ and calling REMOVE. */
49: Find s ≥ 0 such that 2sQ > 2p+4B and put T = 2sA+B�2s√D
.
50: (b, e′, h′) = REMOVE((b, e, d), T, C, s, p).

/* Calling WNEAR */
51: (c, d, k) = WNEAR((b, e′, h′), w, p)

230 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.4. WCUBE

Input: (b′, d′, k′), w, p where (b′, d′, k′) is a reduced w-near (f ′, p) representa-
tion of an invertible O-ideal a′. Here b′′ =

[
Q′/r, (P ′ +

√
D)/r

]
.

Output: A w-near (3f ′+3(f ′)22−p+(f ′)32−2p+13/4, p) representation (c, d, k)
of (a′)3.

/* Finding a reduced b and μ = (A+B
√
D)/C ∈ K for which (μ)b = (b′)2.

Lines 1-22 are [11, Algorithm 4, p. 16]. */
1: Find S′, v1 ∈ Z such that S′ = gcd(Q′/r, 2P ′/r) and S′ = u1(Q

′/r) +
v1(2P

′/r).
2: if S′ = 1 then

3: Set S = 1, N = Q′/r, L = NQ′, and
K = R′v1(2− v1(v1(Q

′/r)(R′/r) + (2P ′)/r)) (mod L).
4: else

5: Compute S = u2(S
′Q′/r) + v2((3(P

′)2 + D)/r2), N = Q′/(rS), L =
NQ′, and K = R′(u2v1(Q

′/r) + v2(2P
′/r)) (mod L).

6: end if
7: if L <

√
Q′/r2|D|1/4 then

8: Set Q = NL and P = P ′ +NK.
9: else

10: Set R−1 = L,R0 = K,C−1 = 0, C0 = −1, i = 0.
11: while Ri >

√
Q′/r2|D|1/4 do

12: i← i+ 1
13: qi = �Ri−2/Ri−1

14: Ri = Ri−2 − qiRi−1

15: Ci = Ci−2 − qiCi−1

16: end while
17: P ′′ = P ′ +NK (mod L)
18: M1 = (NRi + (P ′′ − P ′)Ci)/L
19: M2 = (Ri(P

′ + P ′′) + rR′SCi)/L
20: Q = (−1)i−1(RiM1 − CiM2)
21: P = (NRi +QCi−1)/Ci − P ′

22: end if
/* Final reduction steps (using the same method as NUCOMP). */

23: j = 1
24: Q′

i+1 = Qi = |Q|
25: k = �(√D − Pi+1)/Q

′
i+1

26: P ′
i+1 = ki+1Q

′
i+1 + Pi+1

27: σ = sign(Q)
28: Bi−1 = σ|Ci−1|
29: Bi = |Ci|
30: if P ′

i+1 + �
√
D
 < Q′

i+1 then
31: j = 2

Improved Exponentiation and Key Agreement in the Infrastructure 231

32: qi+1 = �(Pi+1 + �
√
D
)/Q′

i+1

33: Pi+2 = qi+1Q

′
i+1 − pi+1, Qi+2 = (D − P 2

i+2)/Q
′
i+1

34: Q′
i+2 = |Qi+2|

35: ki+2 = �(√D − Pi+2)/Q
′
i+2

36: P ′
i+2 = ki+2Q

′
i+2 + Pi+2

37: Bi+1 = qi+1Bi +Bi+1.
38: if P ′

i+2 + �
√
D
 < Q′

i+2 then
39: j = 3
40: qi+2 = �(Pi+2 + �

√
D
)/Qi+2

41: Pi+3 = qi+2Qi+2 − pi+2

42: Qi+3 = (D − P 2
i+3)/Qi+2

43: Q′
i+3 = |Qi+3|

44: ki+3 = �(√D − Pi+3)/Q
′
i+3

45: P ′
i+3 = ki+3Q

′
i+3 + Pi+3

46: Bi+2 = qi+2Bi+1 +Bi+2.
47: end if

48: end if
49: Put b = [Q′

i+j/r, (P
′
i+1 +

√
D)/r], A = S(Qi+jBi+j−2 + Pi+jBi+j−1),

B = −SBi+j−1, and C = Qi+j .

/* Using Theorem 2 */
50: if (d′)3 ≤ 23p+1 then

51: Put e = �(d′)3/22p
 and h = 3k′.
52: else if 23p+1 < (d′)3 ≤ 23p+2 then

53: Put e = �(d′)3/22p+1
 and h = 3k′ + 1.
54: else

55: Put e = �(d′)3/22p+2
 and h = 3k′ + 2.
56: end if

/* Bounding μ and calling REMOVE */
57: Find s ≥ 0 such that 2sQ > 2p+4B and put T = 2sA+B�2s√D
.
58: (b, e′, h′) = REMOVE((b, e, h), T, C, s, p).

/* Re-establishing the w-near property */
59: (c, d, k) = WNEAR((b, e′, h′), w, p).

232 V. Dixon, M.J. Jacobson Jr., and R. Scheidler

Algorithm A.5. WDIV

Input: (b′, d′, k′), (b′′, d′′, k′′), p where (b′, d′, k′) is a w-near (f ′, p) representa-
tion of an invertible O-ideal a′ and (b′′, d′′, k′′) is a w-near (f ′′, p) represen-
tation of an invertible O-ideal a′′ dividing a′. Here,

b′ = [Q′/r, (P ′ +
√
D)/r] and b′′ = [Q′′/r, (P ′′ +

√
D)/r].

Output: (c, d, k), a reduced (f∗∗ + 13/4, p) representation of a′(a′′)−1 where
f∗∗ = f ′ + f ′′/(1− f ′′2−p) + f ′f ′′/(2p − f ′′).

/* Computing a reduced ideal b and μ = (A + B
√
D)/C ∈ K where (μ)b =

b′b′′. */
1: Let b∗ = [Q′′/r, (qQ′′ − P ′′ +

√
D)/r] where q = �(P ′′ +

√
D)/Q′′
.

2: if Q′ ≥ Q′′ then
3: Compute (b, A,B,C) = NUCOMP(b′, b∗) where b = [Q/r, (P+

√
D)/r].

4: else
5: Compute (b, A,B,C) = NUCOMP(b∗, b′) where b = [Q/r, (P+

√
D)/r].

6: end if

/* Computing e, h for which (b′′b′′, e, h) is an (1 + f∗∗, p) representation of
a(a′′)−1 using Theorem 3. */

7: Find κ such that 2κ < N(b′′) = Q′′/r ≤ 2κ+1.
8: if d′′2κ−1 < d′N(b′′) ≤ d′′2κ then

9: e =
2p−κ+1d′N(b′′)/d′′�
10: h = k′ − k′′ + κ− 1

11: else if d′′2κ < d′N(b′′) ≤ d′′2κ+1 then
12: e =
2p−κd′N(b′′)/d′′�
13: h = k′ − k′′ + κ

14: else
15: e =
2p−κ−1d′N(b′′)/d′′�
16: h = k′ − k′′ + κ+ 1.

17: end if

/* Computing e′, h′ for which (b, e′, h′) is an (17/8 + f∗∗, p) representation
of a′(a′′)−1. */

18: Find s ≥ 0 such that 2sQ > 2p+4B.
19: Put T = 2sA+B�2s√D
.
20: (b, e′, h′) = REMOVE((b, e, h), T, C, s, p)

/* Computing a reduced w-near (13/4+f∗∗, p) representation of a′(a′′)−1. */

21: (c, d, k) = WNEAR((b, e′, h′), w, p)

Improved Exponentiation and Key Agreement in the Infrastructure 233

Algorithm A.6. BINEXP [15, Algorithm 11.4, pp. 276-277]

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�B) = BIN(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1→
B do

4: (b, d, k)←WDUPL((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k)←WMULT((b, d, k), (b0, d0, k0), w, p)
7: end if

8: end for

Algorithm A.7. NAFEXP

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�N) = NAF(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1→
N do

4: (b, d, k)←WDUPL((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k)←WMULT((b, d, k), (b0, d0, k0), w, p)
7: else if ni = −1 then

8: (b, d, k)←WDIV((b, d, k), (b0, d0, k0), w, p)
9: end if

10: end for

Algorithm A.8. SB3EXP

Input: (b0, d0, k0), n, w, p where (b0, d0, k0) is a w-near (f0, p) representation of
an invertible O-ideal a and n ∈ N.

Output: A w-near (f, p) representation (b, d, k) of an for some f ∈ [1, 2p).
1: Compute (n0, . . . , n�S) = SB3(n).
2: Set (b, d, k) = (b0, d0, k0).
3: for i = 1→
S do

4: (b, d, k)←WCUBE((b, d, k), w, p)
5: if ni = 1 then

6: (b, d, k)←WMULT((b, d, k), (b0, d0, k0), w, p)
7: else if ni = −1 then

8: (b, d, k)←WDIV((b, d, k), (b0, d0, k0), w, p)
9: end if

10: end for

	Improved Exponentiation and Key Agreement in the Infrastructure of a Real Quadratic Field
	Introduction
	Infrastructure of a Real Quadratic Field
	Ideals and Infrastructure
	(f,p) Representations

	Cubing and Division with (f,p) Representations
	Non-adjacent Form and Signed Base-3 Exponentiation
	Key Agreement Protocols
	Error Analysis for Key Agreement
	Numerical Results
	Conclusions
	References

